enzyme kinetics and inhibition enzyme...

20
6/18/2015 1 Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics How fast an enzyme catalyzed reaction goes Why study enzyme kinetics? Helps us understand mechanism of enzyme (how it works) Investigation of mutations in metabolic pathways Understanding of regulation of biochemical reactions (up or down regulation of catalyst)

Upload: duongdiep

Post on 06-Mar-2018

236 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

1

Enzyme Kinetics and Inhibition

Pratt & Cornely Ch 7

Enzyme Kinetics

• How fast an enzyme catalyzed reaction goes

• Why study enzyme kinetics?

– Helps us understand mechanism of enzyme (how it works)

– Investigation of mutations in metabolic pathways

– Understanding of regulation of biochemical reactions (up or down regulation of catalyst)

Page 2: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

2

Simple Mechanisms

• Chemical mechanism

• Enzyme Catalyzed

• How do we measure kinetics experimentally?

Chemical Kinetics

• Rate:  measure product formed per second

• Rate slows as reactant disappears

• Measure initial rate

• Do a second experiment with more starting material, and the initial rate is faster

Page 3: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

3

Chemical Kinetics

• Secondary plot: change in rate as a function of how much substrate you started with

• Linear plot—does that make sense?

Enzyme Kinetics

• Complicated—two components, treated separately

• First, how does [enzyme] affect rate (given large [S]?)

Page 4: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

4

Enzyme Kinetics• Next, keep the [E] constant and low, and test how changing the [S] affects initial rates

• Michaelis‐Menton Treatment[Product]

Time

Interpretation of Shape

• Low [S]– Rate very dependent on [S]

– Binding is rate limiting

• High [S]– Rate independent

– Saturation of E

– Chemistry is rate limiting

Page 5: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

5

Mechanism and Assumptions

• E + S  ES E + P

– Low [E] relative to [S]

• Steady state

– Initial rates

• No back rxn

• No pdt inhibition

Michaelis‐Menton Kinetics 

• Rectangular hyperbola

• Parameters

Vmax [S]vo =  ‐‐‐‐‐‐‐‐‐‐‐‐‐

Km + [S]

Page 6: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

6

Maximum Velocity and the Catalytic Constant

• What two things contribute to the maximum velocity limit?– Amount of enzmye– Chemical ability of enzyme 

(catalytic constant)

• Vmax = [E] kcat• Only kcat tells us about the 

enzyme– Maximum # of substrate 

molecules per active site per second

– Turnover number

Michaelis Constant• Km is the [S] at which the 

reaction reaches half its maximum velocity

• Physical meaning (assuming equilibrium binding):  Km is the dissociation constant for ES

• Km is [S] at which enzyme is half‐bound

• Km is measure of affinity of enzyme for S

• Low Km is tight binding 

Page 7: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

7

Enzyme Efficiency

• At low [S], the second order rate constant is kcat/Km

• Efficient enzymes have large kcat/Km – Large kcat and/or– Small Km

• Catalytic perfection at 108 or 109 M‐1 S‐1

• Diffusion control

Assume large [S] and small [S]

Case Study: Diffusion Controlled Enzymes

Page 8: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

8

Superoxide Dismutase:  Better than Diffusion!

Catalytic Proficiency

Page 9: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

9

Graphical Determination of Kinetic Parameters

• Analyze hyperbola

• Construct linear plot

• Double reciprical

Non‐MM Kinetics

• Multi‐substrate

– Each substrate has its own Km

– Random, ordered, ping‐pong

• Multistep reactions

– kcat not simplified to k2

• Allosteric enzymes

– cooperativity

Page 10: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

10

Irreversible Enzyme Inhibition

• Affinity labels

• Test enzyme mechanisms

• Serine protease

Mechanism Based Inhibitors

• Suicide inhibitors

• Selectivity

• Targeting fast‐growing cells

Page 11: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

11

Drug Byproducts

• Oxidation of xenobiotics by P450 enzymes

• Pharmacology

• Liver damage—covalent binding to cysteine

Reversible Inhibition Kinetics

• Know types of Reversible Inhibition

• Know effect on kinetic parameters

• Understand why

• Interpret MM plots

Page 12: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

12

Competitive Inhibition

• Added substrate can outcompete inhibitor

• “Feels like…”

– Same amount of Enzyme at high [S]

– Needs more S to bind (lowers affinity)

• Draw altered MM plot

Page 13: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

13

Inhibition Constant for Competitive Inhibitors

• Alpha is the degree of inhibition

– Changes the apparent KM– If KM changes from 100 nM to 300 nM, then  = 3

• Depends on the concentration of inhibitor and the dissociation constant

• Low Ki is better inhibitor

vo

1

Transition State Analog

• Your book presents high energy intermediate analog

Page 14: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

14

Designing a Transition State Analog

Binding of Transition State Analog

Page 15: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

15

Case Study: Orotidine Decarboxylase

Mechanism of Catalysis

Page 16: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

16

Uncompetitive Inhibition

• When inhibitor binds only to [ES]

• Added substrate increases inhibitor effect

• “Feels like…”– Less enzyme at high [S]

– Enzyme has greater affinity for substrate

• Draw altered MM plot

Noncompetitive Inhibition

• Assumes simple case of inhibitor binding equally to E and ES

• “Feels like…”– Less enzyme at all [S]– No effect on substrate 

affinity (no equil shift)

• Physical explanation: inhibitor binding causes change that affects reaction, but not S binding

• Very rare (nonexistent)• Draw altered MM plot

Page 17: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

17

Mixed Inhibition

• Like noncompetitve, but not the simple case– Inhibitor may bind E or ES better

• “Feels like…”– Less enzyme at all [S]

– Overall lowering OR raising of affinity for substrate

Mixed inhibition

Fill in the Chart

Inhibition Effect on KM Effect on Vmax Effect on Vmax/KM

Competitive

Uncompetitive

Noncompetitive

Mixed

Page 18: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

18

Problem 56

[S] M V ( no I) V (with I)

10 4.63 nmol/min

2.70

15 5.88 3.46

20 6.94 4.74

25 9.26 6.06

30 10.78 6.49

40 12.14 8.06

50 14.93 9.71 • Use LB plot to determine parameters

• What type of inhibition?

• Calculate Ki.

Allosteric Regulation

• Can be inhibition

– Negative effector

– Feedback inhibition

– PFK regulation

Page 19: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

19

Mechanism

• PEP binding in allosteric site causes conformational shift in neighbor

• An Arg essential for F6P binding is replaced with Glu

• T vs. R state• Cooperative, no effect on Vmax, but only apparent KM

Positive Effector

• ADP acts with positive cooperativity

• Favors R state by binding in the same allosteric site, but holding it open to lock Arg into place

• Does ADP effector make sense physiologically?

Page 20: Enzyme Kinetics and Inhibition Enzyme Kineticscourses.chem.indiana.edu/c483/documents/Lecturech7_000.pdf · Enzyme Kinetics and Inhibition Pratt & Cornely Ch 7 Enzyme Kinetics

6/18/2015

20

Other Modes of Regulation

• Transcriptional level

• Compartmentalization

• Intracellular signal

• Covalent modification