ÚÝÂer a 0.18 p m cngo s $ 125-gb/s digitally controlled a...

6
E IC E TR A N S. EL ECT RON -, VOL E 89éC, NO. 1O 0 C T0 BER 2006 1 454 SHah -× w ¹ ÚÝÂER A 0.18 pm CNgo s $ 125-Gb/s Digitally Controlled Adaptive Line Equalizer with Feed-Forward Swing Control for Backpla te Serial Link KiH yuk LEV a), Jae-W ook L EE èè, N- Hm-embers, and W oo-Young CH 0 V , M ember SU M M A R Y A new compact line equalizer is proposed for backplane send link appHcations- The equalizer has two control blË ks. The feed- forward swing Com ol block determines the optimal low frequency level M d the feedback control block detects signal shaÁ S m d decides the high-* equem y boosting level of the equalizer. SuccessM equana tion is demons- ated over a l 5 m long PCB uace at 3.125-Gb/s by the circuit re- alized with 0¹ 8p 111 CM 0 S process. The circuit occupies only 0.16 mm2 M d conSlum s 2OmW with 1.8V supply. k y wordsr a- priv- equalize. baCAPI- - franc o -- has a feed-forward swing control and a feedback boost ga n control loop. With thc fccd-forward swing Com ol, fast swing control is act- - ed separately and the WOMa n of loop dynamics is sUnd ined to one feedback loop. In am uon, as £ C feedback boost ga n control loop is digit- - con- OIled, robust and stable feedback operation is possible. Sccccss- M adaptive line cqauna tion is dcma ntra- d over a 15 m PCB trace at 3.125 Gbps. This paper is organized as follows. Proposcd adaptive equalizer structure is prcsa Med in Scct. 2. Section 3 dcscribes details of circuit imP u nctuation- M ea- sura nent results of the prototype chip Me given in Sect. 4, followed by conclusion in Sect. 5. 1 . I n t r o d u c t i o n 2. Equalizer Structure Figure 1 shows the block diagram of proposed cqualiza -- For the cqua in t- HIt- , we used the separa- -path topol- ogy with two signal paths: Hat gain path and high-frequency boosting pa h [3]. Controlling the cornu ncd gain of two paths, both thc Hlter--zcro Oco -- ¤ y and the boosting ga n M e adj u sted . For thc maximum eye opa Urs , the equalizcr HIto -set- tings should be ad o - d for the optimum val¤ s, which prou dc optimal corn- m ating ga ns for thc Mgh h quem y loss. Bea usc ISI results from diHeretH amounts of loss for the high and low frequencies, rd ative amounts of the high frcquo - y gain compared to the low freq¤ - y con- R e c e n t e H o r ts to i n c re a s c d a m th r o u g h p u t o n m u lti -g i g a b h s y ste m s f a c e a n u m b e r o f c h a lle n g e s . I t i s n o lo n g e r s u m - d e n t to s o ld y i n c r e a se th e sp e e d o f I C s to a c h ie v e h i g h e r d a ta r a ts - H i s i s d u e to th c e m e rg e - c o f o th - - c o n - str a in ts , sp a m a l- th e si g n a l im p a ir m e n ts a r i s in g f r o m th e tr a n sm i s sio n m e d i a , su c h a f r c q u e m - d e p e n d c n t lo ss a n d c r o s st a lk - I n h i g h - r a te N R Z d a ta c o m m u n i c a ti o n o v c r c a b lc s o r P C B tr a c e s , SU n c H e c t S M d d ie le c tr i c lo s se s c a u se a t - te n u a tio n o f h ig h - f r e q u e n c y s ig n a l c o m p o n e n ts , r e su l tin g i n i rH a s p n b o l i n te r f e r e - e (I S I ) th a t lim i t s tr a n s m i s si o n d a t a r a te a n d d i s ta n c e [ H . T o o v e r C O In c c h a n n e l im p a ir m a n s , m a n y p r c - e m p h a s i s a n d e q a u k - c ir c u it s h a v e b c e n p r o p o se d ¢ ]- [5 ] . C o n v e n - ti o n a l a c tiv e c Ä o Æt n H mt u mi h mt nm½ n mt u1 mO Ì t u B æS s - 4 Üt n mi h m1 n mt n m1 .c e q q Ô t na d £ l Hi ÒZ Û c a wI r B . s w ith o u t c lo c k r ºc £ - c Ä o w V Á e ¿ r U y c ir c u it s e m p l o y a s in g l c f e c ¤ - k a d a p ta tio n lo o p th a t a d u s ts th c M g h f r e q ¤ - y b o o s tin g a c c o r d i n g to th e d iF f e r a lc e b c tw c c n M g h f r e q ¤ - y c o n to 1t s o f d a ta b c f o r c a n d a f tc r s lic i n g [2 ] , [3 ] . H o w e v e r, f o r p u p a - e q u a n a ti o n , l o w R c q u e m y c o n te n t s o f d a ta s h o u ld b e a lso a d u a d . T h u s , a n a d d iti o n a l f c e d b a c k sw i n g c o n tr o l lo o p [4 ] o r a lo w f r e - q u e n c y c o n tr o l l o o p [5 ] i s a p p lie d to th e a d a p ta tio n c ir c u i ts . H o w e v e r , o p tim i z a ti o n o f t w o i n to -r e l a te d f c c d b a c k l o o p d y n a m i c s i s a d i m c u lt ta sk a n d it ta k c s m u c h tim e to I ¤C ¤ h stc a d y -s ta te s f o r b o th f e e d b a c k lo o p s . I n a d d i tio n , c ir c u it re a liz a ti o n o f t w o se p a r a te f e e d b a c k lo o p s t a k e s l o t s o f c u p Wc propose a new compact equalizer sm u t- e which M arm ot- received N ovo m er 1O, 2M 5. M anuscript revised M ay 3, 2006. èTu I- authors MC with the Dcparm et1 t of Electrical a d Elec- uonic Engine- ing, Yonsei University, Seoul 1204 49, Korea. èèThe author is with Samsung Ela u a - s Company Ltd., Hwannul-si, Kyunggi-do, Korea. a) Em d : kyuk2@yonsei-- º D 0 I : 10 109 /ieM ep s - c . 10 14 % Fig. 1 Copyright @ 2006 H 1C Institute of Electronics, Information and Communication Engine- s

