equilibrium constants. chemical equilibria

14
Equilibrium constants. Chemical equilibria. Friday, September 11, 2015 SBU:CHE/PHY558, Physical & Quantitative Biology Rutgers University: Chemical Thermodynamics Lecturer: Gábor Balázsi

Upload: others

Post on 01-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Equilibrium constants. Chemical equilibria

Equilibrium constants.

Chemical equilibria.

Friday, September 11, 2015SBU:CHE/PHY558, Physical & Quantitative Biology

Rutgers University: Chemical Thermodynamics

Lecturer: Gábor Balázsi

Page 2: Equilibrium constants. Chemical equilibria

Conditions for chemical equilibrium

KA B→

Chemical equilibrium means a state where concentrations do not change in time.

Notation (the arrow does not mean a unidirectional reaction):

The arrow simply means that the equilibrium constant is:B

A

nK

n=

The differential of the Gibbs free energy at constant T and p should = 0 at equilibrium:

0A A B B

dG dN dNµ µ= + =

A B A BN N const dN dN+ = ⇒ = −( ) 0

A B AdNµ µ− =

A Bµ µ=At equilibrium the chemical potentials are equal:

Page 3: Equilibrium constants. Chemical equilibria

Chemical potential from the partition function

The chemical potential can be obtained from the partition function through the free energy, F:

,T V

F

∂ =

lnF kT Q= −

!

Nq

QN

=ln

eqF NkT

N

≈ −

lnq

kTN

µ

= −

Page 4: Equilibrium constants. Chemical equilibria

Partition functions for chemical reactions

0 1 2

0

...j MM

kT kT kT kT kT

j

q e e e e e

ε ε ε ε ε− − − − −

=

′ = = + + + +∑

The partition function q’ is (if we include the ground state):

ln AA

A

qkT

′= −

The chemical potentials are given by:

1 0 2 0 0 0( ) ( ) ( )

1 ...M

kT kT kT kTq e e e e q

ε ε ε ε ε ε ε− − −− − − −

′= + + + + =

ln BB

B

qkT

′= −

A B

A B

q q

N N

′ ′= at equilibrium.

Page 5: Equilibrium constants. Chemical equilibria

K as a function of partition functions

0 0B A

B B B kT

A A A

N q qK e

N q q

ε ε−−′

= = =′

The equilibrium constant K is given by:

0 Aε

1 Aε

2 Aε

0 Bε

1Bε

2 Bε

A B

A B

q q

N N

′ ′=

Page 6: Equilibrium constants. Chemical equilibria

More complex equilibria

KaA bB cC+ →

Consider the following reaction at equilibrium (a, b, c indicate stoichiometries):

The differential of the Gibbs free energy at constant T and p is:

0A A B B C CdG dN dN dNµ µ µ= + + =

AdN a dξ= −

The particle numbers are related through a “progress variable” or “reaction coordinate” :

BdN bdξ= −

CdN c dξ=

ξ

( ) 0A B C

a b c dµ µ µ ξ− − + =

A B Ca b cµ µ µ+ =

ca b

A B C

A B C

q q q

N N N

′ ′ ′=

0 0 0( )( )

( ) ( )

C A B

c c cc a bC C C

a b a b a b

A B A B A B

N q qK e

N N q q q q

ε ε ε− − −′= = =

′ ′

Page 7: Equilibrium constants. Chemical equilibria

A lattice model of binding equilibrium

KL R C+ →

Consider the ligand L binding to the receptor R and forming a complex C:

If the volume is V (lattice sites) and concentrations are low, the partition functions are:

Rq Vz=

Lq Vz= 0 /kT

Cq Vze

ε−=

0 /kT

C C

R L R L

N q eK

N N q q Vz

ε−

= = =

V = translational partition function; z = rotational partition function (# of orientations).

K is smaller if :

V or z is large

ε0

is small

Page 8: Equilibrium constants. Chemical equilibria

Pressure-based equilibrium constants

/( / )

( / ) ( / )

c c cD kTC C C

a b a b a b

A B A B A B

N p V kT qK e

N N p V kT p V kT q q

−∆= = =

Sometimes, pressures are easier to measure than particle numbers.

