epc2014c – enhancement mode power transistor · da e a figure typica o c aac te ds dase ae v gs v...

6
eGaN® FET DATASHEET EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 1 EPC2014C EPC2014C – Enhancement Mode Power Transistor V DS , 40 V R DS(on) , 16 mΩ I D , 10 A EPC2014C eGaN® FETs are supplied only in passivated die form with solder bumps Applications • High Frequency DC-DC conversion • Class-D Audio • Wireless Power Transfer • Lidar Benefits • Ultra High Efficiency • Ultra Low R DS(on) • Ultra Low Q G • Ultra Small Footprint EFFICIENT POWER CONVERSION HAL G D S Maximum Ratings PARAMETER VALUE UNIT V DS Drain-to-Source Voltage (Continuous) 40 V Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 48 I D Continuous (T A = 25°C, R θJA = 43°C/W) 10 A Pulsed (25°C, T PULSE = 300 µs) 60 V GS Gate-to-Source Voltage 6 V Gate-to-Source Voltage -4 T J Operating Temperature -40 to 150 °C T STG Storage Temperature -40 to 150 Thermal Characteristics PARAMETER TYP UNIT R θJC Thermal Resistance, Junction-to-Case 3.6 °C/W R θJB Thermal Resistance, Junction-to-Board 9.3 R θJA Thermal Resistance, Junction-to-Ambient (Note 1) 80 Note 1: R θJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board. See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details. All measurements were done with substrate connected to source. Static Characteristics (T J = 25°C unless otherwise stated) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT BV DSS Drain-to-Source Voltage V GS = 0 V, I D = 125 μA 40 V I DSS Drain-Source Leakage V GS = 0 V, V DS = 32 V 50 100 µA I GSS Gate-to-Source Forward Leakage V GS = 5 V 0.4 2 mA Gate-to-Source Reverse Leakage V GS = -4 V 50 100 µA V GS(TH) Gate Threshold Voltage V DS = V GS , I D = 2 mA 0.8 1.4 2.5 V R DS(on) Drain-Source On Resistance V GS = 5 V, I D = 10 A 12 16 mΩ V SD Source-Drain Forward Voltage I S = 0.5 A, V GS = 0 V 1.8 V Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low R DS(on) , while its lateral device structure and majority carrier diode provide exceptionally low Q G and zero Q RR . The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Upload: others

Post on 21-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 1

EPC2014C

EPC2014C – Enhancement Mode Power Transistor

VDS , 40 VRDS(on) , 16 mΩID , 10 A

EPC2014C eGaN® FETs are supplied only inpassivated die form with solder bumps

Applications• High Frequency DC-DC conversion• Class-D Audio• Wireless Power Transfer• Lidar

Benefits• Ultra High Efficiency• Ultra Low RDS(on)• Ultra Low QG• Ultra Small Footprint

EFFICIENT POWER CONVERSION

HAL

G

D

S

Maximum Ratings

PARAMETER VALUE UNIT

VDS

Drain-to-Source Voltage (Continuous) 40V

Drain-to-Source Voltage (up to 10,000 5 ms pulses at 150°C) 48

ID

Continuous (TA = 25°C, RθJA = 43°C/W) 10A

Pulsed (25°C, TPULSE = 300 µs) 60

VGS

Gate-to-Source Voltage 6V

Gate-to-Source Voltage -4

TJ Operating Temperature -40 to 150°C

TSTG Storage Temperature -40 to 150

Thermal Characteristics

PARAMETER TYP UNIT

RθJC Thermal Resistance, Junction-to-Case 3.6

°C/W RθJB Thermal Resistance, Junction-to-Board 9.3

RθJA Thermal Resistance, Junction-to-Ambient (Note 1) 80Note 1: RθJA is determined with the device mounted on one square inch of copper pad, single layer 2 oz copper on FR4 board.See https://epc-co.com/epc/documents/product-training/Appnote_Thermal_Performance_of_eGaN_FETs.pdf for details.

All measurements were done with substrate connected to source.

Static Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITBVDSS Drain-to-Source Voltage VGS = 0 V, ID = 125 μA 40 V

IDSS Drain-Source Leakage VGS = 0 V, VDS = 32 V 50 100 µA

IGSSGate-to-Source Forward Leakage VGS = 5 V 0.4 2 mA

Gate-to-Source Reverse Leakage VGS = -4 V 50 100 µA

VGS(TH) Gate Threshold Voltage VDS = VGS, ID = 2 mA 0.8 1.4 2.5 V

RDS(on) Drain-Source On Resistance VGS = 5 V, ID = 10 A 12 16 mΩ

VSD Source-Drain Forward Voltage IS = 0.5 A, VGS = 0 V 1.8 V

Gallium Nitride’s exceptionally high electron mobility and low temperature coefficient allows very low RDS(on), while its lateral device structure and majority carrier diode provide exceptionally low QG and zero QRR. The end result is a device that can handle tasks where very high switching frequency, and low on-time are beneficial as well as those where on-state losses dominate.