Upload: others

Post on 15-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

E ICE TR A N S. EL ECT RON -, VOL E 89éC, NO. 1O 0 CT0 BER 2006

1 454

SHah-×w ¹ÚÝÂERA 0.18 p m CNgo s $ 125-G b/s D i gi t al ly C on t r ol led A dapt ive L i ne

E qu al izer w i th Feed -For w ar d Sw ing Con t r ol

for B ack p la te Ser i al L ink

K i H yu k L E V a), J ae-W ook L E E èè, N - Hm-embers, and W oo-Young CH 0 V , M ember

SU M M A R Y A new com pact l i ne equal i zer i s propo sed f or b ackp l anesen d l i nk appHc at ions- T he equ al i zer has tw o cont ro l b l Ë k s. T he f eed-

for w ard sw ing Com o l b l ock determ i nes the op t i m al l ow f requency level

M d the feedback co ntro l b lock detec t s si gnal shaÁ S m d deci des thehi gh -* equem y boo sting level of the eq ual i zer. SuccessM equan a tion i s

dem ons- ated over a l 5 m l ong PC B u ace at 3 . 125-G b/ s b y the c i r cui t r e-al i zed w i th 0 ¹ 8 p 111 C M 0 S p rocess. T he cir cui t occup i es on l y 0 .16 m m 2

M d conSlu m s 2Om W w i th 1.8 V supp ly.k y wor dsr a- p riv- equa l ize. baCAPI- - fr anc o - -

has a feed-forw ard sw i ng control and a feedback boost ga n

control l oop. W i th thc fccd-f or w ard sw i ng Com ol , fast

sw i ng contro l i s act- - ed separately and the WOMa n of l oop

dynami cs i s sUnd i ned to one feedback loop . I n am u on, as£ C feedback boost ga n control l oop i s digi t - - con- OIled,robu st and stable feedback operati on i s possible. Sccccss-

M adaptive l ine cqauna tion i s dcma n tra- d over a 15 mPCB trace at 3.125 Gbps. Thi s paper i s organized as f ol l ow s.

