ericsson documents.mx ericsson-field-guide-for-utran

170
ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 1 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T Volume II – Ericsson Field Guide for UTRAN P3: Feature Parameters and Best Practices Network Services Document: ND-00150 Rev. 3.0 09/09/2007 Overview Volume II of the Ericsson Field Guide for UTRAN defines AT&T’s accepted practices for optimization of the Radio Access portion of the UMTS network for Ericsson WRAN P5MD patch level P5.0.14 (Phase II FOA exited August 23 rd , 2007). The algorithms by which subscriber devices interact with the network are described in detail. Recommendations are provided that produce the best performance in the network for each type of interaction. This Field Guide is composed of 11 sections which include descriptions of: New features released in the most recent RNS software version. WCDMA design concepts and measurement fundamentals. A chronological step by step description of how the subscriber device and network interact. Idle Mode, Call Establishment and Connected Mode are introduced and the algorithms associated with each are described and the involved parameters are explained. OSS access procedures and methods. The document concludes with an index and tables wherein all configurable parameters and supporting details are listed along with a list of well deserved credits. IMPORTANT: This document is the result of an ongoing collaborative effort between AT&T Market, Regional, National and Ericsson staff and management. It will continue to be updated with the latest findings in the areas of optimization and vendor improvement through the use of Field Studies and successive vendor software and hardware updates.

Upload: artty-numatti

Post on 21-Jan-2017

483 views

Category:

Engineering


79 download

TRANSCRIPT

Page 1: Ericsson documents.mx ericsson-field-guide-for-utran

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 1 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Volume II – Ericsson Field Guide for UTRAN P3: Feature Parameters and Best Practices

Network Services Document: ND-00150 Rev. 3.0 09/09/2007

Overview

Volume II of the Ericsson Field Guide for UTRAN defines AT&T’s accepted practices for optimization of the Radio Access portion of the UMTS network for Ericsson WRAN P5MD patch level P5.0.14 (Phase II FOA exited August 23rd, 2007). The algorithms by which subscriber devices interact with the network are described in detail. Recommendations are provided that produce the best performance in the network for each type of interaction.

This Field Guide is composed of 11 sections which include descriptions of:

• New features released in the most recent RNS software version.

• WCDMA design concepts and measurement fundamentals.

• A chronological step by step description of how the subscriber device and network interact. Idle Mode, Call Establishment and Connected Mode are introduced and the algorithms associated with each are described and the involved parameters are explained.

• OSS access procedures and methods.

The document concludes with an index and tables wherein all configurable parameters and supporting details are listed along with a list of well deserved credits.

IMPORTANT: This document is the result of an ongoing collaborative effort between AT&T Market, Regional, National and Ericsson staff and management. It will continue to be updated with the latest findings in the areas of optimization and vendor improvement through the use of Field Studies and successive vendor software and hardware updates.

Page 2: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 2 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Contents 1. About This Document....................................................................................................................... 8

1.1 Purpose....................................................................................................................................... 8 1.2 Scope .......................................................................................................................................... 8 1.3 Audience ..................................................................................................................................... 8 1.4 Related Documentation............................................................................................................... 8 1.5 Acronyms and Terms .................................................................................................................. 8 1.6 Trademarks ................................................................................................................................. 8 1.7 Conventions ................................................................................................................................ 8 1.8 Contacts ...................................................................................................................................... 9

2. New Features in P3 (WRAN P5MD Phase II)................................................................................ 10 2.1 Idle Mode................................................................................................................................... 10

2.1.1 URA_PCH......................................................................................................................... 10 2.1.2 Introduciton of CELL_FACH State for HS capable UEs................................................... 10

2.2 Call Establishment .................................................................................................................... 10 2.2.1 2xPS Radio Access Bearers............................................................................................. 10 2.2.2 Enhanced Uplink (EUL) or HSUPA................................................................................... 10

2.3 Mobility and Connection Management...................................................................................... 10 2.3.1 Introduction of additional R99 RABs................................................................................. 10 2.3.2 Event 6a has been replaced with Event 6d ...................................................................... 11 2.3.3 Code Division Multiplexing for HSDPA............................................................................. 11 2.3.4 hoTypeDrncBand1-17 has been replaced with defaultHoType........................................ 11 2.3.5 Calculation of maxDlPowerCapability............................................................................... 11 2.3.6 Throughput triggered Dedicated to Dedicated Up and Down-Switch (Uplink and

Downlink) .......................................................................................................................... 11 2.4 OSS Related Functionality ........................................................................................................ 11

2.4.1 Neighbor List Prioritization................................................................................................ 11 3. Significant KPI Impact Parameters ................................................................................................ 12

3.1 Accessibility............................................................................................................................... 12 3.2 Retainability............................................................................................................................... 12 3.3 Quality ....................................................................................................................................... 12 3.4 Throughput and Latency ........................................................................................................... 12

4. Design Criteria ............................................................................................................................... 13 4.1 UE Capabilities.......................................................................................................................... 13

Page 3: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 3 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

4.1.1 Frequency Bands.............................................................................................................. 13 4.1.2 Channel Numbering Scheme (UARFCN) ......................................................................... 13 4.1.3 Power Classes.................................................................................................................. 14 4.1.4 UE Category (HSDPA and EUL) ...................................................................................... 15

4.2 Link Budget ............................................................................................................................... 16 4.3 Basic Design Requirements...................................................................................................... 17

4.3.1 Pilot Pollution .................................................................................................................... 17 4.3.2 Neighbor List Determination ............................................................................................. 17 4.3.3 Scrambling Code Usage................................................................................................... 18

4.4 Measurement Fundamentals .................................................................................................... 18 4.4.1 PCPICH ............................................................................................................................ 18 4.4.2 PCPICH RSCP ................................................................................................................. 19 4.4.3 CPICH Ec/No (Ec/Io) ........................................................................................................ 19 4.4.4 Eb/No ................................................................................................................................ 20 4.4.5 SIR .................................................................................................................................... 20 4.4.6 RSSI.................................................................................................................................. 20 4.4.7 RTWP ............................................................................................................................... 20 4.4.8 BLER................................................................................................................................. 21

5. Parameters Described Within Context........................................................................................... 22 5.1 Idle Mode................................................................................................................................... 22

5.1.1 Cell Search Procedure...................................................................................................... 22 5.1.2 PLMN Selection ................................................................................................................ 23 5.1.3 IMSI and GPRS Attach ..................................................................................................... 28 5.1.4 Location and Routing Area Updates................................................................................. 34

5.2 Call Establishment .................................................................................................................... 35 5.2.1 Radio Access Bearer ........................................................................................................ 35 5.2.2 Mobile Origination / Termination....................................................................................... 37

5.3 Mobility and Connection Management...................................................................................... 51 5.3.1 Measurement Fundamentals ............................................................................................ 51 5.3.2 Cell Reselection in Idle Mode or CELL_FACH................................................................. 52 5.3.3 Handover in Connected Mode (CELL_DCH) – Intra-Frequency ...................................... 53 5.3.4 Handover in Connected Mode (CELL_DCH) – Inter-Frequency or Inter-RAT ................. 58 5.3.5 HS Cell Change ................................................................................................................ 70 5.3.6 Channel Switching ............................................................................................................ 71 5.3.7 HSDPA Scheduling........................................................................................................... 86

Page 4: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 4 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.8 EUL Scheduling ................................................................................................................ 87 5.3.9 Congestion Detection and Resolution .............................................................................. 88 5.3.10 Radio Connection Supervision ......................................................................................... 91 5.3.11 Downlink and Uplink Power Control ................................................................................. 91

6. OSS Overview................................................................................................................................ 98 6.1 Configuration Management....................................................................................................... 99

6.1.1 Configuration Access Procedures .................................................................................... 99 6.1.2 Configuration Methods...................................................................................................... 99

6.2 Performance Management...................................................................................................... 100 6.2.1 Performance Access Procedures ................................................................................... 100 6.2.2 Ericsson Counter Types ................................................................................................. 101 6.2.3 Call Trace Capability....................................................................................................... 101

6.3 Fault Management .................................................................................................................. 102 6.3.1 Alarm Status Matrix ........................................................................................................ 102 6.3.2 Alarm List Viewer............................................................................................................ 102 6.3.3 Alarm Log Browser ......................................................................................................... 102

7. Counter and Recording Activation ............................................................................................... 103 7.1 Counter Activation................................................................................................................... 103

7.1.1 Table Definitions ............................................................................................................. 103 7.1.2 Subscription Profiles ....................................................................................................... 103

7.2 Recording Activation ............................................................................................................... 144 7.2.1 Activation of RES Recording to support Scorecard Data ............................................... 144

8. Reference Documents ................................................................................................................. 145 9. Parameter Reference................................................................................................................... 146 10. Consulted List .............................................................................................................................. 159 11. Index............................................................................................................................................. 166

Figures

Figure 1: Slot and Frame Structure....................................................................................................... 22 Figure 2: Power Ramping on RACH ..................................................................................................... 29 Figure 3: RRC Connection Signaling Flow ........................................................................................... 30 Figure 4: Downlink DPCCH Power ....................................................................................................... 32 Figure 5: Admission Control (Radio Link Request)............................................................................... 40 Figure 6: Admission Control (DL Channelization)................................................................................. 41 Figure 7: Admission Control (Spreading Factor Usage) ....................................................................... 43 Figure 8: Admission Control (DL Power) .............................................................................................. 44

Page 5: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 5 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 9: Admission Control (Uplink ASE Utilization) ........................................................................... 46 Figure 10: Admission Control (Downlink ASE Utilization)..................................................................... 47 Figure 11: Admission Control (Uplink Hardware Utilization)................................................................. 48 Figure 12: Admission Control (Downlink Hardware Utilization) ............................................................ 49 Figure 13: Event 1a Trigger .................................................................................................................. 54 Figure 14: Event 1b Trigger .................................................................................................................. 55 Figure 15: Event 1c Trigger................................................................................................................... 56 Figure 16: Event 1d Trigger .................................................................................................................. 57 Figure 17: Event 2d Trigger (Begin Compressed Mode) ...................................................................... 59 Figure 18: Event 2f Trigger (Cease Compressed Mode)...................................................................... 60 Figure 19: Event 6d Trigger (Begin Compressed Mode) ...................................................................... 61 Figure 20: Event 6b Trigger (Cease Compressed Mode)..................................................................... 62 Figure 21: Event 3a (EcNo)................................................................................................................... 64 Figure 22: Event 3a (RSCP) ................................................................................................................. 65 Figure 23: Event 3a (UE Tx) ................................................................................................................. 66 Figure 24: Event 2b (EcNo)................................................................................................................... 67 Figure 25: Event 2b (RSCP) ................................................................................................................. 68 Figure 26: Event 2b (UE Tx) ................................................................................................................. 69 Figure 27: Event 1d HS (HS Cell Change) ........................................................................................... 70 Figure 28: Dedicated (DCH/DCH) to Common Down-Switch............................................................... 73 Figure 29: HS (DCH/HS or EUL/HS) to Common Down-Switch........................................................... 74 Figure 30: Common to Dedicated (DCH/DCH, DCH/HS or EUL/HS) Up-Switch ................................. 75 Figure 31: Common to URA_PCH Down-Switch .................................................................................. 76 Figure 32: URA_PCH to Idle Mode Down-Switch................................................................................. 77 Figure 33: Throughput triggered DCH to DCH Down-Switch (Downlink) ............................................. 78 Figure 34: Throughput triggered DCH to DCH Down-Switch (Uplink) .................................................. 79 Figure 35: Code Power check for Up-Switch (Downlink)...................................................................... 80 Figure 36: Code Power check for Up-Switch (Downlink)...................................................................... 81 Figure 37: Throughput Triggered Up-Switch (Uplink) ........................................................................... 82 Figure 38: Covered Triggered Ded. to Ded. Down-Switch ................................................................... 83 Figure 39: Throughput Triggered Down-Switch (Multi-RAB) ................................................................ 84 Figure 40: Throughput Triggered Up-Switch (Multi-RAB)..................................................................... 85 Figure 41: Throughput Triggered Down-Switch (2xPSMulti-RAB)........................................................ 86 Figure 42: Congestion Detection (Downlink) ........................................................................................ 89 Figure 43: Congestion Detection (Uplink) ............................................................................................. 90 Figure 44: OSS Connectivity................................................................................................................. 98

Tables

Table 1: Operating Bands ..................................................................................................................... 13 Table 2: UARFCN List for Bands II and V (“Additional Channels” method) ......................................... 14 Table 3: UE Power Classes .................................................................................................................. 15

Page 6: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 6 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 4: UE Categories (HSDPA)......................................................................................................... 15 Table 5: UE Categories (EUL) .............................................................................................................. 16 Table 6: Link Budget ............................................................................................................................. 16 Table 6: Master Information Block (MIB) Contents ............................................................................... 24 Table 7: System Information Block 1 (SIB 1) Contents ........................................................................ 24 Table 8: System Information Block 3 (SIB 3) ........................................................................................ 25 Table 9: System Information Block 5 (SIB 5) ........................................................................................ 25 Table 10: System Information Block 7 (SIB 7) ...................................................................................... 26 Table 11: System Information Block 11 (SIB 11) .................................................................................. 26 Table 12: System Information Block 12 (SIB 12) .................................................................................. 27 Table 13: Air Speech Equivalents (ASE) .............................................................................................. 44 Table 14: Maximum Bit Rates per Radio Link....................................................................................... 92 Table 15: UeRc, RAB and UeRcTrCh Identification ............................................................................. 95 Table 16: blerQualityTarget values ....................................................................................................... 96 Table 17: Configuration Management Access Procedures .................................................................. 99 Table 18: Counter Activation............................................................................................................... 105 Table 19: Configurable Parameter Lookup Table............................................................................... 146

Page 7: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 7 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Document Revision History This table identifies content revisions made to this document.

