epfl sv ptbiop laser scanning confocal microscopybiop.epfl.ch/pdf/courses/2015/basics of confocal...

34
EPFL–SV–PTBIOP LASER SCANNING CONFOCAL MICROSCOPY PRACTICAL CONSIDERATIONS

Upload: others

Post on 19-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LASER SCANNING

CONFOCAL

MICROSCOPY PRACTICAL CONSIDERATIONS

Page 2: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

OUTLINE

V. Important Parameters

Pixel dwell time

Zoom/Pixel number

Digital sampling/Pixel size

Pinhole size

Scan mode

VI. Practical Considerations

Light efficiency

Signal to nois ratio

Resolution in practice

VII. Summary

2

Page 3: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOPPIXEL DWELL TIME

•How much time signal is collected at every pixel

•Very small values, normally in microseconds range

•Defined either directly or indirectly by scan frequency and image size

•Example: 512x512 pixels, 400 Hz - dwell time 4.910-6 sec

•Important characteristic for signal intensity

3

Page 4: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

DWELL TIME

Dwell time: 50 µs Dwell time: 6 µs Dwell time: 1.6 µs

Page 5: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

1024x1024 2048x2048512x512

Pixel size is defined by

zoom and pixel number

To change pixel size

1. Change zoom - image size changed,

number of pixels constant

2. Change number of pixel -

image size constant, pixel size changed

ZOOM AND PIXEL NUMBER

5

Page 6: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

SCANNING MECHANISM

ZOOMING/PIXEL NUMBERS

• Zooming: change the mirror deflection range (=Amplitude of scanner input signal)Zoom in: smaller field of view; higher energy deposition (bleaching)

• Pixel numbers: change the speed of the scanner• Large pixel numbers lower scan speed

6

Page 7: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

CAMERA BASED

DETECTION

• Fixed physical pixel size (e.g. Sony Interline chip 6.45 µm)

• Adaptation: Increase of effective pixel size via binning (CCD camera)

POINT SCANNING

DETECTION

• No physical pixel size

• Pixel size is determinedby sampling (zoom, number of pixels per image)

7

DIGITAL SAMPLING

Digital Image

Page 8: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

DIGITAL SAMPLING

Nyquist–Shannon sampling theorem1

If a function x(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart.

In other words, a In other words, a bandlimitedfunction can be perfectly reconstructed from an infinite sequence of samples if the bandlimit, B, is no greater than ½ the sampling rate (samples per second). function can be perfectly reconstructed from an infinite sequence of samples if the bandlimit, B, is no greater than ½ the sampling rate (samples per second).

Light microscopy:

Bandlimit: Resolution LimitSampling frequency) 1/2 * resolution limit

1Wikipedia: http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem 8

Page 9: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

DIGITAL SAMPLING

9

80 nm/pixel

160 nm/pixel

5 nm/pixel

320 nm/pixel

488 nm 325 nm 244 nm 195 nm 163 nm

Layer Title

139 nm 122 nm 108 nm 98 nm 89 nm

Wavelength: 488nm; NA=1.4 Rayleigh criterion: 212 nm

Page 10: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

PIXEL SIZE

33 nm 65 nm 130 nm 260 nm

12 MB

t=64x

3 MB

t=16x0.8 MB

t=4x0.2 MB

t=1x

10

Page 11: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

PIXEL SIZE

33 nm 65 nm 130 nm 260 nm

• Nyquist sampling is as good starting point

• Oversampling can result in better images

but increases probability of photobleaching and decreases temporal resolution.

• Undersampling increases temporal resolution and decreases image file size.

• Sampling frequency should match the biological question

11

Page 12: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

PINHOLE SIZE

Pinhole: 10 AU Pinhole: 5 AU Pinhole: 1 AU

Closing the pinhole increases the z-sectioning capabilities because light from out of focus

planes is suppressed, but also decreases the SNR/contrast

(less photons are detected also from the focal plane).

Page 13: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

SPECTRAL OVERLAP

14

• Spectral overlap depends on the emisson-spectra of the fluorophores.

• Amount of bleed through depends on the spectral overlap the concentration of the fluorophores and the excitation intensity.

Page 14: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

SCAN MODEBLEED-THROUGH

Sequential scanning : minimizes bleedthrough, less temporal resolution

Simultaneous scanning : optimizes temporal resolution

15

Page 15: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

OUTLINE

V. Important Parameters

Pixel dwell time

Zoom/Pixel number

Digital sampling/Pixel size

Pinhole size

Scan mode

VI. Practical Considerations

Light efficiency

Signal to nois ratio

Resolution in practice

VII. Summary

16

Page 16: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LIGHT EFFICIENCY

Photons emitted by a single fluorophore

- How many photons can one obtain from a

typical fluorophore in confocal microscopy?

- How does can we influence the photon flux?

- Why is the photo flux important for (Laser

scanning confocal) microscopy?