Proposcd adap tive equal izer structure i s prcsa Med in Scct . 2 .Secti on 3 dcscr ibes detai l s of circui t i mP u nctuat i on - M ea-

sura nent resul ts of the prototype chi p Me given in Sect. 4 ,f ol l ow ed by conclusi on in Sect . 5 .

1 . I n t r o d u c t i o n

2. Equalizer Structure

Fi gure 1 show s the bl ock di agram of proposed cquali za --

For the cqua i n t- HIt- , w e used the separa- -path topol -ogy w i th tw o si gnal paths: Hat gai n path and high-f requency

boosti ng pa h [3] . Control l ing the cornu ncd gai n of tw opaths, both thc Hl ter--zcro Oco -- ¤ y and the boosti ng ga n

Me adj usted .For thc maxi mum eye opa Urs , the equal i zcr HIto - set-

ti ngs should be ad o - d f or the optim um val¤ s, w hich

prou dc opti m al corn- m ati ng ga ns for thc Mgh h quem yloss. B ea usc I SI resul ts f rom di HeretH amounts of loss

for the hi gh and low frequenci es, rd ative am ounts of thehi gh f rcquo - y gai n compared to the l ow f req¤ - y con-

R e c e n t e H o r t s t o i n c r e a s c d a m t h r o u g h p u t o n m u l t i - g i g a b h

s y s t e m s f a c e a n u m b e r o f c h a l l e n g e s . I t i s n o l o n g e r s u m -

d e n t t o s o l d y i n c r e a s e t h e s p e e d o f I C s t o a c h i e v e h i g h e r

d a t a r a t s - H i s i s d u e t o t h c e m e r g e - c o f o t h - - c o n -

s t r a i n t s , s p a m a l - t h e s i g n a l i m p a i r m e n t s a r i s i n g f r o m t h e

t r a n s m i s s i o n m e d i a , s u c h a f r c q u e m - d e p e n d c n t l o s s a n d

c r o s s t a l k - I n h i g h - r a t e N R Z d a t a c o m m u n i c a t i o n o v c r c a b l c s

o r P C B t r a c e s , S U n c H e c t S M d d i e l e c t r i c l o s s e s c a u s e a t -

t e n u a t i o n o f h i g h - f r e q u e n c y s i g n a l c o m p o n e n t s , r e s u l t i n g i n

i r H a s p n b o l i n t e r f e r e - e ( I S I ) t h a t l i m i t s t r a n s m i s s i o n d a t a

r a t e a n d d i s t a n c e [ H .

T o o v e r C O I n c c h a n n e l i m p a i r m a n s , m a n y p r c - e m p h a s i s

a n d e q a u k - c i r c u i t s h a v e b c e n p r o p o s e d ¢ ] - [ 5 ] . C o n v e n -

t i o n a l a c t i v e cÄ oÆ tnm½Hmtumihm tnm½nmtu 1mOÌ tum½Bæ Ss -4Ü tnm ihm1nmtnm 1. c eq qÔ tu ½n ad£ lH iÒ ZÛ caw IrB .s w i t h o u t c l o c k rº c£-

cÄ ow VÁ e¿ rU y c i r c u i t s e m p l o y a s i n g l c f e c ¤ - k a d a p t a t i o n l o o p

t h a t a d u s t s t h c M g h f r e q ¤ - y b o o s t i n g a c c o r d i n g t o t h e d i F

f e r a l c e b c t w c c n M g h f r e q ¤ - y c o n t o 1 t s o f d a t a b c f o r c a n d

a f t c r s l i c i n g [ 2 ] , [ 3 ] . H o w e v e r , f o r p u p a - e q u a n a t i o n , l o w

R c q u e m y c o n t e n t s o f d a t a s h o u l d b e a l s o a d u a d . T h u s ,

a n a d d i t i o n a l f c e d b a c k s w i n g c o n t r o l l o o p [ 4 ] o r a l o w f r e -

q u e n c y c o n t r o l l o o p [ 5 ] i s a p p l i e d t o t h e a d a p t a t i o n c i r c u i t s .