Date Rev Revision Description Writer Sponsor

11/01/2005 1.0 Release version Michael Noah

Adnan Naqvi

11/28/2005 1.1 Updates to “Cingular Recommended” parameter values based upon Field Optimization.

Michael Noah

Greg Scharosch

05/01/2006 2.0 Updates based upon Cingular P2 (Ericsson P5ED) FOA as well as results from Field Studies

Michael Noah

Greg Scharosch

01/25/2007 2.1 Content extended – version not published. Michael Noah

Greg Scharosch

03/30/2007 2.2 Moved to new AT&T template. Incorporated all existing Field Guide Alerts.

Michael Noah

Greg Scharosch

09/09/2007 3.0 Updated for AT&T P3 Phase II (Ericsson P5MD P5.0.14) Michael Noah

Somesh Razdan

RACI This table identifies RACI team members.

Accountable Responsible Consulted Informed

Somesh Razdan Michael Noah Market Engineering Mike Pietropola

Regional Engineering Eric Parker

Regional OSS Support Adnan Naqvi

National Field Support John Dapper

Strategic Planning

National Quality

Ericsson Support

For details see Consulted_List

Copyright © 2007 AT&T Mobility LLC.

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any form without the written permission of the publisher.

Page 8: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 8 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

1. About This Document

This section includes information about this document.

1.1 Purpose

The primary intention of this document is to serve as a common point of understanding and reference. This volume includes recommendations for all configurable RNC and Node B parameters. The recommendations made within this document are the result of collaborative efforts between all groups involved (see 1.3).

1.2 Scope

This document is mainly based upon Ericsson’s UTRAN implementation, focusing on the interaction between the User Equipment and UTRAN. For completeness, some facets of the Core Network are included, e.g. Paging, Routing and Location Area Update procedures, i.e. non-access stratum.

1.3 Audience

The audience for this document includes AT&T Market, Region and National Engineers and Technicians responsible for Ericsson UTRAN Optimization and Maintenance.

1.4 Related Documentation

See Reference Documents Chapter.

1.5 Acronyms and Terms

All acronyms and terms are fully spelled out within the document.

1.6 Trademarks

The trademarks used in this document are the property of their respective owners.

1.7 Conventions

The following conventions are used throughout this document:

• The term “call” refers to any type of user plane connection between UE and the Core Network. It is not specific to voice or data - UE originated or terminated. It specifically does not include any type of signaling used to support the communication of user information.

Page 9: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 9 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• The term “function” refers to Ericsson’s implementation of a certain portion of the 3GPP specification. A function is limited to satisfying a specific action taken by either the network or UE. For example, the process of originating a call is referred to as a function. Once the call has been originated, handing the call over is considered a function and ending the call is a function. Within this document, parameters are explained relative to the functions they support.

• Each Operator Configurable Parameter expressed in bolditalic. Brackets enclose the Configurable Parameter’s Level (RNC, Cell, etc.), AT&T Default Value, Units and Class (Policy, Rule, Fixed, Variable).

• Each Operator Configurable Paramter exists within a specifi Managed Opject Class (MOC). The Managed Object Class will be specified only for parameters that exist within multiple Managed Object Classes. For example, qOffset1sn is a parameter that can be set differently for Intra-Frequency (UtranRelation) and Inter-RAT (GsmRelation) neighbors. The parameter instances are therefore denoted as qOffset1sn(UtranRelation) [Nabr, 0, dB, Fixed] and qOffset1sn(GsmRelation) [Nabr, 7, dB, Fixed].

• All references to Radio Access Bearers (RABs) are denoted as UL/DL where UL is the Uplink RLC Data rate in kilobits per second and DL is the Downlink Data rate in kilobits per second.

• The term “R99” is used to denote all CELL_DCH Radio Access Bearers referring to the release of the specification that only supported Dedicated Channels (DCH). The term DCH/HS is used to denote HSDPA capability where the Uplink uses an R99 Radio Access Bearer. The terms EUL/HS or HSPA is used to denote the HSUPA / HSDPA capability.

• Some configurable parameters include an “(sho)” or an “(hho)” suffix. This suffix is used to specify a subset of cells to which the parameter recommendation applies. The sho vs. hho distinction is as follows:

• (hho). The parameter recommendation is specific to UEs that might have no alternative to performing a Hard Inter-RAT or Inter-Frequency Handover in order to maintain the call.

• (sho). The parameter recommendation is specific to cells that have Intra-Frequency overlap with other 3G cells. Inter-RAT or Inter-Frequency Hard Handover is not normally needed to maintain the call.

• For example, usedFreqThresh2dRscp(hho) [Cell, -106 ±4, dBm, Fixed] is used to indicate the recommended value of -106 dBm ±4dB is specific to cells that meet the “hho” distinction.

• The terms “Core” and “Border”

• Border Cell: Any 3G cell where the antenna orientation points out of a launch cluster or polygon into the 2G network. With respect to IRAT terminology, these sectors are considered (hho) sectors.

• Core Cell: 3G cells within the UMTS polygon that do not qualify as Border Cells. These cells can be designated as (sho) or (hho) if there are Inter-Frequency borders within the Core. Ideally, there should not be any Inter-RAT borders within the Core.

1.8 Contacts

For questions or comments about this document's technical content or to request changes to the document, contact:

Michael Noah, Sr. System Engineer – National Field Support

Desk: 425 580 6716

Wireless: 425 580 6716

E-mail: [email protected]

Page 10: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 10 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

2. New Features in P3 (WRAN P5MD Phase II)

This section provides a summary of updates AT&T has elected to implement within this version of RNS software.

2.1 Idle Mode

2.1.1 URA_PCH

The URA_PCH State is now available to all UEs. The URA_PCH State allows the RNS to maintain the location of the UE within the RNC thereby reducing the Routing Area Update load on the SGSN.

2.1.2 Introduciton of CELL_FACH State for HS capable UEs

The CELL_FACH State is now available to HS capable UEs. Before P5MD, CELL_FACH was only available to R99 only UEs.

2.2 Call Establishment

2.2.1 2xPS Radio Access Bearers

UEs that are able to support multiple Interactive / Background R99 Data RABs are now supported. Speech + 2 Data RABs is also supported. For example, you can now use Video Share on your Samsung A707 while it is teathered to your laptop.

2.2.2 Enhanced Uplink (EUL) or HSUPA

Ericsson P5MD introduces Enhanced Uplink (EUL) or HSUPA as specificed in Release 6 of the 3GPP specification. Enhanced Uplink (EUL) is much like HSDPA in that it allows for greater throughput and capacity through Link Adaptation. Unlike HSDPA however, EUL does use Macro Diversity and Inner Loop Power Contorl in the Uplink.

2.3 Mobility and Connection Management

2.3.1 Introduction of additional R99 RABs

In P5MD, R99 Radio Access Bearers include 64, 128 and 384 on both the Uplink and Downlink. All Uplink/Downlink combinations are now supporteded.

Page 11: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 11 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

2.3.2 Event 6a has been replaced with Event 6d

If the UE transmitted power is at maximum for a time equal to timeToTrigger6d, then event 6d occurs and the UE is commanded to do Compressed Mode measurements.

2.3.3 Code Division Multiplexing for HSDPA

Cells can now support up to 15 High Speed Physical Downlink Shared CHannels (HS-PDSCH).

2.3.4 hoTypeDrncBand1-17 has been replaced with defaultHoType

In P5MD, the Serving RNC determines if UEs will measure Inter-RAT or Inter-Frequency for UEs served by a Drift RNC by using the defaultHoType [Cell, 1=GSM_PREFERRED, String, Fixed] parameter which is uarfcnDl [Cell, N/A, Integer, Variable] specific instead of band specific.

2.3.5 Calculation of maxDlPowerCapability

In P5ED, the configurable parameter maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] which sets the maximum power (downlink capacity) available in the cell at the Reference Point (antenna connector) was used for Admission Control.

In P5MD, the minimum value of either maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] or maxDlPowerCapability (a value calculated by the Node B at the Reference Point and sent to the RNC) is used for Admission Control.

2.3.6 Throughput triggered Dedicated to Dedicated Up and Down-Switch (Uplink and Downlink)

Throughput based Down-Switch for all R99 RABs on the Uplink and Downlink is now supported.

2.4 OSS Related Functionality

2.4.1 Neighbor List Prioritization

It is now possible to re-order neighbor lists without having to remove and re-enter them. This is accomplished through a new neighbor indexing capability.

Page 12: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 12 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

3. Significant KPI Impact Parameters

Each parameter within this document will to a certain degree impact Key Performance Indicators (KPI). The following sections describes functions, e.g. Call Establishment, Handover, etc. that have the most impact on KPIs.

3.1 Accessibility

5.1.2.2 Camping on a Suitable Cell

5.1.3.1 Attach Procedure - RACH Ramping and Initial DCH Power Algorithms and Parameters

5.2.2.2 Admission Control

5.3.2 Cell Reselection in Idle Mode or CELL_FACH

3.2 Retainability

5.3.2 Cell Reselection in Idle Mode or CELL_FACH

5.3.3 Handover in Connected Mode (CELL_DCH) – Intra-Frequency

3.3 Quality

5.3.9 Downlink and Uplink Power Control

3.4 Throughput and Latency

5.1.3.1 Attach Procedure - RACH Ramping and Initial DCH Power Algorithms and Parameters

5.2.2.2 Admission Control

5.3.2 Cell Reselection in Idle Mode or CELL_FACH

5.3.9 Downlink and Uplink Power Control

Page 13: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 13 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

4. Design Criteria

This section mainly covers areas specified in the 3GPP standard. It presents an overview of the spectrum allocation, UARFCN designation and UE Power Class. A fundamental Link Budget is provided. The rest of the section provides a high level optimization concept for WCDMA including Pilot Pollution optimization, neighbor designation guidelines, and a detailed description of the fundamental W-CDMA measurements CPICH RSCP and CPICH Ec/No.

4.1 UE Capabilities

Multiband support for the United States (800/1900 MHz) was not defined until Release 6 of the 3GPP specification. For this reason, Release 6 is the reference for this section.

4.1.1 Frequency Bands

The frequency bands specified are shown in the table below including the separation (in MHz) between uplink and downlink frequencies. AT&T operates UMTS at 800 MHz (Band V) and 1900 MHz (Band II). The rest of the bands listed are included for completeness.

