epigenetic control of enac transcription , na metabolism and … · 2017. 2. 2. · nr nucleus hre...

29
Epigenetic Co Transcription, N and Blood Wenzheng Z Department of In The University of Texas M International C Geriatrics & Chicago, July ontrol of ENaC Na + Metabolism d Pressure Zhang , Ph.D. nternal Medicine Medical School at Houston Conference on Gerontology y 08-10, 2014

Upload: others

Post on 14-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • Epigenetic Control Transcription, Na

    and Blood Pressure

    Wenzheng Zhang

    Department of Internal Medicine

    The University of Texas Medical School at Houston

    International Conference on

    Geriatrics & Gerontology

    Chicago, July 08

    Epigenetic Control of ENaC, Na+ Metabolism

    Blood Pressure

    Zhang , Ph.D.

    Department of Internal Medicine

    The University of Texas Medical School at Houston

    International Conference on

    Geriatrics & Gerontology

    Chicago, July 08-10, 2014

  • Epithelial Na Channel (ENaC)

    � Consists of 3 partially homologous subunits

    � Expressed in the apical membrane of salt

    epithelia of kidney, colon, and lung.

    � Critical for Na+ absorption in the lung, colon, and kidney.� Critical for Na absorption in the lung, colon, and kidney.

    � Mutations associated with two genetic diseases: Liddle’s

    syndrome (Hypertension) and pseudohypoaldosteronism

    type 1 (PHA-1, Hypotension).

    � Tightly regulated by aldoster

    protein, and subcellular distribution).

    Epithelial Na Channel (ENaC)

    Consists of 3 partially homologous subunits α, β and γ.

    Expressed in the apical membrane of salt-absorbing

    epithelia of kidney, colon, and lung.

    absorption in the lung, colon, and kidney.absorption in the lung, colon, and kidney.

    Mutations associated with two genetic diseases: Liddle’s

    syndrome (Hypertension) and pseudohypoaldosteronism

    1, Hypotension).

    terone at multiple levels (mRNA,

    protein, and subcellular distribution).

  • Liddle’s Syndrome (Hypertension)

    ββββ

    � Described by G. Liddle in 1963

    � Autosomal dominant fashion

    � Early and severe hypertension

    � Hypokalemia

    � Metabolic alkalosis� Metabolic alkalosis

    � Low plasma aldosterone

    concentration

    γγγγConstitutive hyperactivity of ENaC

    Liddle’s Syndrome (Hypertension)

    M1 M2 PPxY

    R566*

    A576fr Y620H

    Bonny et al Kidney International (2000) 57, 1313–1318

    A576fr

    Q591*

    T594fr

    P596fr

    R597fr

    Y620H

    P618L/S

    P617S

    M1 M2 PPxY

    W574*

  • Pseudohypoaldosteronism type 1 (PHA-1, Hypotension)

    αααα

    � Two forms:

    Autosomal dominant renal

    form by mutations in MR

    Autosomal recessive form by

    mutations in ENaC subunits

    R56*

    I68fr

    � Salt wasting

    � Hyperkalemia

    � Metabolic acidosis

    � High plasma aldosterone

    concentration

    ββββ

    G37S

    γγγγ

    Loss-of-function mutations in ENaC

    Pseudohypoaldosteronism type 1 1, Hypotension)

    M1 M2 PPxY

    F435fr

    Bonny et al Kidney International (2000) 57, 1313–1318

    R56*

    I68fr

    C133Y

    R139D

    T168fr

    R508*

    T168fr

    M1 M2 PPxY

    G37S T216fr D305fr

    M1 M2 PPxY

    KYS106-108 N

  • NR

    HRE

    NR

    The Classical model for Molecular Action of Aldosterone

    NR

    Nucleus

    HRE

    NR

    HRE αααα

    The Classical model for Molecular Action of Aldosterone

    Nucleus

    SGK1

    ENaCαααα

  • Dot1a

    1 416 479

    NSL1

    MD Af9 /

    A.

    B.1 29 112

    YEATSAf9

    Af17

    1

    PHD-ZF

    20 180

    B.

    C.