17

Page 17: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

ba

a

tot kk

k

S

S

][

][ 1

LIGHT EFFICIENCYPHOTONS EMITTED BY A SINGLE FLUOROPHORE

ka = s * I

kb = 1/tF tF =fluorescent

lifetime

Photon output (steady state)

= kb*[S1]

kbka

S0

S1

very fast

18

Page 18: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LIGHT EFFICIENCYPHOTONS EMITTED BY A SINGLE FLUOROPHORE

1mW @488 nm foccused to a radius of 0.25 mm

(e.g. objective NA 1.25)

I = 5.1 *105 W/cm2 = 1.25*1024 photons/(cm2*s)

Fluoresceine: e = 80 000 l*mol-1*cm-1

Cross section/molecule = 3.06 * 10 -16 cm2/molecule

ka = s * I = 3.8 * 108 s-1

kb = 1/tF

tF = 4.5 ns kb = 2.2*108 s-1

S1

kbka

S0

very fast

19

Page 19: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

ba

a

tot kk

k

S

S

][

][ 10 2 4 6 8 10

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

S

1/S

tot

S

0/S

tot

ka/k

b

LIGHT EFFICIENCYPHOTONS EMITTED BY A SINGLE FLUOROPHORE

kbka

S0

S1

very fast

20

Page 20: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LIGHT EFFICIENCYPHOTONS EMITTED BY A SINGLE FLUOROPHORE

Photon output: Qe*kb*[S1] = 0.9 * 0.63 * 2.2*108 s-1 =

1.3* 108 photons/s

512*512 pixel / s = 3.8 ms/pixel ~ 500 photons/pixel

(for fluoresceine excited with 488 nm)

ka = s * I = 3.8 * 108 s-1

kb = 1/tF

tF = 4.5 ns kb = 2.2*108 s-1

S1

kbka

S0

very fast

21

Page 21: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LIGHT EFFICIENCYPHOTONS EMITTED BY A SINGLE FLUOROPHORE

Single Fluorophore (Fluoresceine):

512*512 pixel / s = 3.8 µs/pixel ~ 500 photons/pixel

But losses due to

- Geometry (fluorophore emitting in all directions)

-NA 1.4 40% efficiency

-NA 0.3 5% efficiency

- Scattering

- Optical elements

- Objective

- mirrors, filters

- pinhole

- Detector efficiency 10-30%

Each fluorescent molecule contributes on the order of only one

photoelectron/pixel/sweep

22

Page 22: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

SIGNAL TO NOISE

24

Layer Title

Layer Title

Layer Title

No Noise

Gaussian Noise: 1 STDV

Gaussian Noise: 2 STDV

Noise reduces

Modulation/Contrast

Decreases Resolution

Page 23: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

NOISE REDUCTION

Strategies to reduce image noise

• reduce scan speed

increases pixel dwell time=more photons

• Averaging

• line averaging

• frame averaging

• Integrate

• Photon output

• increase laser intensity

• Limitation: fluorophore saturation

25

Page 24: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

BLEACHING

Excitation

- Cone of light

- Bleaching occurs above

and below focal plane

- z-sampling affects

bleaching

26

Page 25: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

BLEACHING MECHANISMS

Photon output: 1.3* 108 photons/s =

1.3* 108 cycles/s

High energy density

High cycle time

High bleaching probability

- Photochemistry of bleaching poorly

understood.

- Differs from fluorophor to fluorophor

-Main Bleaching route: Triplet state

- Absorb another photon

- Energy exchange with triplet

oxygen, which becomes highly

reactive singlet oxygen

S2

S0

S1

t ~ ns

T2

T1

t ~ µs-s

Energ

y

27

Page 26: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

TRIPLET STATES

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

S

0/S

tot

S

1/S

tot

ka/k

b

tT=1 µs

kIC

=0.01*(1/tF

S2

S0

S1t ~ ns

T2

T1

t ~ µs-s

Energ

y

Ensemble of molecules: 60% are trapped in triplet state

decrease of fluorescent intensity by 60%

28

Page 27: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOPBLEACHING

Parameters affecting bleaching probability- Fluorophore

- Laser intensity

- Pixel Dwell time

- Sampling frequency

Bleaching (Photon)Noise

29

Page 28: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LASER SCANNING CONFOAL

MICROSCOPYOUTLOOK

Resolution

• Point Spread Function

•Nyquist Sampling

•Optical Slice thickness

30

Page 29: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LASER SCANNING CONFOAL

MICROSCOPYPOINT SPREAD FUNCTION

31

Page 30: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

OPTICAL RESOLUTION

THEORY/PRAXIS

Example: l500 nm; n=1.518; NAObj =1.4

wf xy-plane resel=217 nm conf. xy-plane

resel=157 nm conf. axial resel=580 nm

0 1 2 3 4

0

500

1000

1500

2000

rel. in

tensity

distance / mm

bead: 170 nm

FWHM: 234 nmIn

ten

sity

optical unit

FWHM

resel

FWHM resel

32

Page 31: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

SPHERICAL ABBERATIONS

33

Page 32: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOPRESOLUTION

• Physical Resolution– Parameters affecting resolution

• Wavelength

• NA of objective

• Refractive index

• Pinhole size

– Difference in lateral and axial resolution

• Digital resolution (Sampling)– Nyquist sampling

– Optical zooming

– Number of pixels

34

Page 33: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

LASER SCANNING CONFOCAL

MICROSCOPYSUMMARY

Widefield microscopy• Detector efficiency : 60%-80%• Detector noise: 4 RMS electrons/pixel• Pixel Dwell time: 10-1000 ms• Opical sectioning: no• Backgrond supression: no

Laser scanning confocal microscopy• Detector efficiency : 3%-12%• Detector Noise: < 0.01 RMS electrons/pixel• Pixel dwell time: 1-100 µs• Optical sectioning: yes• Background supression: yes

35

Page 34: EPFL SV PTBIOP LASER SCANNING CONFOCAL MICROSCOPYbiop.epfl.ch/pdf/Courses/2015/Basics of confocal II_2015.pdfWidefield microscopy •Detector efficiency : 60%-80% •Detector noise:

EPFL–SV–PTBIOP

SUMMARY

Decrease

pinhole size

Increases Resolution(mainly along z-axis,

but also in the xy-plane)

Less photons

Decreases SNR, contrast and

thereby resolution

36