Table 1: Operating Bands

Operating Band UL Frequencies DL Frequencies TX-RX Separation

I 1920 – 1980 MHz 2110 – 2170 MHz 190 MHz

II 1850 – 1910 MHz 1930 – 1990 MHz 80 MHz

III 1710 – 1785 MHz 1805 – 1880 MHz 95 MHz

IV 1710 – 1755 MHz 2110 – 2155 MHz 400 MHz

V 824 – 849 MHz 869 – 894 MHz 45 MHz

VI 830 – 840 MHz 875 – 885 MHz 45 MHz

4.1.2 Channel Numbering Scheme (UARFCN)

The UTRA Absolute Radio Frequency Channel Number allows easy reference to the spectrum allocated to UMTS. Distinct UARFCNs are used for uplink and downlink frequencies as opposed to a single UARFCN for a pair of UL/DL frequencies. The UARFCN for the downlink is controlled through uarfcnDl [Cell, N/A, Integer, Variable] and the uplink UARFCN is controlled through uarfcnUl [Cell, N/A, Integer, Variable]. A UARFCN occupies 5 MHz of spectrum.

The specification allows for two methods to be used to associate center carrier frequency to UARFCN.

• “General” UARFCN method. Each UARFCN is defined with a specific center frequency. Beginning at 0 Hz, the UARFCN is incremented by 1 with each increment in frequency of 200 kHz. The UARFCN corresponding to the center frequency is calculated by finding the product of 5 and the center frequency (in MHz); i.e. UARFCN = 5 * Frequency (MHz). When using the “general” method, this formula applies regardless of direction (uplink / downlink) and band.

• “Additional Channels” UARFCN method. The “Additional Channels” are specified according to the table below. These channels are shifted by 100 KHz relative to the “general” URFCN definition. For Band II, the UARFCN is

Page 14: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 14 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

calculated by finding the product of 5 and the center carrier frequency (in MHz) minus 1850.1 MHz, i.e UARFCN = 5 * (Frequency in MHz – 1850.1 MHz). For Band V, the UARFCN is calculated by finding the product of 5 and the center carrier frequency (in MHz) minus 670.1 MHz, i.e UARFCN = 5 * (Frequency in MHz – 670.1 MHz).

Either the “General” or “Additional Channels” method can be used to designate UARFCNs based upon where you choose to locate UMTS within your licensed spectrum.

Table 2: UARFCN List for Bands II and V (“Additional Channels” method)

UL UARFCN UL Center Frequency (MHz)

DL UARFCN DL Center Frequency (MHz)

PCS / Cellular Band

12 1852.5 412 1932.5 PCS – A

37 1857.5 437 1937.5 PCS – A

62 1862.5 462 1942.5 PCS – A

87 1867.5 487 1947.5 PCS – D

112 1872.5 512 1952.5 PCS – B

137 1877.5 537 1957.5 PCS – B

162 1882.5 562 1962.5 PCS – B

187 1887.5 587 1967.5 PCS – E

212 1892.5 612 1972.5 PCS – F

237 1897.5 637 1977.5 PCS – C3

262 1902.5 662 1982.5 PCS – C4

287 1907.5 687 1987.5 PCS – C5

782 826.5 1007 871.5 Cellular – A

787 827.5 1012 872.5 Cellular – A

807 831.5 1032 876.5 Cellular – A

812 832.5 1037 877.5 Cellular – A

837 837.5 1062 882.5 Cellular – B

862 842.5 1087 887.5 Cellular – B

4.1.3 Power Classes

The table below indicates the UE Power Classes specified as of Release 6. Note the maximum power is the same for all bands within Power Classes 3 and 4. The power in dBm refers to the maximum total output capability of the UE at the antenna connector and not to the maximum power output of any particular Physical Channel.

Page 15: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 15 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 3: UE Power Classes

Power Class 1 Power Class 2 Power Class 3 Power Class 4 Operating Band

Power (dBm)

Tol (dB) Power (dBm)

Tol (dB) Power (dBm)

Tol (dB) Power (dBm)

Tol (dB)

I +33 +1/-3 +27 +1/-3 +24 +1/-3 +21 +2/-2

II - - - - +24 +1/-3 +21 +2/-2

III - - - - +24 +1/-3 +21 +2/-2

IV - - - - +24 +1/-3 +21 +2/-2

V - - - - +24 +1/-3 +21 +2/-2

VI - - - - +24 +1/-3 +21 +2/-2

4.1.4 UE Category (HSDPA and EUL)

HSDPA capable UEs are further categorized based upon their throughput capabilities. The table below includes all of the UE Categories as defined in the 3GPP Specification. Note that Category 11 and 12 UEs only support QPSK. If supportOf16qam [Cell, 1=TRUE, Integer, Fixed] is set to 1=TRUE, then 16QAM is allowed and all categories of UE shown below are supported.

Table 4: UE Categories (HSDPA)

HS-DSCH Category

Maximum number of HS-DSCH codes

received

Minimum inter-TTI interval

Maximum number of bits of an HS-DSCH transport

block received within an HS-DSCH TTI

Total number of soft channel bits

Category 1 5 3 7298 19200

Category 2 5 3 7298 2889

Category 3 5 2 7298 2880

Category 4 5 2 7298 38400

Category 5 5 1 7298 57600

Category 6 5 1 7298 67200

Category 7 10 1 14411 115200

Category 8 10 1 14411 134400

Category 9 15 1 20251 172800

Category 10 15 1 27952 172800

Category 11 5 2 3630 QPSK Only 14400

Category 12 5 1 3630 QPSK Only 28800

EUL capable UEs are categorized based upon their throughput capabilities. The table below includes all of the UE Categories as defined in the 3GPP Specification. The initial UEs in the market are EUL Category 3.

Page 16: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 16 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 5: UE Categories (EUL)

E-DCH Category Maximum number of E-DPDCH codes

and SF

Support for 10ms and/or 2ms TTI

Layer 1 Peak Rate/s

(10ms TTI)

Layer 1 Peak Rate/s

(2ms TTI)

Category 1 One SF4 10ms only 730kb -

Category 2 Two SF4 Both 1.46mb 1.46mb

Category 3 Two SF4 10ms only 1.46mb -

Category 4 Two SF4 Both 2.0mb 2.92mb

Category 5 Two SF4 10ms only 2.0mb -

Category 6 Four (2SF2+2SF4) Both 2.0mb 5.76mb

4.2 Link Budget

In this simple presentation of the link budget, only the maximum transmit power and receive sensitivity of the Node B and UE at their respective antenna connectors is considered. The difference between the maximum transmit power of one node and the maximum receive sensitivity at the other node is considered to be the maximum allowable path loss. The resulting uplink and downlink path losses are compared resulting in a difference in dB between the uplink and downlink maximum path losses.

Table 6: Link Budget

Downlink Value Notes

Max Tx Power (dBm) +30 Manually calculated (balanced) Node B Tx Pwr.

Max Rx Sensitivity (dBm) -115 Specification based UE Rx level at 0.1% BLER.

Max path loss (dB) 145 Difference between Node B Tx and UE Rx Sens.

Uplink

Max Tx Power (dBm) +24 Max Tx Power for a Power Class 3 UE.

Max Rx Sensitivity (dBm) -121 Specification based Node B Rx level at 0.1% BLER.

Max path loss (dB) 145 Difference between UE Tx and Node B Rx Sens

Difference (dB) 0 Difference between UL and DL path losses

The only non-specified value is “Max Tx Power (dBm)” for the Downlink. This value was chosen specifically because it balances the Uplink and Downlink path losses.

A complete Link Budget analysis would include variables such as LNA existence, various Radio Access Bearers due to their difference in gain as a function of Spreading Factor (a description of Spreading Factor is provided in the Measurement Fundamentals section), cable loss, Antenna and Macro Diversity (a description of Macro Diversity is provided in the Mobility Management section), etc.

Page 17: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 17 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

4.3 Basic Design Requirements

This section describes fundamental design guidelines that are required for basic system operation. It is strongly suggested that these basic requirements be satisfied before further optimization of the radio network is pursued.

For example, if this were an FDMA/TDMA network such as GSM or IS-136, frequency planning would be included in this section. However, since frequency reuse is not a primary consideration in WCDMA, it is not included.

4.3.1 Pilot Pollution

Since the basis of WCDMA is to allow for multiple access based upon code division instead of frequency division, care must be taken to manage over-propagation of cells in the network. As mentioned later in the Neighbor List Determination section, all cells that provide coverage in a given geographic area must be neighbors; else they are seen as noise. An over-propagating cell would therefore need to have neighbor relationships with all cells with which it overlaps. This of course would mean the over-propagating cell would be heavily utilized and would require a very large capacity.

Over-propagating cells also cause Call Establishment problems. Call Establishment has its own section within this guide, but in short; a UE establishes calls on a single cell based upon its having the best Common Pilot Channel (CPICH) signal level and/or quality. If a cell has propagated into an area where there are no neighbors assigned from it to other closer cells in terms of distance to the mobile, the call will drop. Even if there are neighbors assigned, the noise level will be increased for a short time until the surrounding cells have been added to the call through the process of Soft Handover.

Fundamentally, Pilot Pollution is Common Pilot Channel (CPICH) power where it is not desired due the over-propagation of cells. The current method used to reduce Pilot Pollution requires a drive test of the area with a CPICH scanner. CPICH propagation is then analyzed graphically (maps) and statistically. The criteria for Pilot Pollution is 4 or more Common Pilot Channels serving within 5 dB of each other in the same geographic area. In most cases, power changes, down-tilts, azimuth changes or antenna changes are required to reduce over-propagation.

4.3.2 Neighbor List Determination

Neighbor relationships fall into 3 categories where UMTS and the interaction between UMTS and GSM are concerned.

• Intra-UARFCN Neighbors. These neighbor relationships are assigned wherever there is coverage overlap between cells having the same UARFCN. These neighbor relationships allow for Soft Handover. It is important to assign neighbor relationships between overlapping cells in order to allow multiple cells covering the same geographic area to collectively serve a given UE.

A cell covering an area, but not in the other server’s neighbor lists is seen as noise by the UE which causes the UE compensate by requiring more power.

• Inter-UARFCN Neighbors. These neighbor relationships allow for Hard Handover between cells with different

Page 18: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 18 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

UARFCNs. The neighboring UARFCNs can be in either the same band or in a different band. Neighbor relationships should be assigned between all overlapping UARFCNs.

• Inter-RAT Neighbors. Inter-RAT neighbor relationships allow for Hard Handover and Cell Reselection between UMTS and GSM. The UMTS coverage area in all AT&T markets is a subset of the GSM coverage. Inter-RAT neighbors should only be defined from UMTS to GSM cells that support EGPRS (EDGE). This is done in order to allow for the greatest throughput when the UE performs an Inter-RAT Cell Change from the 3G to the 2G network. Idle Mode Cell Reselection neighbors should be defined xx Inter-RAT neighbors should also be assigned to allow UEs to handover from UMTS to GSM where there are no suitable UMTS carriers (coverage holes) within the UMTS polygon.

Important! – Neighbor relationships for speech must not be defined from GSM to UMTS in order to avoid E911 calls handing back to UMTS before they are ended.

Ericsson further defines neighbor types based upon how they exist between different RNCs and technologies (GSM vs. UMTS).

• UTRAN Relations. All intra-RNC neighbor definitions including Intra and Inter-UARFCN.

• External UTRAN Relations. All inter-RNC neighbor definitions including Intra and Inter-UARFCN.

• GSM Relations. All Inter-RAT neighbor definitions.

4.3.3 Scrambling Code Usage

Each cell in the network is assigned a Primary Scrambling Code. The primaryScramblingCode [Cell, 0 to 511, Integer, Variable] parameter is an integer value 0-511 inclusive. For the interest of this section, it is important to avoid co-UARFCN co-Scrambling Code use in the same geographic area. However, if there are more than 512 cells in use, Scrambling Codes must be reused very carefully. It is suggested that reuses of Scrambling Code among the same UARFCN only exist where there is ample isolation.

Optionally, Scrambling Codes can also be divided into 64 groups of 8 codes each. Scrambling Code planning would then be much like frequency planning with a reuse of 64. The advantage to this type of planning could be a less complex code search procedure for the UE.

4.4 Measurement Fundamentals

Before we get into Idle Mode, Call Establishment and Mobility Management, it is important to understand the fundamental measurements used by the UE and RNS to make radio related decisions. These measurements are commonly used when referencing signal level (RSCP) and signal quality (Ec/No). The signal level (RSCP) and signal quality (Ec/No) of the Primary Common Pilot Channel (CPICH) define the coverage area of the cell. SIR and BLER are also described as they are used to control uplink and downlink power.