H o w e v e r , o p t i m i z a t i o n o f t w o i n t o - r e l a t e d f c c d b a c k l o o p

d y n a m i c s i s a d i m c u l t t a s k a n d i t t a k c s m u c h t i m e t o I ¤C ¤ h

s t c a d y - s t a t e s f o r b o t h f e e d b a c k l o o p s . I n a d d i t i o n , c i r c u i t

r e a l i z a t i o n o f t w o s e p a r a t e f e e d b a c k l o o p s t a k e s l o t s o f c u p

a r c a .

W c p ro p o se a new c o m p ac t eq u al i zer sm u t- e w h i ch

M arm o t - received N ov o m er 1O, 2M 5.M anuscr ipt rev i sed M ay 3, 2006.

èTuI- author s M C w i th the D cparm et1t of E lectr i cal a d E lec-

u o nic Eng ine- i ng , Yonsei U niversi ty , Seoul 1204 49, K orea.èèT he author i s w i th Sam sung El a u a - s C ompany L td .,

H w an n ul -si , K y unggi -do , K orea.

a) E m d : ky uk2 @y onsei -- ºD 0 I : 10 109 / ieM ep s - c .10 14% Fig. 1

Copy ri ght @ 2006 H 1C Insti tute of Electronics, I nform ation and Communi cati on Engine- s

Page 2: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

L EE et al .: CM OS 3.125G b/ s DIGH A L LY CONTR OL L ED A DA PTW E EQUA L Z ER

1 45 5

Fig. 2 Termination a d Mgh pa s nltcr.

Oj± HF

Fig. 3 C o m b i n g -

t a n s s h o u l d b e c o n t r o l l e d . I f t h e l o w f r e q u e n c y g a n i s n o t

a d o - d , t h e a d a p t a t i o n l o o p f o r b o o s t i n g g a n c a n e i t h e r u n -

d c r e s t i m a t e o r o v e r e s t i m a t e t h c h i g h f r e q u e n c y c o n t e n t s o f

t h e s i g n a l , w h i c h r e s u l t s i n a s u b o p t i m a l s o l u t i o n . T h e s w i n g

v o l t a g e l e v d o f t h c n a t a t t . l i n e d s i g n - a f t - l o n g c o n s ¤ -

t i v c z e r o s o r o n e s r e p r e s e n t s t h e l o w f r e q ¤ - y c o n t e n t s i n

t i n - d o m a i n . T h u s , c o m p a r i n g t h e s w i n g l c v d b c t w e e t 1 £ C

s l i c e r i n p u t a d o u t p u t s i g n a l s , t h c l o w f r e q ¤ - y c o n t e n t s

c a n b e a d u s t e d - W i t h t h i s , t h c p o w e r c o m p a r i s o n l o o p c a n

c o n v e r g e s t o t h e o p t i m a l e q u a l i z e r s c u i n g -

E q u a l i z e - i n p u t s i g n a l i s I S 1 s i g n a l w i t h M g h f r e q u e n c y

l o s s , w h i c h h a s t h c p a H a n d m a d e H e d g e r a t e i n t i m e d o -

m a i n . B u t , t h e s l i c e r o u t p u t p r o u d c s s i g n a l w i t h t h e p r c d ¤

H n e d e d g e r a - - I f t h e t w o s i g n a l s h a v e t h c s a m c m a x i m u m

s w i n g l e v c l , w h i c h m e a n s t h c t w o s i g n a l s h a v e t h e s a m e l o w

f r c q u o - y l c v d , t h c o v e r a l l p o w e r d i H e r - - e b c t w e e t 1 t w o

s i g n - s r c p r c s e n t s t h c h g h f r e q u a - y l o s s o f i n p u t I S I s i g -

n a l . TTnIn¢½Ihk½Émc¢mtní 1L , t h r o u g h t0£lhk ½Éc p o w e r c o m p a r i s o n l o o p , t h e c q t a l i - r

s e t t i n g c o n v e r g e s t o t h c o p t i m a v a l ¤ t o s a t i s f y t h e p - d e -

n n e d c d g c r a t c f o r a l l t h c i n p u t d a t a p a t t o r n - T h u s , w h e n

t h e p o w e r o f t h c i n p u t I S I s i g n a l a n d t h c s l i c e r o u t p u t s i g n a l

M C s a m e , w h i c h m e a n s a l l t h c i n p u t d a t a p a t t a n s h a v e t h c

s a n e e d g c r a t e , t h c c q t Ja n ¤ r s e t t i n g i s o p t i m i z e d .