    479 659

    Af9 / Af17

    NSL2 NSL3

    1540

    LZ

    397 557

    Dot1a / MR / Hsp90

    Dot1a

    635 789 1079

    S435: Sgk1 phosphorylation site

  • Histone Methyltransferase Gene Dot1

    • Identified in yeast as a disruptor

    • Encodes a methyltransferase specific

    • Expressed in kidney and otherstage.

    • Five alternative splicing variantsbeing the most highly expressedbeing the most highly expressedhDot1L.

    • Dot1L-deficient mouse embryosabnormalities, including growthdefects in the yolk sac, and cardiac9.5 and 10.5 days post coitum.

    • Involved in cell cycle regulation,remodeling, transcription regulation

    Histone Methyltransferase Gene Dot1

    isruptor of telomeric silencing.

    specific for histone H3 K79.

    other tissues and as early as 2-cell

    variants in mouse (Dot1a-e), with Dot1aexpressed and most closely related toexpressed and most closely related to

    embryos show multiple developmentalgrowth impairment, angiogenesis

    cardiac dilation, and die between

    regulation, DNA repair, chromosomeregulation and leukemogenesis.

  • Putative Transcription Factor AF9

    • Identified as one of the mostof the mixed-lineage leukemia

    • A putative transcription• A putative transcriptionregulated genes have been

    • Expressed in kidney and other

    • AF9 deletion leads to perinatal

    Putative Transcription Factor AF9

    most common fusion partnersleukemia protein (MLL or ALL-1)

    factor, although, no AF9-factor, although, no AF9-been well documented

    other tissues

    perinatal lethality

  • Dot1a and AF9 Colocalize in the Nucleus of mIMCD3 Cells

    AF9Dot1a AF9Dot1a

    Dot1a and AF9 Colocalize in the Nucleus of mIMCD3 Cells

    DAPIAF9Dot1a

    DAPIAF9

    Zhang et al. JBC. 2006.

  • AF9 Contains a Putative Phosphorylation Site for SGK1

    AF9

    Mouse AF9

    Human AF9

    SGK1

    AF9

    P

    AF9

    Consensus

    Horse AF9

    Rat AF9

    Mouse AF9

    AF9 Contains a Putative Phosphorylation Site for SGK1

    430…RSRRVS…435Mouse AF9

    441…RSRRVS…446Human AF9

    RXRXX(S/T)Consensus

    35…RSRRVS…. 40Horse AF9

    243…RSRRVS…248Rat AF9

    430…RSRRVS…435Mouse AF9

    Zhang et al. JCI. 2007.

  • SGK1 Phosphorylates AF9 in vitro

    SGK1

    AF9

    Active SGK1

    Inactive SGK1In vitroSGK1

    AF9

    P

    AF9 Coomassie

    In vitroAssay

    SGK1 Phosphorylates AF9 in vitro

    GST GST-AF9

    Active SGK1

    Inactive SGK1

    -

    -

    -

    +

    +

    -

    -

    -

    +

    -

    -

    +

    Coomassie

    32P

    Zhang et al. JCI. 2007.

  • Aldo

    anti-SGK1

    Aldosterone Induces SGK1 and PhosAF9 in mIMCD3 cells

    NR

    AF9

    In vivo anti-SGK1

    SGK1

    AF9

    P

    AF9

    In vivoAssay

    anti-Actin

    anti-Phos AF9

    Aldo - +

    1

    - +

    1.5

    - +

    2Hrs

    SGK1

    Aldosterone Induces SGK1 and Phos-AF9 in mIMCD3 cells

    SGK1

    Actin

    Phos AF9

    Zhang et al. JCI. 2007.

  • Active SGK1

    AF9 Phosphorylation by SGK1 Impairs AF9Dot1a Interaction in vitro

    AF9Dot1a

    anti-Phos SerSGK1

    Dot1a

    AF9

    P

    AF9

    anti-Phos Ser

    anti−EGFP

    Coomassie

    - +

    GST

    Pulldown

    AF9 Phosphorylation by SGK1 Impairs AF9-Dot1a Interaction in vitro

    Phos AF9Phos AF9

    Retained Dot1a

    Input AF9

    Zhang et al. JCI. 2007.