4.4.1 PCPICH

The Primary Common Pilot Channel (CPICH) is one of the continuously transmitted downlink Physical Channels. It is unique in that it is the reference used by the UE to make radio related decisions for Cell Selection, Cell Reselection , Soft (intra-frequency) Handover and Hard (inter-frequency) Handover as well

Page 19: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 19 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

as Inter-RAT Handover. All signal level and quality measurements are made based upon or relative to the Primary Common Pilot Channel.

The power of Primary Common Pilot Channel is set to an absolute value per cell at the Reference Point (antenna connector) through the primaryCpichPower [Cell, 300, 0.1dBm, Fixed] parameter. All other downlink Physical Channels on the cell are set relative (dB) to the Primary Common Pilot Channel. Since proper downlink power settings are necessary to allow the UE to enter Idle Mode, they are covered in detail in the Idle Mode section.

4.4.2 PCPICH RSCP

The Primary Common Pilot Channel Received Signal Code Power, commonly called “RSCP”, is simply the received power (dBm) of the Common Pilot Channel.

In order to really understand Received Signal Code Power (RSCP), it is important to understand the basic concept of spreading and de-spreading. Spreading is the process of taking a signal, in this case the Primary Common Pilot Channel (CPICH) signal, and transforming it into a signal that occupies a much larger bandwidth. This is done in two steps. First, the original signal is binary multiplied by a Spreading Code. The Spreading Code, also known as the Channelization Code or Orthogonal Variable Spreading Factor (OVSF) Code is unique within the cell and when binary multiplied by Primary Common Pilot Channel (CPICH) signal allows it to be isolated from the other spread signals within the cell.

The Primary Common Pilot Channel (CPICH) has a bit rate of 30kb/s. 2 bits = 1 symbol in the downlink. The bits in the Spreading Code are referred to as “chips”. The number of chips per data symbol is called the Spreading Factor. 3,840,000 chips / 15,000 symbols = 256. The Primary Common Pilot Channel (CPICH) uses a Spreading Factor of 256. Seen yet another way, each Primary Common Pilot Channel (CPICH) symbol is spread into 256 chips causing the spread signal to occupy 256 times the bandwidth of the original signal.

Second, since the Spreading Codes are only unique within a cell, the signal must be further “scrambled” to make it unique within the geographic coverage area. This is done by exclusively ORing the already spread signal with a primaryScramblingCode [Cell, 0 to 511, Integer, Variable]. There are a total of 512 Primary Scrambling Codes available, so co-UARFCN co-Primary Scrambling Code use might be necessary in geographic areas with greater than 512 cells. See the Scrambling Code Selection section for cautions.

At the other end, receiving the symbols is simply a matter of first de-scrambling, then de-spreading the signal using the same scrambling and spreading codes used to initially spread the symbols.

4.4.3 CPICH Ec/No (Ec/Io)

The Primary Common Pilot Channel (CPICH) received Energy per Chip (Ec) to Noise (No) ratio, commonly referred to as Eee-Cee-N-Not, is used to measure the received quality of the Primary Common Pilot Channel (CPICH). It is the ratio of the received Energy per Chip to the Noise power spectral density in the band. In this case, the Chip Energy (Ec) is the power of the spread Primary Common Pilot Channel (CPICH) at the receiver. Ec is equivalent to Received Signal Code Power (RSCP) in that both measure the power of the Primary Common Pilot Channel (CPICH); the only difference being Ec is the power of

Page 20: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 20 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

the spread signal whereas RSCP is the power measured after de-spreading. No (N-not) is the received wide band power, including thermal noise and noise generated in the receiver within the receiver’s bandwidth.

The term Ec/Io is also used to denote Primary Common Pilot Channel (CPICH) quality with the only difference being the denominator where Io includes interference only. The use of the term Ec/Io is where receivers are concerned is not technically accurate due mainly to the fact that receivers do not discern Noise from Interference and as such, cannot accurately measure Ec/Io. However, Io is commonly used in RF Design (propagation) tools when noise is not considered.

4.4.4 Eb/No

Eb/No, commonly referred to as Eee-Bee-N-Not or ebno, is the received energy per Bit (symbol) of the signal over the received wide band power, including thermal noise and noise generated in the receiver, within the receiver’s bandwidth. The fundamental difference between Eb/No and Ec/No is Spreading Factor. Ec is of course the energy of the spread signal. By factoring in the Spreading Factor, we get the energy of a bit or symbol over the received wide band power, including thermal noise and noise generated in the receiver, within the receiver’s bandwidth. Eb/No therefore equals Ec/No * Spreading Factor.

Eb/No is commonly used when referencing Physical Channels that carry user data or signaling as opposed to Physical Channels such as the Common Pilot Channel (CPICH) which only carries repetitive data.

4.4.5 SIR

SIR is the Signal to Interference Ratio. It is equivalent to (RSCP / ISCP) * Spreading Factor. RSCP is defined above; ISCP is the Interference Signal Code Power which is essentially the interference from other cells (DL) or UEs (UL) excluding noise. SIR is a quality metric used to maintain appropriate power levels in the uplink and downlink. The UTRAN uses a very fast power control technique called “closed-loop power control” where power is adjusted 1500 times per second in order to maintain the Signal to Interference Ratio at a configured target value. SIR is further explained in the Mobility Management section.

4.4.6 RSSI

The Received Signal Strength Indication is a signal level measurement of the downlink which includes thermal noise and noise generated in the receiver within the receiver’s bandwidth. Received Signal Strength Indication (RSSI) is equivalent to the No measurement used in Ec/No above.

4.4.7 RTWP

Received Total Wideband Power measured by the Node B is the received wide band power, including thermal noise and noise generated in the receiver within the receiver’s bandwidth.

Page 21: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 21 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

4.4.8 BLER

BLER is the Block Error Rate at the Transport Channel Layer. CPICH RSCP, CPICH Ec/No, Eb/No and SIR are all measurements of the Physical Layer. The Transport Channel layer resides above the Physical Layer. At the Transport Layer, data from the Physical Layer is put into CRC encoded Blocks. If a Block fails a CRC check, it is considered in error. BLER indicates the percentage of these Blocks in error.

Page 22: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 22 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5. Parameters Described Within Context

5.1 Idle Mode

Idle Mode is a state every UE enters when it is powered on. It is also the state in which each powered on UE spends most of its time. In this state, the UE must be ready and able to Originate and Terminate calls. This section includes cell selection, but does not include Cell Reselection as Cell Reselection is a function of mobility and as such is covered in the Mobility Management section.

5.1.1 Cell Search Procedure

After either power up or entry into network coverage, the UE must begin to read information on the BCCH. The Broadcast Control CHannel (BCCH) is used to broadcast System Information to all UEs within its coverage area. This is accomplished in 3 steps. However, before the 3 steps are described, it is important to understand the Slot and Frame structure of the downlink. A Slot is made up of 2560 Chips (meaning it’s a spread signal). 15 Slots make up one 10 ms Frame. 73 Frames make up one Superframe.

1. Slot Synchronization with the downlink is acquired by correlating the Primary Synchronization Code, common to every cell and known by all UEs, with the Primary Synchronization Channel (P-SCH) transmitted on the downlink. It is important to know that neither the Primary nor the Secondary Synchronization Channel are ever Scrambled using the Primary Scrambling Code. Each cell serving in the UE’s geographic area transmits a Primary Synchronization Channel (P-SCH). The cell that the UE is able to obtain the strongest correlation with is chosen as the serving cell. The Primary Synchronization Channel (P-SCH) power level is controlled by the primarySchPower [Cell, -18, 0.1dB, Fixed] parameter which is set relative to the power of the Primary Common Pilot Channel (CPICH).

Figure 1: Slot and Frame Structure

S0 S1 S14...S2 S13

...

.667 ms

F0 F1 ... ...F70 F71 Superframe = 72 framesF2

Frame = 15 Slots

Slot = 2560 Chips

10 ms

720 ms

The process in which UARFCNs are chosen for a Slot Synchronization attempt is UE implementation dependant.

Page 23: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 23 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

2. Even though the UE has acquired Slot Synchronization, it still needs to know the Slot number within a Frame (Frames have 15 Slots) so it can know where the Frame begins. It does this by correlating one of the 16 Secondary Synchronization Codes with the Secondary Synchronization Channel (S-SCH). It is important to know that neither the Primary nor the Secondary Synchronization Channel are ever Scrambled using the Primary Scrambling Code. The 16 Secondary Synchronization Codes are used to form 64 unique Secondary Synchronization Channel sequences. Once the UE has decoded 15 successive Secondary Synchronization Codes, it not only knows where the Frame begins, but the Code Group (used in step 3) as well. The UE is now Frame Synchronized. The Secondary Synchronization Channel (S-SCH) power is controlled by the secondarySchPower [Cell, -35, 0.1dB, Fixed] parameter which is set relative to the power of the Primary Common Pilot Channel (CPICH).

3. Now that the UE is Slot and Frame Synchronized, it must still determine the cell’s Primary Scrambling Code before it can begin to read the Broadcast Control CHannel (BCCH). In step 2, the UE discovers the cell’s Code Group. Each Code Group identifies 8 possible Primary Scrambling Codes. The correct Primary Scrambling Code is determined by correlating each of the 8 possibilities with the Common Pilot Channel (CPICH). Once the correct Primary Scrambling Code has been found, the UE can detect the Primary Common Control Physical Channel (P-CCPCH) which carries the Broadcast CHannel (BCH) Transport Channel. The Broadcast CHannel (BCH) transmission power is controlled throughput bchPower [Cell, -31, 0.1dB, Fixed] which is set relative to the power of the Primary Common Pilot Channel (CPICH). The Broadcast CHannel (BCH) carries the Broadcast Control CHannel (BCCH) Logical Channel. The cell’s Primary Scrambling Code is configured using the primaryScramblingCode [Cell, 0 to 511, Integer, Variable] parameter.

The Primary Common Control Physical Channel (P-CPPCH) carries the System Frame Number (SFN) which is used as the timing reference for all Physical Channels. The System Frame Number (SFN) ranges from 0 to 4095 (inclusive). For more information about Slot and Frame synchronization, see [3e].

5.1.2 PLMN Selection

Now the UE is able to read the Broadcast Control CHannel (BCCH). If the UE finds its subscribed Public Land Mobile Network (PLMN) it then continues to read System Information from the BCCH.

5.1.2.1 Information on the Broadcast Control CHannel (BCCH)

The Broadcast Control Channel (BCCH) broadcasts information consisting of a Master Information Block (MIB), up to 18 System Information Blocks (SIB) types numbered 1-18, and up to 2 Scheduling Blocks (SB). Ericsson has implemented a Master Information Block (MIB) and System Information Blocks (SIB) types 1, 3, 5, 7, 11 and 12.

The following breakdown of the Master Information Block (MIB) and System Information Blocks (SIBs) provides an indication of where the UE gets the information necessary in order to maintain Idle Mode, Establish Calls, and Manage Mobility. The “Layer 3 Message” column was derived from TEMS 6.0 log files. The Purpose column provides a brief description of where the parameter applies.

• Master Information Block (MIB). The Master Information Block (MIB) is sent at a fixed rate of every 8 Frames (80ms). It contains information that identifies the network as well as the start position and interval of each of the System Information Blocks (SIBs). The Master Information Block (MIB) also contains a Value Tag associated with each System Information Block supported. If the Value Tag for any supported System Information Block changes, the UE must read that System Information Block (SIB). In order to avoid the UE having to read each and every Master Information Block (MIB), a Paging Type 1 message is sent and repeated noOfMibValueTagRetrans [RNC, 0, Retransmissions, Fixed] times to all UEs indicating a Value Tag has changed in the Master Information Block

Page 24: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 24 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

(MIB).