F o r t h c l o w f r e q u e n c y c o n t o H s c o n t r o l , f e d - f o r w a r d

s w i n g c o n t r o l i s u s c d a d f o r t h c h g h f r c q u e m y c o n t e n t s

c o n t r o l , f e e d b a c k b o o s t g a n c o n t r o l i s a p p l i e d t o t h c e q u a l -

i z i n g H I t e r -- F c e d - f o r w a r d s w i n g c o n t r o l p a t h i s c o m p o s c d

o f r c p l i c a c o m b i n e r , b o t t o m d a c t o r a n d s w i n g c o n t r o l l a b c

s l i c e r . R c p l i c a c o m b i n e r r e p r o d u c e s t h e n a t a t t . l i n e d s i g n a l

o f i n p u t s i g n a l w i t h t h c s a n e s w i n g l c v c l a n d o f f s e t a s t h e

e q u a l i z e d s i g n a l . B o t t o m d a c t o r d e t e c t s t h c s w i n g v o l t a g e

l e v e l o f t h e H a t a m p l i n e d s i g n a l a n d p r o v i d e s c o n ¤ £ 1 v o l t -

a g e t o s l i c e r . T h e n , s l i c c r a d u s t s o u t p u t s w i n g l e v c l q u i c k l y

M d c o n v e r t s i n p u t e q u a l i z e d s i g n a l i n t o t w o b i n a r y l c v e 1s

w i t h p r e d e n t ¤ d e d g c r a t e . A f t e r t h c l o w f r c q u e m y c o n t e n t s

a r e a £ u s t e d w i t h t h i s s w i n g l c v d c o m p a r i s o n , t h e d i g i t a l

c o n t r o l b l o c k j u s t c o m p a r e s o V a a l l i n p u t a n d o u t p u t s i g n a l

P O W - s o f t h e s l i c e r . T h e n i t c o n t r o l s t h e M g h f r e q u e n c y

b o o s t i n g g a n t h r o u g h t h c f e c d b a c k l o o p .

3 . Circuit I mplementation

3.1 Digital- Controlled Equa in t- Filteri gnored . H eir w ei ghts of combi ne - i n F i g. 3 Me tut- d w i th

thc control vol tage, Crn -L F and C tn -H F , w hi ch Me go t- -

ated f rom thc di gi taly control lcd bi as ci rcui t i n Fig. 4 . Theydetermi ne the high-f req¤ - ny boosting l cvd , w hich has 8

level s and achieves the m ax i mum ga n of about 6 dB , andi ncreases in thc di recti on of the an ow as shown i n F ig. 5 .

For the nat ga n path , input signal , D M , i s obtai ncd fromtermi nation and for thc h igh frcquccny boosting path, hi gh-pass Ol- - d si gnal , D M¹ f F , i s obanned f rom pass¤ c R-C

Hl t¤ as show n in Fi g . 2. To obtain the boosting ga n Mound

the N yqui d f rC. R¤- y of 1.5 GH z, thc polc frcqua - y i ssct thorough thc RC val t¤ of the h igh pass Hl t¤ - Then,the equal i zcd output sign- , E q -om , i s obtai ned f rom the

w U gh- d sum of tw o input si gnal s, D M and D M ¹ f F . Th epath dcl ay bctw cen tw o paths cm cats c plu sc shi f t or skcw

and i f tw o paths havc l argc pIu sc m i sm atch, thc w aveform i snot equal i zcd. H ow cvcr, bea usc tho -e i s no amPl in - -bl ock

betw cen tw o si gnal s and thc combi ner M d tw o signal paths

MC carcful l y U d out , phase shi f t betw een tw o signal s cm bc

32 Replica Combiner

For the f eed-f orw ard sw ing control , the same structure asm at i n the cqua in t- Gl t¤ - i s used for repl ica combi ner as

show n in F ig. 6. I ts i nputs arc i nput si gn. a d the termi -

nati on b ias vol tage, w hich i s the comm on mode vol tage of

D M ¹ f F . I t combines them w ith the sa ne OUTerH source

Page 3: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

1 45 6

O 1 A .