  • AF17 facilitates Dot1a Nuclear Export

    Dot1a

    AF9

    GFP

    GFP-Dot1a RFP

    AF17 facilitates Dot1a Nuclear Export

    ?Dot1aAF

    GFP-MR

    RFP-AF17 Merge

    Reisenauer et al JBC 2009

  • Af9

    Dot1a

    Dot1a

    Af17

    Dot1a

    A. -Aldo

    Af9

    Dot1a

    HYPOmethylated H3 K79

    Af9

    Dot1a

    K79

    MethααααENaC

    Af17

    Dot1a

    Af17

    Dot1a

    Degradation?

  • Characterization of AF17Characterization of AF17-/- Phenotype

    Tissue Collection and Analyses

  • +/+ n= 57 mice

    16*

    0

    4

    8

    12

    16

    +/+ -/-

    Uri

    nary

    Na

    +E

    xcre

    tio

    n

    ( µµ µµm

    ol/

    24 h

    /BW

    )

    +/+ n= 57 mice -/- n= 65 mice

    60

    90

    120

    150

    Diastolic Systolic Mean

    BP

    (m

    mH

    g)

    *

    **

    Chen et al JASN 2011

  • +/+ -/-

    ααααENaC

    +/+

    ββββENaC

    -/-

    ENaC

    +/+ -/-

    γγγγENaC

    Chen et al JASN 2011

  • +/+

    -/-

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    +/+

    Op

    en

    Pro

    bab

    ilit

    y

    0

    0.6

    1.2

    1.8

    2.4

    3

    3.6

    +/+ -/-

    Acti

    ve C

    han

    nels

    *

    +/+ -/-

    0

    0.2

    0.4

    0.6

    0.8

    +/+ -/-

    Eff

    ecti

    ve A

    cti

    vit

    y

    **

    Chen et al JASN 2011

  • Chen et al JASN 2011

  • AF9

    Dot1a

    Dot1a

    AF17

    Dot1aAF9

    Dot1a

    HYPOmethylated H3 K79

    AF9

    Dot1a

    K79

    MethααααENaC

    AF17

    Dot1a

    AF17

    Dot1a

    Degradation?

    H3 m2K79 in the cells

    and at the αENaC promoter

    α, β, γENaC expression at mRNA and protein levels

    ✓at mRNA and protein levels

    Na+ excretion in urine

    [Na+] in blood

    Blood pressure

  • In one cohort, a polymorphismstrongly associated with greaterstrongly associated with greaterdiastolic (P = 0.0016) bloodhydrochlorothiazide in Caucasianswas not replicated in the otherpressure levels were analyzed,associations between a polymorphismand greater untreated systolicdiastolic (P < 0.05 in both cohorts)cohorts.

    polymorphism in DOT1L (rs2269879) wasgreater systolic (P = 0.0002) andgreater systolic (P = 0.0002) and

    blood pressure response toCaucasians. However, this association

    cohort. When untreated bloodwe found directionally similar

    polymorphism in MLLT3 (rs12350051)(P< 0.01 in both cohorts) and

    cohorts) blood pressure levels in both

  • Mutated Dot1a in Kidney Biopsies from CKD Patients Mutated Dot1a in Kidney Biopsies from CKD Patients

  • Acknowledgment Acknowledgment

  • Acknowledgment

    Bruce C. Kone (University of Florida)

    Charles C. Hemenway (Loyola University)

    David Pearce (UCSF)

    Volker Vallon (UCSD)

    Florian Lang (Free University, Germany)Florian Lang (Free University, Germany)

    Dietmar Khul (Free University, Germany)

    Günther Schütz (University of Freiburg, Germany)

    Funding:

    NIH, AHA, ASN

    Acknowledgment

    Bruce C. Kone (University of Florida)

    Charles C. Hemenway (Loyola University)

    (Free University, Germany)(Free University, Germany)

    Dietmar Khul (Free University, Germany)

    Günther Schütz (University of Freiburg, Germany)

  • GFP

    SGK1 and AF9 Colocalize

    RFP-AF9

    SGK1AF9

    GFP-SGK1

    Colocalize in mIMCD3 Cells

    Merge

    AF9

    P

    AF9AF9

    SGK1

    Unpublished.

  • Af9 binds to +78/+92 of Af9 binds to +78/+92 of αENaC in vitro

    Zhang et al. Am J Physiol Renal Physiol. 2013.

  • Chen et al JASN 2011