Table 7: Master Information Block (MIB) Contents

Ericsson Parameter Layer 3 Message

Purpose

mcc MCC : The Mobile Country Code

mnc MNC : The Mobile Network Code

sib1StartPos Repx : y Sets the start position of SIB 1 where x equals the repetition period and y equals the SFN / 2.

sib1RepPeriod sib-Pos : repx Sets the SIB 1 repetition period where x equals a number of Frames.

sib3StartPos Repx : y Sets the start position of SIB 3 where x equals the repetition period and y equals the SFN / 2.

sib3RepPeriod sib-Pos : repx Sets the SIB 3 repetition period where x equals a number of Frames.

sib5StartPos Repx : y Sets the start position of SIB 5 where x equals the repetition period and y equals the SFN / 2.

sib5RepPeriod sib-Pos : repx Sets the SIB 5 repetition period where x equals a number of Frames.

sib7StartPos Repx : y Sets the start position of SIB 7 where x equals the repetition period and y equals the SFN / 2.

sib7RepPeriod sib-Pos : repx Sets the SIB 7 repetition period where x equals a number of Frames.

sib11StartPos Repx : y Sets the start position of SIB 11 where x equals the repetition period and y equals the SFN / 2.

sib11RepPeriod sib-Pos : repx Sets the SIB 11 repetition period where x equals a number of Frames.

sib12StartPos Repx : y Sets the start position of SIB 12 where x equals the repetition period and y equals the SFN / 2.

sib12RepPeriod sib-Pos : repx Sets the SIB 12 repetition period where x equals a number of Frames.

• System Information Block 1 (SIB 1). System Information Block 1 (SIB 1) contains Location Area (LA), Routing Area (RA) information and timer parameters. Since this System Information Block contains the Location Area (LA) and Routing Area (RA) information, it must also be read when a LA or RA border is crossed. The parameter sib1PLMNScopeValueTag [Cell, 0 to 31, Integer, Variable] controls when System Information Block 1 (SIB 1) is read and must be set so that neighboring Location Areas and Routing Areas have different values.

Table 8: System Information Block 1 (SIB 1) Contents

Ericsson Parameter Layer 3 Message Purpose

lAC LAC : xxxxx Location Area Code used by CS Core Network

t3212 CS domain – T3212 : x Periodic Location Area Update interval in deci-minutes, e.g. 1 = 6 minutes.

att CS domain – ATT : x Indicates if the UE is allowed to IMSI Attach to the CS

Page 25: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 25 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Ericsson Parameter Layer 3 Message Purpose Core Network

cnDrxCycleLengthCs CS domain – DRX-CycleLengthCoeff : k

Discontinuous Reception (DRX) Cycle Length Coefficient.

rAC RAC : xx Routing Area Code used by PS Core Network

nmo NMO : x Network Mode of Operation

cnDrxCycleLengthPs PS domain – DRX-CycleLengthCoeff : k

Discontinuous Reception (DRX) Cycle Length Coefficient.

• System Information Block 3 (SIB 3). System Information Block 3 (SIB 3) contains parameters for cell selection and reselection.

Table 9: System Information Block 3 (SIB 3)

Ericsson Parameter Layer 3 Message Purpose

qualMeasQuantity cellSelectQualityMeasure : x

Determines if cell ranking uses quality measurements.

sRatSearch s-SearchRAT : x Used to determine when Inter-RAT measurements begin.

sHcsRat s-HCS-RAT : x Used to determine when Inter-RAT measurements begin.

qQualMin q-QualMin : x Used in Cell Selection and Re-selection

qRxLevMin q-RxlevMin : x Used in Cell Selection and Re-selection

qHyst2 q-Hyst-I-S : x Used in Cell Selection and Re-selection

treSelection t-Reselection-S : x Used in Cell Selection and Re-selection

maxTxPowerUl maxAllowedUL-TX-Power : x

Max UE power allowed on the uplink.

cellReserved CellReservedForOperatorUse : x

Indicates if the cell is reserved by the operator.

• System Information Block 5 (SIB 5). System Information Block 5 (SIB 5) contains parameters that determine the configuration of Common Physical Channels (PhyCHs) in the cell.

Table 10: System Information Block 5 (SIB 5)

Ericsson Parameter Layer 3 Message Purpose

pichPower pich-PowerOffset : x Power level of the Page Indication CHannel (PICH) relative to the Primary Common Pilot Channel (CPICH) power

aichPower Aich-PowerOffset : x Power level of the Acquisition Indication CHannel (AICH) relative to the Primary Common Pilot Channel (CPICH) power

primaryCpichPower primaryCPICH-TX-Power : x

Power level of the Primary CPICH

ConstantValueCprach constantValue : x Used by the UE to calculate initial power on the

Page 26: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 26 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Ericsson Parameter Layer 3 Message Purpose PRACH.

powerOffsetP0 powerRampStep : x Preamble power step when no Acquisition Indicator is received.

preambleRetransMax preambleRetransMax : x

Maximum number of Preambles sent in one ramping cycle

• System Information Block 7 (SIB 7). System Information Block 7 (SIB 7) contains uplink interference value. Due to the fact that this value changes very often, this System Information Block’s interval is controlled by a timer. When the UE receives System Information Block 7 (SIB 7), a timer is started. Once the timer expires, the information is considered invalid and the UE reads the information again. The expiration time is the value of the sib7RepPeriod [RNC, 16, Frames, Fixed] parameter multiplied by the sib7expirationTimeFactor [RNC, 1, Factor, Fixed] parameter.

Table 11: System Information Block 7 (SIB 7)

Ericsson Parameter Layer 3 Message Purpose

n/a ul-Interference Provides uplink Received Total Wideband Power (RTWP). RTWP = No

• System Information Block 11 (SIB 11). System Information Block 11 (SIB 11) contains the cell’s soft/softer handover neighbor list including the Primary Scrambling Code of each neighbor. This handover list is supplied to the UE before a call is established so that the UE may make Intra-frequency measurements before receiving the MEASUREMENT CONTROL message from the Serving Radio Network Controller (SRNC).

Table 12: System Information Block 11 (SIB 11)

Ericsson Parameter Layer 3 Message Purpose

reportingRange1a e1a – reportingRange : x

CPICH reporting range add threshold.

hysteresis1a e1a – hysteresis : x Hysteresis used for CPICH add threshold.

timeToTrigger1a e1a – timeToTrigger : x Time between CPICH add and reporting.

reportingRange1b e1b – reportingRange : x

CPICH reporting range drop threshold.

hysteresis1b e1b – hysteresis : x Hysteresis used for CPICH drop threshold.

timeToTrigger1b e1b – timeToTrigger : x Time between CPICH drop and reporting.

hysteresis1c e1c – hysteresis : 2 Hysteresis used for CPICH replacement.

timeToTrigger1c e1c – timeToTrigger : x Time between CPICH replacement and reporting.

hysteresis1d e1d – hysteresis : x Hysteresis used in best CPICH replacement.

timeToTrigger1d e1d – timeToTrigger : x Time between best CPICH replacement and reporting.

• System Information Block 12 (SIB 12). System Information Block 12 (SIB 12) contains measurement control information to be used in the cell.

Page 27: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 27 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 13: System Information Block 12 (SIB 12)

Ericsson Parameter Layer 3 Message Purpose

n/a n/a There are no configurable parameters reported in this SIB

The UE reads System Information only when one of the following events occurs:

• The UE is powered up.

• Immediately after Cell Reselection (except SIB 1 where the parameter sib1PLMNScopeValueTag [Cell, 0 to 31, Integer, Variable] is used).

• The UE receives a Paging Type 1 message indicating System Information has changed. Then the MIB is read which indicates the SIBs that have been updated.

• The timer expires for SIBs with an expiration timer (SIB 7 only).

Otherwise, in order to conserve battery life, the UE does not read the System Information. This is something to consider when observing Layer 3 messages using a diagnostic UE.

5.1.2.2 Camping on a Suitable Cell

Now that the UE has read the Broadcast Control CHannel (BCCH), it knows the values of the parameters that help the UE determine if the cell is suitable. The Cell must not be Reserved and it must be suitable in terms of signal level (Srxlev) and quality (Squal).

cellReserved [Cell, NOT_RESERVED, String, Variable] is a cell based parameter sent in System Information Block 3 (SIB3). It has two possible settings; RESERVED and NOT_RESERVED. When set to RESERVED, only UEs with SIMs having an ACC of 11 or 15 (set in the SIM’s HLR profile) will be allowed to camp on the cell assuming the cell is on their home PLMN. See TS 25.306 for details. All other UEs (with SIMs having other than ACC 11 or 15) will avoid camping on the cell. The UE’s Cell Reselection process will also avoid reserved cells.

accessClassNbarred [Cell, 0, Integer, Fixed] is another cell based parameter sent in System Information Block 3 (SIB3). It makes it possible to disallow UEs with SIM that have specific Access Classes provisioned for them in the HLR from accessing the network. This parameter differs from the cellReserved [Cell, NOT_RESERVED, String, Variable] parameter in that accessClassNbarred [Cell, 0, Integer, Fixed] still allows the UE to camp on the network. This could cause a worst case senerio wherein the UE camps on the 3G network, but is not allowed to register.

The signal level (Srxlev) and quality (Squal) parameters are commonly referred to as the “S” parameters.

Srxlev = Qrxlevmeas – qRxLevMin [Cell, -115, dBm, Fixed] – Pcompensation

Where:

• Srxlev is the signal level criteria used to determine a cell’s suitability.

• Qrxlevmeas is the Primary Common Pilot Channel Received Signal Code Power (PCPICH RSCP) as measured by the UE.

• qRxLevMin [Cell, -115, dBm, Fixed] is sent in System Information Block 3 (SIB 3) for the serving cell which

Page 28: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 28 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

indicates the minimum acceptable Primary Common Pilot Channel Received Signal Code Power (PCPICH RSCP).

• The quantity called Pcompensation is the maximum value of maxTxPowerUl [Cell, 24, dBm, Fixed] – P or 0 where maxTxPowerUl [Cell, 24, dBm, Fixed] is sent in System Information Block 3 (SIB 3) which indicates the maximum transmission power allowed for a UE and P is the output power of the UE according to its Power Class.

Example part 1 of 3. A Power Class 3 UE is served at a path loss 10 dB less than the maximum path loss as indicated in the Link Budget table, qRxLevMin [Cell, -115, dBm, Fixed] is set conservatively at -115 dBm, and maxTxPowerUl [Cell, 24, dBm, Fixed] is set at 24 dBm. Pcompensation is the maximum value of either 24 dBm – 24 dBm or 0. So Srxlev = -105 dBm minus -115 dBm minus 0. Srxlev = 10.

Squal = Qqualmeas – qQualMin [Cell, -19, dB, Fixed]

Where:

• Qqualmeas is the Primary Common Pilot Channel Chip Energy over Noise Spectral Density (PCPICH Ec/No) as measured by the UE.

• qQualMin [Cell, -19, dB, Fixed] is sent in System Information Block 3 (SIB 3) for the serving cell indicates the minimum acceptable Primary Common Pilot Channel Chip Energy over Noise Spectral Density (PCPICH Ec/No) for the cell.

Example part 2 of 3. The UE is served at an Ec/No of -14 dB and qQualMin [Cell, -19, dB, Fixed] is set at -19 dB. -14 dB minus -19 dB. Squal = 5 dB.

The cell is considered suitable if its cell selection criterion (S criterion) is met. In order for the S criterion to be met, Srxlev and Squal must have positive values.

Example part 3 of 3. The UE calculates both S criteria with positive resulting values. The cell is considered acceptable where the S criterion is concerned. It is now allowed to transmit on the uplink.

5.1.3 IMSI and GPRS Attach

Assuming now that the UE has found its home PLMN and is Camping on a suitable cell, it must International Mobile Subscriber Identity (IMSI) Attach and General Packet Radio Service (GPRS) Attach to the Circuit Switched (CS) and Packet Switched (PS) Core Networks (CN) respectively. This process is also known as Registration.

5.1.3.1 Attach Procedure

If att [LA, 1=TRUE, Integer, Fixed] sent in System Information Block 1 (SIB 1) is set to 1, the UE must establish a Signaling Connection to notify the Circuit Switched Core Network (CS-CN) and Packet Switched Core Network (PS-CN) that it is powered on and within network coverage. Signaling Connections are always initiated by the UE. First, the UE must access the Node B in order to send a request to the RNC to establish a Radio Resource Control (RRC) Connection. This is done through the Physical Random Access Channel (PRACH) on the uplink and the Acquisition Indicator Channel (AICH) on the downlink. The UE sends successive attempts on the uplink, each at a greater power level until the Node B responds on the Acquisition Indicator CHannel (AICH) on the downlink. The Acquisition Indicator CHannel (AICH) power is set relative to the Primary Common Pilot CHannel (PCPICH) through

Page 29: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 29 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

aichPower [Cell, -6, dB, Fixed]. The process of sending successive attempts, each at an increased power level, is known as Preamble Ramping. The initial power on the PRACH is determined by the UE using the following formula:

P_PRACH = L_PCPICH + RTWP + ConstantValueCprach [Cell, -27, dB, Fixed]

• P_PRACH is the power used for the initial PRACH attempt.