B Ia s

Fig. 6 Repl ica combine -

fm mb ias c ircu it

A m p l i f i e r

vSwing c£ntrd

Fig 9 SINcr.

bi as vol tages, Curd -L F M d Curd -H F ,̄ as thc equa in t- Gl t¤ -

A s a resul t , thc Hat att. 1iHcd sign- , F fat -a u ha £ e San-

vol tage sw i ng - nd oHset signal w i th the equali zed signal ,E qô Z4f .

F igure 7 show s the sCha rta- of bottom detector mat mea-

sures the low est signal val ue. W hen the signal has react- di t s l ow est val ue, the output vol tage of £ e U I A i n Fi g. 8 be-comes equal to i t s nes t- c saturat ion vol tage and the out-

put of bottom da c tor fol l ow s the low est val . £f i nput sig-

nal [6] . Then , i ts ncgaUve sw i ng vol tage i s del ivcred to thesl i cer.

caded att. l iners- A s show n in F ig. 1O, through repl i ca feed-

back , the am minem produce contro l l able sw ing output ac-

cord ing to the sw i ng control vol tage f rom bottom detector[7] . Then, the output signal sw ing bccomes cqual to the i n-

put si gnal sw i ng, stu n eful- the output si gn- edge.

3 . 4 Sw ing Control labl e Sl icer

T he sl icer, show n in Fi g . 9, i s imp la nt-rued by three cas-

Page 4: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

LEts et al .: CM OS 3. 1 25-Gb/ s DIGf TA L LY CON TROL L ED A DA PH V E EQUAL IZER

1 45 7

clÄ k

Fig 1 1 Pow er com pari son ci rcu i t M d con tro l l er-

C L K

Fig. 13 Sense ampho- -

| Ĺ r |

l£ c k :

c £ n t r o He r

s t o p

u p = 0sense an¤pdec i s i£n

35 Control Block up=q 1l

reg isterc£ unt upTh c boosti ng gai n control block i s show n in Fi g. H . I M -

Hal l y, thc equal i zer opcrates i n adaptati on modc. Square

ci rcui t in Fi g. 12 recti Hes the equal i zer output signal M d

thc SI- - output si gnal . T hen, the sense ampl iner i n F ig . 13com pares the tw o outputs of thc square ci rcui t at m inter valof 300nsec. I f equal izcd si gnal pow e - i s smal ler than the

sl i cer output pow er, thc boosti ng gain i s increased di gi td l ythrough thc control ler . Thcn, £ e digi ta1 code contro l s thebias ci rcui t of cqta l i - r combi ne - in Fi g. 4 . M C How cha t

show n in Fi g . 14 expl ains thc operation of thc control la --

register = 8

Fig. 14 H ow cha t of control ler-

4. M easur ement Results

Fig. 15 Chip microphotograph.

of the test chip w as measured by a digi tal sampl i ng osci l l o-scope. Fi gure 16 show s the eye di agram at the l ine output af -ter- 1 5 -m FR4 PCB trace w i thout and w i th the equal i zer. A L

ter the u ansmi ssion through 1 .5-m FR4 PCB trace, the eye i s

completely cl osed . Thc medi a loss (S2 1) at the N yqui d f rc-

n e equal izer ci rcui t w as desi gned w i th 0.18p m CM 0 Stcchnol ogy w i th 1.8 V suppl y. Fi gure 15 i s a chip mi cropho-tograph. T he cu p includes the adap th c cqta li - r, the t i m -

1ng generator f or control block , and the output dHVer. n eact¤ c ci rcui t Mea of thc equal i zer i s about O.16 n11112 and

thc pow er di ssipation i s about 2Om W (excludi ng thc out -put * i ver ) w i th 1.8-V supply . n e chi p w as pack agcd in a120-pi n T Qm

For m ca v em ent, 0 .4% p 27 - 1 PM S data at

3.125 G b/ s. w crc sent i nto thc cu p mrough FR-4 PCB sub -l i t¤ traccs having van ous lengths M d the di g a -- n ial output

Page 5: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

E ICE TR A N S. ELECTRON -, VOL E s - £ NO. 10 0 CT0 BER 20061 45 8

¤¢

¬ - æ - - Data rat e @3.4 25Gb ps¢¬

¬¬

¬¬

4 20r--.m«®--dL.