Using the ideal gas law, pV=NkT we get:

/0

0 0

( )c c

c a b D kTC Cp a b a b

A B A B

p qK kT e

p p q q

− − −∆= = where0

qq

V=

0

0

ln ln lnq q kT p

kT kT kTN p p

µ ′ ′

= − = − =

( )lnkT pµ µ= +○

Likewise, for the chemical potential:

µ○ is the standard-state chemical potential.

It is independent of the pressure.

Page 9: Equilibrium constants. Chemical equilibria

Le Chatelier principleThe stable equilibrium corresponds to a free energy minimum.

Perturbations away from the stable equilibrium increase F.

KA B→ Assume that NB fluctuates up by dNB. Return to equilibrium requires:

( ) 0B AdG dµ µ ξ= − ≤

0 B Adξ µ µ≥ ⇒ ≤

0B A

dξ µ µ≤ ⇒ ≥

If NB fluctuates up then µA and µB

will oppose that change.

Page 10: Equilibrium constants. Chemical equilibria

Temperature-dependence: van’t Hoff equation

KA B→ The equilibrium state requires:

ln( ) ln( )A B A A B B

kT p kT pµ µ µ µ= ⇒ + = +○ ○

( ) ( )ln( ) ln A B A

p

B

p h T sK

p kT kT kT

µ µ µ − − ∆ ∆ − ∆= = = − = −

○ ○ ○ ○ ○

2

ln( )p

K h

T T kT kT

µ∂ ∂ ∆ ∆= − =

∂ ∂

○ ○

ln( )

(1 / )

pK h

T k

∂ ∆= −

van’t Hoff plot

(dissociation of water)

0h∆ >○it means bonds

are breaking.

Page 11: Equilibrium constants. Chemical equilibria

Enthalpy change from van’t Hoff plot

2

1 2 1

( ) 1 1ln

( )

p

p

K T h

K T k T T

∆= − −

van’t Hoff plot

4 111500 6.66 10T K K

T

− −= → = ×

4 112257 4.43 10T K K

T

− −= → = ×

22 1

1 2 1

( )( )ln 249

( )

p

p

K TR T T kJh

T T K T mol

−∆ = =

ln ( ) 164p

kJRT K T

molµ ∆ = − = ○

Also, at T=1500 K:

Page 12: Equilibrium constants. Chemical equilibria

Gibbs-Helmholtz equation

p

GG H TS H G TS G T

T

∂ = − ⇒ = + = −

2 2

( / ) 1 1

p p

G T G G GG T

T T T T T T

∂ ∂ ∂ = − = − −

∂ ∂ ∂

2

( / ) ( )

p

G T H T

T T

∂ = −

∂ 2

( / ) ( )

p

F T U T

T T

∂ = −

These are Gibbs-Helmholtz equations, giving the sensitivity of G/T to T.

How does the free energy G(T) depend on temperature in general?

Page 13: Equilibrium constants. Chemical equilibria

Pressure drives equilibria towards dense states

,, T pT N

V

p N

µ ∂ ∂ = ∂ ∂

ln( )p

K v

p kT

∂ ∆= −

B Av v v∆ = −○ ○ ○

Applying pressure can shift an equilibrium.

Higher pressure shifts equilibrium

towards state with smaller volume.

ln( ) 1p B AK

p p kT kT p

µ µ µ∂ ∂ − ∂∆= = − ∂ ∂ ∂

○ ○ ○

(Maxwell relation)

ln( )0 0

p

B A

Kv v v

p

∂∆ = − < ⇒ >

∂○ ○ ○

Page 14: Equilibrium constants. Chemical equilibria

Pressure-dependence of K

ln( )p

K v

p kT

∂ ∆= −

B Av v v∆ = −○ ○ ○

Case #1: Ligand replaces water

molecule. Then pressure does not

affect the equilibrium.

Case #2: Ligand fills an empty

space. Then higher pressure

increases binding.