• L_PCPICH is the path loss estimated by the UE (difference between primaryCpichPower [Cell, 300, 0.1dBm, Fixed] as indicated in SIB 5 and PCPICH RSCP as measured by the UE).

• RTWP is the Received Total Wideband Power measured by the Node B as indicated in SIB 7.

• ConstantValueCprach [Cell, -27, dB, Fixed] determines the level below the Received Total Wideband Power at which Preamble Ramping begins.

For example, a UE is served at a path loss 10 dB less than the maximum path loss as indicated in the Link Budget table, so L_PCPICH = 132 dB. Let’s also say the RTWP = -105 dBm and ConstantValueCprach [Cell, -27, dB, Fixed] = -27 dB. The sum of these values, or P_PRACH, is 0 dBm. The UE will begin the attempt at 0 dBm.

Subsequent transmission attempts within a Ramping Cycle are made at an increased power level relative to the former attempt. The increase in power level between steps is controlled by the parameter powerOffsetP0 [Cell, 2, dB, Fixed] which the UE reads from System Information Block (SIB) 5.

The UE ceases its access attempt as soon as it receives an Acknowledgement Indicator (AI) on the downlink Acquisition Indication CHannel (AICH). However, the UE is not allowed to ramp its power indefinitely. The preambleRetransMax [Cell, 15, Preambles, Fixed] parameter in SIB 5 controls how many successive Preambles the UE can transmit within one Ramping Cycle and the maxPreambleCycle [Cell, 3, Cycles, Fixed] parameter controls how many Ramping Cycles can be attempted before the UE aborts the access attempt.

Figure 2: Power Ramping on RACH

powerOffsetP0

AICH

RACH

Power (dB)

Time

P_PRACH

preambleRetransMax(Ramping Cycle)

AI

Message Part

powerOffsetPpm

As soon as the UTRAN responds with an Acknowledgement Indicator (AI) on the downlink, the UE sends the PRACH Message Part informing the Radio Network Controller (RNC) that it wishes to set up a Radio

Page 30: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 30 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Resource Control (RRC) Connection. The power at which PRACH Message Part is sent is equal to the sum of the power of the successful transmission attempt and powerOffsetPpm [Cell, 0, dB, Fixed].

Once the UE and Radio Network Controller (RNC) have established a Radio Resource Control (RRC) Connection, the RNC establishes an Iu Control Plane connection over the Iu interface to the appropriate Core Network (CN) element(s), i.e. the SGSN, MSC or both. The resulting Transparent Message Transfer connection between the UE and Core Network (CN) element(s) allows the exchange of Non-Access Stratum (NAS) messages such as Registrations, Location or Routing Area Updates, and Service Requests for User Plane connections. The figure below details all of the steps necessary to complete a Radio Resource Control (RRC) Connection. Following the figure are detailed explanations for each step.

Figure 3: RRC Connection Signaling Flow

13 L1 Synchronization

1

11 Transport Bearer Synchronization

7 AAL2 Connection Setup for DCH

IubUuUE RNCNode B

Activated Algorithms:- Power Control- Iub and Uu Timing Scheduling- Admission Control

3

Radio Link Setup RequestNBAP NBAP4

Start Receive of UL DPCHStart Radio Link Supervision8

Suspend SRB3, SRB4 and other RLC AM entities9

Start Transmission of DL DPCH12

Radio Link Restore IndicationNBAPNBAP14

RRC Connection RequestRRC RRCRACH Message Part

Radio Link Setup ResponseNBAPNBAP6

Resource Allocation5

2 Initiate UE Context

RRC Connection SetupRRCRRC10 FACH

RRC Connection CompleteRRC RRC15 DCH

16 Resume SRB3, SRB4 and other RLC AM entities

1. RRC Connection Request. After the UE receives the Acknowledgement Indicator (AI) on the

downlink, it initiates the establishment of a Radio Resource Control (RRC) connection by sending the Radio Resource Control (RRC) Connection Request message with an establishment cause of

Page 31: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 31 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

“Registration” within the Message Part using the Random Access Channel (RACH) Transport Channel.

2. Initiate UE Context. The Radio Resource Control (RRC) Connection attempt is assigned a UTRAN Radio Network Temporary Identity (U-RNTI) which is unique within the network.

3. Activated Algorithms. At this point, the Power Control algorithm sets the initial downlink and uplink Dedicated Physical Data CHannel (DPDCH) and Dedicated Physical Control CHannel (DPCCH) transmission power. These channels are time multiplexed on the downlink and code (I/Q) multiplexed on the uplink. Together they are typically referred to as a Dedicated Physical CHannel (DPCH). The following initial power level parameters are used whenever a Radio Link is set up.

The initial downlink Dedicated Physical Data CHannel (DPDCH) power is determined using the following formula:

P_DL_DPDCH = primaryCpichPower [Cell, 300, 0.1dBm, Fixed] + (dlInitSirTarget [RNC, 41, 0.1dB, Fixed] - Ec/No_PCPICH) + cBackOff [RNC, 0, 0.25dB, Fixed] + 10 log(2/SF_DL_DPDCH)

Where:

• P_DL_DPDCH is the initial downlink Dedicated Physical Data CHannel (DPDCH) power.

• primaryCpichPower [Cell, 300, 0.1dBm, Fixed] sets the power of the Primary Common Pilot Channel (P-CPICH) sent in SIB 5.

• dlInitSirTarget [RNC, 41, 0.1dB, Fixed] sets the required initial Signal to Interference Ratio (SIR) Target.

• Ec/No_PCPICH is the ratio of Chip Energy to the Noise Power Spectral Density of the Primary Common Pilot CHannel (P-CPICH) as measured by the UE. If this measurement is not available, ecNoPcpichDefault [RNC, -16, dB, Fixed] is used.

• cBackOff [RNC, 0, 0.25dB, Fixed] is used to offset the value of P_DL_DPDCH.

• SF_DL_DPDCH is the Spreading Factor of the downlink Dedicated Physical Data CHannel (DPDCH).

The initial downlink Dedicated Physical Control CHannel (DPCCH) power is set relative to the initial downlink Dedicated Physical Data Channel (DPDCH) power by means of a series of offsets:

P_DL_DPCCH_TFCI = (P_DL_DPDCH + pO1 [RNC, 0, 0.25dB, Fixed] )

P_DL_DPCCH_TPC = (P_DL_DPDCH + pO2 [RNC, 12, 0.25dB, Fixed] )

P_DL_DPCCH_PILOT = (P_DL_DPDCH + pO3 [RNC, 12, 0.25dB, Fixed] )

Page 32: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 32 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 4: Downlink DPCCH Power

pO2

TPC

DPDCH

Time

Data 1

DPCCH DPDCH DPCCH

Data 2

TFCIPilot

DL Power(dB)

pO3pO1

1 Timeslot (10ms)

Where:

• P_DL_DPCCH_TFCI is the initial power of the Dedicated Physical Control CHannel Transport Format Combination Indicator (DPCCH TFCI) field.

• pO1 [RNC, 0, 0.25dB, Fixed] sets the offset between the Data field and the Dedicated Physical Control CHannel Transport Format Combination Indicator (DPCCH TFCI) field.

• P_DL_DPCCH_TPC is the initial power of the Dedicated Physical Control CHannel Transmit Power Control (DPCCH TPC) field.

• pO2 [RNC, 12, 0.25dB, Fixed] sets the offset between the Data field and the Dedicated Physical Control CHannel Transmit Power Control (DPCCH TPC) field.

• P_DL_DPCCH_PILOT is the initial power of the Dedicated Physical Control CHannel Pilot field.

• pO3 [RNC, 12, 0.25dB, Fixed] sets the offset between the Data field and the Dedicated Physical Control CHannel Pilot field.

The initial uplink Dedicated Physical Control CHannel (DPCCH) power is determined using the following formula:

Power_UL_DPCCH_INIT = DPCCH_POWER_OFFSET - RSCP_PCPICH

Where:

• Power_UL_DPCCH_INIT is the initial uplink Dedicated Physical Control CHannel (DPCCH) power.

• DPCCH_POWER_OFFSET is calculated in the Radio Network Controller (RNC) and sent to the UE according to the following formula:

DPCCH_POWER_OFFSET = primaryCpichPower [Cell, 300, 0.1dBm, Fixed] + RTWP + ulInitSirTarget - 10 log (SF_DPCCH) + cPO [RNC, 0, 0.1dB, Fixed]

Where:

• DPCCH_POWER_OFFSET is an offset applied to Power_UL_DPCCH_INIT.

Page 33: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 33 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• primaryCpichPower [Cell, 300, 0.1dBm, Fixed] sets the power of the Primary Common Pilot CHannel (P-CPICH). If the Radio Network Controller (RNC) does now know the Primary Common Pilot CHannel (P-CPICH) power, as is the case when the UE is served by a Drift Radio Network Controller (DRNC), pcpichPowerDefault [RNC, 33, dBm, Fixed] is used instead.

• RTWP is the Received Total Wideband Power level on the uplink measured by the Node B.

• ulInitSirTarget is one of the following configurable parameters based upon the Spreading Factor of the Radio Bearer.

• ulInitSirTargetSrb [RNC, 57, 0.1dB, Fixed] for stand-alone Signaling Radio Bearers (SRB).

• ulInitSirTargetLow [RNC, 49, 0.1dB, Fixed] for Radio Access Bearers (RABs) having minimum Dedicated Physical Data CHannel Spreading Factors (DPDCH SF) equal to or higher than 32.

• ulInitSirTargetHigh [RNC, 82, 0.1dB, Fixed] for RABs having minimum Dedicated Physical Data CHannel Spreading Factors (DPDCH SF) equal to 16 or 8.

• ulInitSirTargetExtraHigh [RNC, 92, 0.1dB, Fixed] for Radio Access Bearers (RABs) having minimum Dedicated Physical Data CHannel Spreading Factors (DPDCH SF) equal to or lower than 4.

• SF_DPCCH is the Spreading Factor (SF) for the Dedicated Physical Control CHannel.

• cPO [RNC, 0, 0.1dB, Fixed] is used to offset the initial uplink Dedicated Physical Data CHannel (DPDCH) power.

• RSCP_PCPICH is the Received Signal Code Power (RSCP) of the Primary Common Pilot Channel (P-CPICH).

The initial uplink Dedicated Physical Data CHannel (DPDCH) power is determined according to the relative power offset between the Dedicated Physical Control CHannel (DPCCH) and Dedicated Physical Data Channel (DPDCH) as described in 3GPP TS 25.214. The UTRAN determines and signals the gain factor to the UE for the reference Transport Format Combination (TFC) only. The UE then computes the gain factors for other Transport Format Combinations (TFCs) based on the value for the reference Transport Format Combination (TFC).

In addition to uplink and downlink power control, the Iub and Uu Timing Scheduling algorithms calculate channel timing parameters. The Admission Control algorithm checks if the new radio link can be allowed in the cell. The Code Control algorithms allocate the uplink scrambling code, downlink scrambling code, and downlink channelization code.

4. Radio Link Setup Request. The RNC orders the Node B to reserve the necessary resources for a new Node B communication context.

5. Resource Allocation. The Node B reserves the necessary resources for a new communication context and calculates link characteristic parameters from the received uplink and downlink Transport Format Combination Indicator (TFCI) or Transport Format Set (TFS) information.

6. Radio Link Setup Response. The Node B indicates to the RNC that the necessary resources are allocated for the radio link. It includes the binding identifier and transport layer address for the AAL2 connection.

7. AAL2 Connection Setup for DCH. The transport bearer (AAL2 connection) needed for signaling is set up over the Iub by the RNC.

8. Start Receive of UL DPCH – Start Radio Synchronization. The Radio Link Set Supervision algorithm in the Node B starts evaluating the synchronization status of the Radio Link Set (RLS).

9. Suspend SRB3, SRB4, and other RLC AM entities. Signaling Radio Bearer 3 (SRB 3), Signaling Radio Bearer 4 (SRB 4), and other Radio Link Control Acknowledged Mode (RLC AM) entities are suspended.

Page 34: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 34 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

10. RRC Connection Setup. The RNC indicates the UE state shall be CELL_DCH. The message is sent in Unacknowledged mode on the Forward Access CHannel (FACH).