Page 2: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 2

EPC2014C

60

45

30

15

00 0.5 1.0 1.5 2.0 2.5 3.0

I D –

Dra

in Cu

rrent

(A)

Figure 1: Typical Output Characteristics

VDS – Drain-to-Source Voltage (V)

VGS = 5 VVGS = 4 VVGS = 3 VVGS = 2 V

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V)

40

50

30

20

10

02.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 3: RDS(on) vs. VGS for Various Drain Currents

ID = 5 AID = 10 AID = 15 AID = 30 A

I D –

Dra

in Cu

rrent

(A)

VGS – Gate-to-Source Voltage (V)

60

45

30

15

1.00.5 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 2: Transfer Characteristics

25˚C125˚C

VDS = 3 V

0

50

40

30

20

10

02.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 4: RDS(on) vs. VGS for Various Temperatures

25˚C125˚C

ID = 10 A

R DS(

on) –

Dra

in-to

-Sou

rce R

esist

ance

(mΩ

)

VGS – Gate-to-Source Voltage (V)

Dynamic Characteristics (TJ = 25°C unless otherwise stated)

PARAMETER TEST CONDITIONS MIN TYP MAX UNITCISS Input Capacitance

VDS = 20 V, VGS = 0 V

220 300

pFCRSS Reverse Transfer Capacitance 6.5 9.5

COSS Output Capacitance 150 210

RG Gate Resistance 0.4 Ω

QG Total Gate Charge VDS = 20 V, VGS = 5 V, ID = 10 A 2 2.5

nC

QGS Gate-to-Source Charge

VDS = 20 V, ID = 10 A

0.7

QGD Gate-to-Drain Charge 0.3 0.5

QG(TH) Gate Charge at Threshold 0.5

QOSS Output Charge VDS = 20 V, VGS = 0 V 4 6

QRR Source-Drain Recovery Charge 0All measurements were done with substrate connected to source.Note 2: COSS(ER) is a fixed capacitance that gives the same stored energy as COSS while VDS is rising from 0 to 50% BVDSS. Note 3: COSS(TR) is a fixed capacitance that gives the same charging time as COSS while VDS is rising from 0 to 50% BVDSS.

Page 3: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 3

EPC2014C

All measurements were done with substrate shortened to source.

Capa

citan

ce (p

F)

100

10

00 5 10 15 20 25 30 35 40

Figure 5b: Capacitance

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

60

45

30

15

00.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I SD –

Sour

ce-to

-Dra

in Cu

rrent

(A)

VSD – Source-to-Drain Voltage (V)

Figure 7: Reverse Drain-Source Characteristics

25˚C125˚C

Figure 9: Normalized Threshold Voltage vs. Temperature

Norm

alize

d Th

resh

old

Volta

ge

1.4

1.3

1.2

1.0

1.1

0.9

0.8

0.7

0.60 25 50 75 100 125 150

TJ – Junction Temperature (°C)

ID = 2 mA

Capa

citan

ce (p

F)

300

250

200

150

100

50

00 5 10 15 20 25 30 35 40

Figure 5a: Capacitance

VDS – Drain-to-Source Voltage (V)

COSS = CGD + CSD

CISS = CGD + CGS

CRSS = CGD

5

4

3

2

1

00 0.5 1.0 1.5 2.0

Figure 6: Gate Charge

V GS

– Ga

te-to

-Sou

rce V

olta

ge (V

)

QG – Gate Charge (nC)

ID = 10 AVDS = 20 V

Figure 8: Normalized On Resistance vs. Temperature

ID = 10 AVGS = 5 V

Norm

alize

d On

-Sta

te R

esist

ance

RDS

(on)

2

1.8

1.6

1.4

1.2

1.0

0.80 25 50 75 100 125 150

TJ – Junction Temperature (°C)

Page 4: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 4

EPC2014C

Figure 11: Transient Thermal Response Curves

Junction-to-Board

tp, Rectangular Pulse Duration, seconds

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJB x RθJB + TB

PDM

t1

t2

0.5

0.1

0.05

0.02

0.01

Single PulseZ θJB

, Nor

mal

ized T

herm

al Im

peda

nce

10-410-5 10-3 10-2 10-1 1 10+1

1

0.1

0.01

0.001

Junction-to-Case

tp, Rectangular Pulse Duration, seconds

Duty Cycle:

Notes:Duty Factor: D = t1/t2

Peak TJ = PDM x ZθJC x RθJC + TC

PDM

t1

t2

0.50.20.10.050.020.01

Single Pulse

Z θJC

, Nor

mal

ized T

herm

al Im

peda

nce

10-510-6 10-4 10-3 10-2 10-1 1

1

0.1

0.01

0.001

0.0001

I G –

Gate

Curre

nt (m

A)

VGS – Gate-to-Source Voltage (V)

Figure 10: Gate Current

25˚C125˚C

9

8

7

5

6

4

3

2

1

00 1 2 3 4 5 6

Page 5: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 5

EPC2014C

2014

YYYY

ZZZZ

Part Number

Laser Markings

Part #Marking Line 1

Lot_Date CodeMarking line 2

Lot_Date CodeMarking Line 3

EPC2014C 2014 YYYY ZZZZ

Die orientation dot

Gate Pad bump isunder this corner

DIE MARKINGS

YYYY2014

ZZZZ

TAPE AND REEL CONFIGURATION

7” reel

a

d e f g

c

b

Note 1: MSL 1 (moisture sensitivity level 1) classied according to IPC/JEDEC industry standard.Note 2: Pocket position is relative to the sprocket hole measured as true position of the pocket, not the pocket hole.

Dieorientationdot

Gatesolder bar isunder thiscorner

Die is placed into pocketsolder bar side down(face side down)

Loaded Tape Feed Direction

Dimension (mm) target min max a 8.00 7.90 8.30 b 1.75 1.65 1.85

c (note 2) 3.50 3.45 3.55 d 4.00 3.90 4.10 e 4.00 3.90 4.10

f (note 2) 2.00 1.95 2.05 g 1.5 1.5 1.6

EPC2014C (note 1)

4 mm pitch, 8 mm wide tape on 7” reel

Figure 12: Safe Operating Area

0.1

1

10

100

0.1 1 10 100

I D –

Dra

in Cu

rrent

(A)

VDS - Drain-Source Voltage (V)

Limited by RDS(on)

TJ = Max Rated, TC = +25°C, Single Pulse

100 ms10 ms

1 ms

100 µs

Pulse Width 100 ms 10 ms 1 ms 100 µs

Page 6: EPC2014C – Enhancement Mode Power Transistor · Da e A Figure Typica O C aac te DS DaSe ae V GS V V GS 4 V V GS V V GS 2 V R DS – D r a i n-to-S ur c e e a n c e ˜) 40 V GS GaeSe

eGaN® FET DATASHEET

EPC – THE LEADER IN GaN TECHNOLOGY | WWW.EPC-CO.COM | COPYRIGHT 2019 | | 6

EPC2014C

RECOMMENDEDLAND PATTERN (measurements in µm)

Pad no. 1 is Gate;

Pad no. 2 is Substrate;*

Pads no. 3 and 5 are Drain;

Pad no. 4 is Source

*Substrate pin should be connected to Source

The land pattern is solder mask definedSolder mask is 10 µm smaller per side than bump

DIE OUTLINESolder Bar View

Side View

Information subject to change without notice.

Revised August, 2019

Efficient Power Conversion Corporation (EPC) reserves the right to make changes without further notice to any products herein to improve reliability, function or design. EPC does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.eGaN® is a registered trademark of Efficient Power Conversion Corporation.EPC Patent Listing: epc-co.com/epc/AboutEPC/Patents.aspx

Pad no. 1 is Gate;Pad no. 2 is Substrate;*Pads no. 3 and 5 are Drain;Pad no. 4 is Source

*Substrate pin should be connected to Source

DIMMICROMETERS

MIN Nominal MAX

A 1672 1702 1732B 1057 1087 1117c 829 834 839d 311 316 321e 235 250 265f 195 200 205g 400 400 400

B

A

x2e g g

cd x2 2

3 5

1

4

fx3

f

815 M

ax

100 +

/- 20

Seating Plane

(685

)

400 400

1087

1702180 180

814

x2

296 x2 1

3 5

2

4

x3

RECOMMENDEDSTENCIL DRAWING (units in µm)

Recommended stencil should be 4 mil (100 μm)thick, must be laser cut , opening per drawing.The corner has a radius of R60.

Intended for use with SAC305 Type 3 solder,reference 88.5% metals content.

Additional assembly resources available at https://www.epc-co.com/epc/DesignSupport/ AssemblyBasics.aspx

400 400

1087

1732180 180

814

x2

296 x2 1

3 5

2

4

x3

R60