Î n o.--®Ð´m

a , ££

ä |

i i £ |

O.2 O.3 O.4TX s im al A m p lit udeW pp]

Fig. 18 M easured equd izer j itter with di& rent transmi tter sign- ampli-tudes with 15 m PCB Ha e at 3.125 Gb/s 27 - 1 PRB S panem .

( a )

Uacc at 3.125 Gb/s dam transm issi on speed. T he si gnalsw i th l a ger ampl i tude havc be ta j i tter per form- - c bea uscthc sign. leve1 detection and pow er compar i son MC accom-

pl i shed more accurately.

5 . C o n c l u s i o n

A new comp act adaptive l ine cg a uze - i s do nors trated-

L ow pow cr consumpti on a d sm al l chip arca MC achievedby use of the feed-f or ward sw ing control and the di d -

u ny con- OIled boosti ng gain . T- c equal i zer opera- s upto 3.125 Gbps over a 15 m lcte th PC B Vace-

A c t g . £ w l e d g - - n t sFig. 16 Eye diagrams. (¯ L ir¤ output m er 15 -m FR4 PCB Ha e at3.125 Gb/s with 27 - 1 PRBS pattern. (b) Equali zer ou£ Ut at 3.a m p .

Th i s w ork w as suppor ted by the M i ni s- y of Inf orm ation M dCom muni cation, K orea, under the Inf ormation Technol ogy

Rcscarch Centcr suppor t program supervi sed by the I nsti tuteof Inf orm ation Technology A sse g no H. W e al so acknow l -

edge £ at EDA soHw are used i n thi s w ork w as suppor ted by

ID EC (IC D esi gn Educati on Center ) .

R e f e r e n c e s

£ È Õ Õ¼ ms¤ o¤--s ¤¤¤ ,£vX n--

O . O

Fig. 17

O.3 O.6 O.9 1 .2 15

P C B t ra c e le n g t h [ m ]

M easured eq ual i zer - ter w i th var i ou s PC B l eng th s.

quem y of 15 GH z i s m easured about 8 dB . H ow ever, w i thequana tion, al though thcrc rem ains residual I SI because ofthe insuIn d ent m ax i mum gai n to f ul l y equal i ze the si gnal

loss of the 15 m PCB trace, data Me d car l y recow - d and

the bi t e- or rate bcl ow 104 2 i s obsa ved - The equal i zerpcab - -peak j i t ters w ere Incasured at var i ous trace l engths

f or both 25 Gb/ s a d 3.125 Gb/ s, M d the resul t s are sum -m an a d in Fig . 17. Fi gure 18 show s thc j u te -vari ation w i th

rs pca to the Hansom - r si gnal amPlu tu s ovcr 15 -m PCB

[ 1] W .J. D d 1y a d J. Pou l ton , °Tr ansm i t - r equan a tion for 4G bp s si g -

nal i ng ,± E EE M i cro , vo l .17, no .1, pp .4 8- 56 , Jan -F eb. 1997 .

[2] G .R H a m a , K .W . M ar tin , and A . M CL ar o l , ° C on ti nuous t i m e adap -

ti ve anal og com i - cable equal i zer i n 0 5 Pm C M 0 S,± R m . h t . Sy m p -

on C ir cui ts a d Sy stem s, pp .974 00 , M ay 1999 .[ 3] G . Z hang , R C ha tm an , M d M .M . G reen , °A B iC M O S 1OG b/ s adap -

ti ve c ab l e equ al i zer,± 1SSC C D i g . Tech . Paper, pp .4 82Ï 83 , Feb . 2M 4 .