11. Transport Bearer Synchronization. Transport Bearer Synchronization is achieved in the downlink between RNC and Node B for each Dedicated CHannel (DCH).

12. Start Transmission of DL DPCH. The Node B only starts transmitting on the new radio link when the downlink user plane (Dedicated Physical Data CHannel – DPDCH) is considered synchronized.

13. L1 Synchronization. Layer 1 synchronization is achieved between UE and Node B.

14. Radio Link Restore Indication. The Node B notifies the RNC that it has achieved uplink Layer 1 synchronization with the UE.

15. RRC Connection Complete. The UE starts the uplink transmission only after the reception of downlink Dedicated Physical Channel (DPCH). The UE capabilities requested in step 10 are included in this message. This information is used by the Radio Access Bearer (RAB) establishment procedure, UE Security Handling, and the Channel Switching function. Radio Resource Control (RRC) messages can now be sent in acknowledged mode on a Dedicated CHannel (DCH).

16. Resume SRB3, SRB4, and other RLC AM entities. The SRB3, SRB4, and other Radio Link Control Acknowledged Mode (RLC AM) entities are resumed.

Through this dedicated connection, the UE is able to Register with the appropriate Core Network (CN) Element(s).

5.1.4 Location and Routing Area Updates

Location and Routing Area Updates, also known as Registration updates, must be performed in order to provide the SGSN and MSC with an awareness of where the UE is located. Given the UE’s location, the Core Network (CN) element can page the UE to deliver calls. This awareness helps to avoid unnecessary paging when the UE is either turned off or is outside of the coverage area. Location Areas are defined through the lAC [LA, N/A, Integer, Variable] broadcast on the Broadcast Control CHannel (BCCH) in System Information Block 1 (SIB 1). Routing Areas are defined through the rAC [RNC, N/A, Integer, Variable] also broadcast on the Broadcast Control CHannel (BCCH) in System Information Block 1 (SIB 1). Besides IMSI and GPRS Attaches, there are basically two different types of Registration update; Normal and Periodic.

5.1.4.1 Normal Update

A Normal Location or Routing Area update is performed when the UE either leaves Connected Mode, or performs a Cell Reselection in Idle Mode to a cell within a different Location or Routing Area.

5.1.4.2 Periodic Update

In addition to Normal Updates, Periodic Updates are performed. These updates are preformed regardless of whether the UE is in Idle Mode or Connected Mode (CELL_DCH).

• Circuit Switched Core Network. The interval at which the UE periodically updates the Circuit Switched Core Network (CS-CN) is set using the configurable t3212 [LA, 10, 6minutes, Fixed] parameter sent on the Broadcast Control CHannel (BCCH) in System Information Block 1 (SIB 1).

• Packet Switched Core Network. The interval at which the UE periodically updates the Packet Switched Core

Page 35: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 35 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Network (PS-CN) is set using the t3312 timer. This timer is set in the SGSN and sent to the UE via both the Attach and the Routing Area Update messages.

The following table provides parameter ranges and default values involved in getting the UE into Idle Mode. They are listed in the same order they were presented. The Level column indicates the network element that owns the parameter. The class column indicates if the parameter is set based on Policy (must be set this way), Fixed (recommended to be set this way) and Variable (set at your discretion).

5.2 Call Establishment

Given the UE has successfully entered Idle Mode; it must then be able to originate and terminate calls within acceptable Accessibility measures. This section considers all of the algorithms invoked during the process of establishing a call.

5.2.1 Radio Access Bearer

A Radio Access Bearer (RAB) is a connection between the UE and the Mobile Switching Center (MSC) in the case of a Circuit Switched (CS) connection or between the UE and Serving GPRS Support Node (SGSN) in the case of a Packet Switched connection. There is also the possibility of the UE connecting to both the MSC and the SGSN as is the case in both SP0 and SP64. The Radio Access Bearer is set up according to the Requested Service after the Signaling Connection is established through a Signaling Radio Bearer. In the case of UE initiated connections where a Radio Access Bearer does not already exist, the Requested Service is sent in the Random Access CHannel (RACH) Message Part. Although the Requested Service could be sent by the UE, all Radio Access Bearers are actually initiated by the Core Network (CN).

The variables within Quality of Service (QoS) fall into three main categories based upon the user’s need for guaranteed throughput and/or latency. The three categories are Conversational; which provides guaranteed low latency and throughput, Streaming; which provides guaranteed throughput but no guarantee for latency, and Interactive (also referred to as Background) which provides guarantees for neither throughput nor latency.

Another variable determines which side of the Core Network is used. In general, all Packet Switched Radio Access Bearers are connected to the SGSN and all Circuit Switched Radio Access Bearers are connected to the MSC.

The following types of Radio Access Bearers (RABs) are supported by the Ericsson UTRAN.

• Conversational Circuit Switched Speech AMR 12.2kb. This is the typical Speech Radio Access Bearer. Given its Conversational Quality of Service (QoS) class, low latency and constant throughput are guaranteed. The Conversational class of service is Transparent, meaning that in order to keep latency as low as possible, there is no Transport layer Block retransmission service offered.

• Conversational Circuit Switched Speech AMR 12.2kb plus Interactive Packet Switched 64/64. This type of Radio Access Bearer supports concurrent Circuit Switched Speech and Packet Switched Data. The Interactive Quality of Service (QoS) class Data connection can support a data rate of 64kb in the Uplink and 64kb in the downlink. Neither latency nor throughput is guaranteed for the Packet Switched connection. Ericsson refers to this type of Radio Access Bearer (RAB) as SP64.

• Conversational Circuit Switched Speech AMR 12.2kb plus Interactive Packet Switched 64/HS. This type of Radio Access Bearer supports concurrent Circuit Switched Speech and Packet Switched Data. The Interactive

Page 36: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 36 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Quality of Service (QoS) class Data connection can support a data rate of 64kb in the Uplink and HSDPA for the downlink. Neither latency nor throughput is guaranteed for the Packet Switched connection.

• Conversational Circuit Switched Speech AMR 12.2kb plus Interactive Packet Switched 384/HS. This type of Radio Access Bearer supports concurrent Circuit Switched Speech and Packet Switched Data. The Interactive Quality of Service (QoS) class Data connection can support a data rate of 384kb in the Uplink and HSDPA for the downlink. Neither latency nor throughput is guaranteed for the Packet Switched connection.

• Conversational Circuit Switched Speech AMR 12.2kb plus Interactive Packet Switched 0/0. This Radio Access Bearer (RAB) offers both Speech and a 0 bit rate Packet Switched connection. The 0 bit rate Packet Switched connection is used as a “stepping stone” between 64/64 and Idle Mode. The result is a reduction in latency from the end user’s perspective when using interactive applications such as Web Browsing. Ericsson refers to this type of Radio Access Bearer (RAB) as SP0. The availability of this Radio Access Bearer (RAB) is controlled through multiRabSp0Available [RNC, 1=TRUE, Binary, Fixed].

• Conversational Circuit Switched Data 64. This Radio Access Bearer (RAB) provides a Conversational class 64kb/s Unrestricted Digital Information (UDI) connection between the UE and the Circuit Switched Core Network. The Conversational class of service is Transparent, meaning that in order to keep latency as low as possible, there is no Transport layer Block retransmission service offered.

• Conversational Circuit Switched Data 64 plus Interactive Packet Switched 8/8. This Radio Access Bearer (RAB) provides a Conversational class 64kb/s Unrestricted Digital Information (UDI) connection between the UE and the Circuit Switched Core Network plus an Interactive class 8kb uplink, 8kb downlink Packet Switched connection between the UE and Packet Switched Core Network. Ericsson refers to this type of Radio Access Bearer (RAB) as UDI8. The availability of this Radio Access Bearer (RAB) is controlled through multiRabUdi8Available [RNC, 0=FALSE, Binary, Fixed].

• Streaming Circuit Switched 57.6. This Radio Access Bearer (RAB) provides a Streaming class connection between the UE and Circuit Switched Core Network with guaranteed throughput of up to 57.6kb and guaranteed low latency.

• Streaming Packet Switched 16/64. This Radio Access Bearer (RAB) provides a Streaming class connection between the UE and the Packet Switched Core Network with guaranteed throughput of up to 57.6kb on the downlink and 16kb in the uplink. Latency is not guaranteed.

• Streaming Packet Switched 16/64 plus Interactive Packet Switched 8/8. This Radio Access Bearer (RAB) provides a Streaming class connection between the UE and the Packet Switched Core Network with guaranteed throughput of up to 57.6kb on the downlink and 16kb in the uplink plus an interactive class 8kb uplink, 8kb downlink Packet Switched connection between the UE and Packet Switched Core Network. Throughput is only guaranteed for the Streaming class connection. Latency is not guaranteed for either connection.

• Streaming Packet Switched 16/128. This Radio Access Bearer (RAB) provides a Streaming class connection between the UE and the Packet Switched Core Network with guaranteed throughput of up to 112kb on the downlink and 16kb in the uplink. Latency is not guaranteed.

• Streaming Packet Switched 16/128 plus Interactive Packet Switched 8/8. This Radio Access Bearer (RAB) provides a Streaming class connection between the UE and the Packet Switched Core Network with a guaranteed throughput of up to 112kb on the downlink and 16kb in the uplink plus an interactive class 8kb uplink, 8kb downlink Packet Switched connection between the UE and Packet Switched Core Network. Throughput is only guaranteed for the Streaming class connection. Latency is not guaranteed for either connection. The availability of this Radio Access Bearer (RAB) is controlled through psStreaming128 [RNC, 0=FALSE, Binary, Fixed].

• Interactive Packet Switched HSDPA with 384 uplink. This Radio Access Bearer provides an interactive connection between the UE and Packet Switched Core Network of 1.8Mb on the downlink and 384kb on the uplink. Neither latency nor throughput is guaranteed. The availability of this Radio Access Bearer (RAB) is controlled through allow384HsRab [RNC, 1=TRUE, Binary, Fixed].

• Interactive Packet Switched HSDPA with 64 uplink. This Radio Access Bearer provides an interactive connection between the UE and Packet Switched Core Network of 1.8Mb on the downlink and 64kb on the uplink. Neither latency nor throughput is guaranteed.

• Interactive Packet Switched DCH/DCH. This Radio Access Bearer (RAB) provides an interactive connection between the UE and Packet Switched Core Network of 64kb, 128kb or 384kb on the uplink and 64kb, 128kb or 384kb on the downlink. Neither latency nor throughput is guaranteed. The initial Dedicated Channel (DCH)

Page 37: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 37 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

selected for all non-HSDPA capable mobiles requesting a Packet Switched Interactive connection is 64/64. The availability of the 128/128 Radio Access Bearer (RAB) is controlled through state128_128Supported [RNC, 1=TRUE, Binary, Fixed].

• Interactive Packet Switched EUL/HS. This Radio Access Bearer (RAB) provides an interactive connection between the UE and Packet Switched Core Network using Enhanced Uplink (EUL) or HSUPA on the Uplink and HSDPA on the Downlink.

Ericsson supports many types of Radio Access Bearers (RABs) as shown above; however, our end to end network does not currently support Differentiated Service through the use of QoS profiles.

Our current implementation supports only the following Radio Access Bearer (RAB) configurations.

• Conversational Circuit Switched AMR 12.2kb for Speech.

• Conversational Circuit Switched Speech AMR 12.2kb for Speech plus Interactive Packet Switched 64/64 or 0/0 (SP64/SP0). This is also referred to as MultiRAB.

• Interactive Packet Switched 64/64 for non-HSDPA capable UEs. Up-switching allows for all combinations of 64, 128, and 384 on the Uplink and Downlink. Down-switching allows the use of common channels (RACH and FACH) for User Plane data.

• Interactive Packet Switched 64kb or 384kb uplink with HSDPA downlink for UEs with HSDPA capability.

• Interactive Packet Switched Enhanced Uplink (EUL) with HSDPA downlink for UEs with EUL/HS capability.

