epsl, 2004, 229/1-2 pp. 31-43

24
EPSL, 2004, 229/1-2 pp. 31-43. Maxime LE GOFF and Yves GALLET A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements : Applications to paleo- and archeointensity determinations

Upload: tahlia

Post on 16-Mar-2016

40 views

Category:

Documents


3 download

DESCRIPTION

A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements : Applications to paleo- and archeointensity determinations. Maxime LE GOFF and Yves GALLET. EPSL, 2004, 229/1-2 pp. 31-43. - PowerPoint PPT Presentation

TRANSCRIPT

EPSL, 2004, 229/1-2 pp. 31-43.

Maxime LE GOFF and Yves GALLET

A new three-axis vibrating sample magnetometer for continuous high-temperaturemagnetization measurements :

Applications to paleo- and archeointensity determinations

Paleo- and archeointensity studiesare fastidious and often unproductive

due to poor data quality

It is possible to make them fasterby measuring the magnetization

at high temperatures

TRIAXE SENSOR

must take into account the thermal dependence of the spontaneous

magnetization

High-temperature version of the Thellier and Thellier method revised by Coe

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

H = 0

High-Temperature Magnetization Measurements

Heating Troom to T1 (H=0)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°CCurve #1

High-Temperature Magnetization Measurements

Heating T1 to T2 (H=0)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

High-Temperature Magnetization Measurements

Cooling to T1 andHeating T1 to T2 (H=0)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 70µT

H = 70 µTNRM

T1 = 148°C

T2 = 448°CCurve #1

Curve #2

Curve #3

High-Temperature Magnetization Measurements

Applying Hlab = 70µT

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4

High-Temperature Magnetization Measurements

Cooling T2 to T1 (H = 70µT)

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

H = 0NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4

High-Temperature Magnetization Measurements

Hlab = 0µT

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

Temperature (°C)

Mto

tal (

10-8

Am

²)

NRM

T1 = 148°C

T2 = 448°C

Curve #1

Curve #2

Curve #3

Curve #4Curve #5

High-Temperature Magnetization Measurements

Heating T1 to T2 (H=0)

R(Ti) = Hlab * 1(Ti) / 5(Ti)

R’(Ti) = Hlab * 1’(Ti) / 5’(Ti)

Remaining NRM (1) and TRM (5) fractions between Ti and T2

R ratio

Lost NRM (1’) and TRM (5’) fractions between T1 and Ti

R’ ratio

0

50

100

150

200

250

300

350

400

100 150 200 250 300 350 400 450

TiT1 = 150°C

T2 = 450°C

Two possibilities to derive intensity data

NRM

TRM

20

30

40

50

60

70

80

150 200 250 300 350 400 450

Temperature (°C)

R, R

' (µT

)

R

R'

Test on a pseudo NRM acquired in a field of 50µT in the same conditions as the laboratory TRM (Hlab=50 µT)

0

10

20

30

40

50

60

70

80

150 200 250 300 350 400 450

R

R'

Ancient NRM : R increasing, R’ much more constant

Ti, (°C)

R, R’ (µT)

45

50

55

60

65

150 200 250 300 350 400 450

Temperature (°C)

R, R

' (µT

)

NRM 0.5°/mn; TRM 25°/mn

NRM 0.5°/mn, TRM 6°/mn

NRM 0.5°/mn, TRM 2°/mn

Cooling rate effect

R’ must be considered

Correction for the TRM anisotropy

Comparison between archeointensity

data obtained from the Thellier and

Thellier method revised by Coe and

from the Triaxe

(Samples from Mesopotamia previously studied by Genevey et al., JGR, 2003)

0

10

20

30

40

50

60

70

80

150 200 250 300 350 400 450

R

R'

0

50

100

150

200

250

150 250 350 450

Selection criteria

• A large NRM fraction must be involved

• Expected behaviour of R and R’ curves

0

20

40

60

80

100

120

140

200 250 300 350 400 450 500

Temperature (°C)

R

R'

Example of rejected sample

MR 15

10

20

30

40

50

60

70

150 200 250 300 350 400 450

Temperature (°C)

R' (

µT)

Archeointensity results from a site of baked bricks from Mesopotamia (Mari, Syria)

6 samples

0

10

20

30

40

50

60

70

80

-4000 -3000 -2000 -1000 0

Thellier Thellier - CoeTriaxe Same SiteTriaxe New Site

Comparison between archeointensity results obtained from the Thellier and Thellier and Triaxe methods

H (µT)

Age (BC)

CONCLUSIONS

• The experimental procedure was successfully tested with archeological baked materials. We need now to work on volcanic samples.

• Other applications of the Triaxe :- Viscosity at high temperature.- Alteration.- Coupling between different magnetic phases.- etc.