[4 ] S . G ondi , J. I c e, D . Tak e- h i , a d B . R azav i , °A 10 Gb/ s C M O S adap -

tiv e equ a l - r f or backp l ane app l i cat i ons,± I SSC C D i g . T ech . Paper,

pp .32 83 29 , Feb . 2M 5 .[5 ] J .-S. C hoi , M .S . H w ang , M d D .- K . h ong , °A O. l 8 p m C M 0 S 3 .5-

G b/ s conti nu ous-t im e adapt ive cab le equal i zer usi ng enhanced low -f r equency ga n con t ro l m em od ,± HE E J. Sol i d - State C i rcui ts, vo l .39 ,

no 3 , pp .4 19- 4 25 , M a ch 2M 4 .[6 ] M .W . K r ui sk a t- a d D M .W . L eCIta rts- °A C M 0 S pcak detcct a p

p le a d ho ld c i rc ui ty IEE E T r an s. N ¤ I . Sci ., v o l .4 1, no .1, pp .294-

29 8, Feb. 1994 .[7 ] J. M ana u s, ° L ORd n ¤ process-independent D L L a d PL L based on

se1f -b i ased techni - - s,± I EEE J. Sol i d-Sa te C i rcu i ts, v o l 3 1, no .11,

pp .1723- 1732 , N ov . 1996 .

Page 6: ÚÝÂER A 0.18 p m CNgo s $ 125-Gb/s Digitally Controlled A ...tera.yonsei.ac.kr/publication/pdf/Jour_2006_KHLee_TE.pdfE ICE TR ANS. ELECTRON-, VOL E 89éC, NO. 1O 0 CT0 BER 2006

L EE et al .: CM 0 S 3. 125-Gb/ s D IGn A L LY CONTR OL L ED ADA P TIVE EQUA L E ER

1 4 5 9

n a u t¤k L a received the B S . a d M .S.

degrÄ s i n D ec¤ ical a d m ecu m - Eng ineer -

ing f r om Yon sei U n iv ersi ty, K orea in 20M and

2M 2, resp ecti vely . H e i s cur rent l y pu r sui ng thePh D . dcgr ee at the sa n e un iv er si ty . H is r e-

search i n terests i ncl ude c l ock M d dam recov eryci rcu i ts a d eq ual i zer s fo r h igh -s- cd U0 i n ter-

face ci rcui ts .

. , ® ,

J ae- W o ok L ee recei ved the B .S ., M S . and

Ph D . degrees i n d cm ical M d elec tron i c engi -

Iteem - n om Yon sei U n i versi t y, Seou 1, K orea,i n 1999 , 2M 1 M d 2M 5, r esp ectively . H i s doc-

Ud d i sser tat i on concerned M gh sp eed equal i zer

i n sen d 1ink - I n 200 5 , he j o i ned th e Sam sung

d ec¤ £ni cs, H w asung , K orea, w here he i s en -

gagi ng i n r esear ch on D RA M desi gn and test .

H i s om er research i nterests i ncl ude h i gh-speed

UO , c l ock M d data recover y c ircu i t , hig h-speed

cquah zan on ci r cu i t de i gn -

W oo -You n g C h oi received h i s B .S ., M .S

and Ph .D degrees a l i n E l em i cal E le u - - ®ng

and C on n . - r Sci - - c n om the M assach uset tsI m o tu- of Techno l og y. For hi s Ph D . th e-

si s, he inv est igated M B E - grow n I nG aA l A s laser

d i odes f or 6 ber op tic appl i cati ons. Fr om 19 94to 1995 , he w as a post-docto r al resear ch fel -

l ow at N T T O H o-el ectro n ics L ab s., w here h e

w or- d on fern- -second al l -op t ical sw i tch ing

dcv i ces bascd on l ow -temp er atu re-g row n h -

G aA l A s quanu tty1 w el l s. In 1995 , he j o i ned the

depar tmen t o f E l ec- - al M d E l a u d - Eng i neer ing , Yon sei U ni ver si ty,

Seou l , K orea, w here he i s presen tl y m associate pro fessor. H i s research

i nterest i s i n the area of high -speed i nf o rm at ion p rÄ essing techn o1ogy m at

i ncl udes u gh-sp eed op toelectron ic s, u gh -speed el ectr on ic ci rcui ts a d m i -

crow avc pho toni cs-

.