• Conversational Circuit Switched Speech AMR 12.2kb for Speech plus Interactive Packet Switched 384kb or 64kb uplink with HSDPA downlink for UEs with HSDPA capability. This is also referred to as HS MultiRAB

5.2.2 Mobile Origination / Termination

The establishment of a Radio Access Bearer (RAB) in the case of a Mobile Origination or Termination begins with either a RACH on the uplink, or a Page on the downlink. The establishment of an RRC Connection is identical to the process used in Figure 4 within the Idle Mode section except that the resulting Transparent Message Transfer connection between the UE and Core Network (CN) element specifies a Service Request for a User Plane connection. Based upon the type of Service requested, the Core Network Sends a RAB ASSIGNMENT REQUEST to the Serving Radio Network Controller (SRNC) indicating the RAB ID.

The Serving Radio Network Controller (SRNC) determines the new Radio Connection based upon the type of Service Requested by the Core Network taking into consideration any existing Radio Connections between it and the UE. There are also functions as described in the following subsections that determine the treatment of the Service Request. Each is considered independent of the others. The parameters that guide the operation of each function are described within context.

5.2.2.1 Paging

There are two primary uses for paging. One is to inform UEs of an incoming call, the other is to inform UEs of new System Information broadcast on the Broadcast Control CHannel (BCCH). Pages for calls can be sent from either the Packet Switched or the Circuit Switched core network. A UE may be paged while it is in Idle Mode, CELL_FACH state or in CELL_DCH state.

In Idle Mode, the Secondary Common Control Physical CHannel (S-CCPCH) and the Paging Indicator CHannel (PICH) are used. The Paging Indicator CHannel (PICH) power is set relative to the Primary Common Pilot CHannel (PCPICH) through pichPower [Cell, -7, dB, Fixed].

Page 38: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 38 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• The Secondary Common Control Physical CHannel (S-CCPCH) carries the Paging CHannel (PCH) logical channel. The Paging CHannel (PCH) power is set relative to the Primary Common Pilot CHannel (PCPICH) through pchPower [RNC, -4, 0.1dB, Fixed]. The Paging CHannel (PCH) is used to carry the Radio Resource Control (RRC) Message “Paging type 1” which carries the actual paging message from the Core Network.

• In order to conserve UE battery life, the UE does not always read the Paging CHannel (PCH). The Paging Indicator CHannel (PICH) is used to indicate when the UE should read the Paging CHannel (PCH). Each Paging Indicator CHannel (PICH) frame consists of a number of Paging Indicators. The UEs are divided into a number of groups, and each group reads a specific Paging Indicator that tells if it should read the Paging CHannel (PCH). The interval at which the UE reads the Paging Indicator CHannel (PICH) is determined by its own International Mobile Subscriber Identity (IMSI) and the Discontinuous Reception (DRX) Cycle Length.

The Discontinuous Reception (DRX) Cycle Length = 2k * 10ms

Where:

• k = cnDrxCycleLengthCs [RNC, 7=1280, coeff, Fixed] for Circuit Switched services cnDrxCycleLengthPs [RNC, 7=1280, coeff, Fixed] for Packet Switched services and utranDrxCycleLength [RNC, 5=320, coeff, Fixed] for UEs in URA_PCH State.

• 10ms is equal to the duration of a System Frame

In CELL_FACH state or in CELL_DCH state a connection exists between the UTRAN and the UE. The RRC message "Paging type 2" is used to carry paging information over the dedicated connection.

The noOfPagingRecordTransm [RNC, 2, Integer, Fixed] controls the number of times a single page from the Core Network will be sent by the UTRAN.

UEs in Idle Mode are informed of new System Information broadcast on the Broadcast Control CHannel (BCCH) through consecutive “Paging type 1” messages. The number of times a UE (that uses maximum possible DRX cycle length) hears the updated system information is defined by the parameter noOfMaxDrxCycles [RNC, 1, DRX cycles, Fixed].

5.2.2.2 Admission Control

Admission Control is a function that determines if a new radio link can be allowed on the cell given the cell’s current resource load. New radio links can be requested for Call Origination, Termination, Handover or when existing radio links are modified.

Transport resources (Iub) are not considered during Admission Control procedures and as such do not have any affect on Admission Control.

When a request is made of Admission Control, Service Classes (Guaranteed, Guaranteed-HS and Non-Guaranteed) and Setup Types (Handover and Non-Handover) are used to allow for prioritization among requests for different types of radio links.

The following radio connection types (supported by AT&T) correspond to the Guaranteed Service Class:

• Stand alone Signaling Radio Bearers (SRB)

• Conversational Circuit Switched Speech AMR 12.2kb

• Conversational Circuit Switched Speech AMR 12.2kb plus Interactive Packet Switched 0kb/0kb (SP0).

Page 39: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 39 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

The following radio connection types (supported by AT&T) correspond to the Non-Guaranteed Service Class:

• Interactive Packet Switched 64/64, 64/128, 128/128 and 64/384

• Conversational Circuit Switched Speech AMR 12.2 plus Interactive Packet Switched 64kb/64kb (SP64)

The following radio connection types (supported by AT&T) correspond to the Guaranteed-HS Service Class:

• Interactive Packet Switched 384/HS

• Interactive Packet Switched 64/HS

• Conversational Circuit Switched Speech AMR 12.2kb for Speech plus Interactive Packet Switched 384kb or 64kb uplink with HSDPA for downlink

The first decisions made to admit or block Radio Link admission requests are based upon two algorithms that use the following two configurable parameters. See the figure below.

• Admission Control blocks new radio link admission requests for HSDPA when the number of users assigned to the High Speed Downlink Shared CHannel (HS-DSCH) in the cell exceeds hsdpaUsersAdm [Cell, 10, Users, Var.]. This configurable parameter does not apply to requests made as a result of Cell Change (mobility). The total number of HS users in the cell is limited by maxNumHsdpaUsers [Cell, 16, Users, Var.].

• Admission Control blocks admission requests for a radio link in compressed mode when the current number of radio links exceeds compModeAdm [Cell, 15, Radio Links, Var.].

• Admission control will block admission for an E-DCH user requesting the cell as serving cell if the total number of serving cell E-DCH users including the requested is greater than eulServingCellUsersAdm [Cell, 4, E-DCH users, Fixed].

• Admission control will block admission for an E-DCH user requesting the cell as non-serving cell if the total number of non-serving cell E-DCH users including the requested is greater than eulNonServingCellUsersAdm [Cell, 10, E-DCH users, Fixed].

Page 40: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 40 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 5: Admission Control (Radio Link Request)

Block!1

HS Call? Y

N

Radio Link

Request

In Compressed Mode? Y

N

# of RL > compModeAdm?

Y

N

# of HS users > hsdpaUsersAdm?

Y

N

In addition to specifying the Service Class and Setup Type, the Radio Link Request also includes an estimation of each of the following:

• Number of downlink Channelization Codes

• Usage of uplink and downlink Spreading Factors

• Amount of downlink Non-HS Power

• Number of uplink and downlink Air Speech Equivalents (ASE)

• Amount of Node B Hardware utilized.

Page 41: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 41 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Downlink Channelization Codes. In order to reserve Channelization Codes for Handover, admission is blocked for all Guaranteed / Non-Handover and Guaranteed-HS / Non-Handover requests when Channelization Code utilization exceeds dlCodeAdm [Cell, 70, %, Var.] of the total Channelization Codes in the cell. Furthermore, Non-Guaranteed / Non-Handover admission requests are blocked when Channelization Code utilization exceeds dlCodeAdm [Cell, 70, %, Var.] – beMarginDlCode [Cell, 1, 5%, Var.] of the total Channelization Codes in the cell. See the figure below.

Figure 6: Admission Control (DL Channelization)

Block!

Admit!

Admit!

1

Channelization Code %utilization > dlCodeAdm -

beMarginDlCode ?

Y

N

Handover? Y

N

Channelization Code %Utilization > dlCodeAdm?

Y

N

Guaranteed orGuaranteed HS?

Y

N (Non-Guaranteed)

Page 42: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 42 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Uplink and Downlink Spreading Factor usage. The Histogram Monitor keeps track of Spreading Factor usage in the uplink and downlink. It also measures the number of Compressed Mode radio links and the number of HS serving radio links in the cell in order to allow or deny requests for either Handover or Non-Handover based upon Spreading Factor utilization.

• Non-Guaranteed admission requests of Spreading Factor 8 in the downlink are denied when the use of Spreading Factor 8 exceeds sf8Adm [Cell, 8, Radio Links, Fixed]. The 384kb Radio Access Bearer uses Spreading Factor 8 on the downlink.

• Non-Guaranteed admission requests of Spreading Factor 16 in the downlink are denied when the use of Spreading Factor 16 exceeds sf16Adm [Cell, 16, Radio Links, Var.]. The 128kb Radio Access Bearer uses Spreading Factor 16 on the downlink.

• Non-Guaranteed admission requests of Spreading Factor 32 in the downlink are denied when the use of Spreading Factor 32 exceeds sf32Adm [Cell, 32, Radio Links, Var.]. The 64kb Radio Access Bearer uses Spreading Factor 32 on the downlink.

• Guaranteed admission requests of Spreading Factor 16 in the downlink are denied when the use of Spreading Factor 16 (Streaming 16kb/128kb) exceeds sf16gAdm [Cell, 16, Radio Links, Var.]. However, AT&T does not currently support any Guaranteed Radio Access Bearers that use Spreading Factor 16.

• Guaranteed HS or Non-Guaranteed admission requests of Spreading Factor 16 in the uplink (64kb) are denied when the use of Spreading Factor 16 in the uplink exceeds sf16AdmUl [Cell, 50, Radio Links, Var.].

• Guaranteed HS or Non-Guaranteed admission requests of Spreading Factor 8 in the uplink (128kb) are denied when the use of Spreading Factor 8 in the uplink exceeds sf8AdmUl [Cell, 8, Radio Links, Var.].

• Guaranteed HS admission requests of Spreading Factor 4 in the uplink (384kb) are denied when the use of Spreading Factor 4 in the uplink exceeds sf4AdmUl [Cell, 6, Radio Links, Var.].

The sf4AdmUl [Cell, 6, Radio Links, Var.] parameter is Cell based relative to the RNC based allow384HsRab [RNC, 1=TRUE, Binary, Fixed] parameter. Given this, the number of cells where 384kb/HSDPA is possible within the RNC can be controlled.

Page 43: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 43 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 7: Admission Control (Spreading Factor Usage)

SF 32s (64k) in DL >sf32Adm?

Block!

SF 8s (384k) in DL >sf8Adm? Y

N

SF 4s (384) in UL >sf4AdmUl? Y

N

SF 16s (64k) in UL >sf16AdmUl?

Y

SF 16s (128k) in DL >sf16Adm? Y

Admit!

N

N

N

Y

SF 4s (128) in UL >sf8AdmUl?

Y

• Downlink Non-HS Power / Soft Congestion. Downlink power utilization is measured in the cell. In addition to Admission Control taking the following actions based upon Downlink power utilization, a Soft Congestion mechanism is triggered. Upon Admission Control blocking a non 384kb Downlink Admission request, the mechanism Down-Switches the Downlink for one existing Non-Guaranteed Service Class connection to the next lowest rate. 384kb Downlink Radio Access Bearer (RAB) requests do not trigger Down-Switches since all 384kb Radio Access Bearers (RABs) result from Up-Switches and under Congested conditions, the Up-Switch request would be blocked.

• Transmitted Code Power utilization is monitored and admission is blocked for all Guaranteed / Non-Handover and Non-Guaranteed / Handover requests when the Transmitted Code Power utilization exceeds pwrAdm [Cell, 75, %, Var.] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] which sets the maximum power available in the cell at the Reference Point (antenna connector).

• Non-Guaranteed / Non-Handover admission requests are blocked when the downlink transmitted carrier power utilization exceeds pwrAdm [Cell, 75, %, Var.] – beMarginDlPwr [Cell, 10, %, Var.] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.].

• Guaranteed / Handover and Guaranteed-HS / <any> are allowed up to the limit set by pwrAdm [Cell, 75, %, Var.] + pwrAdmOffset [Cell, 10, %, Var.] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.].

Page 44: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 44 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 8: Admission Control (DL Power)

Block!

Admit!

1

Guaranteed / Non-HO orNon-Guaranteed / HO?

Y

N

Code Power > pwrAdm % ofmaximumTransmissionPower

?

Y

N

Non-Guaranteed / Non-Handover?

Y

Code Power > pwrAdm %- beMarginDlPwr % of

maximumTransmissionPower?

Y

N

Code Power > pwrAdm %+ pwrAdmOffset % of

maximumTransmissionPower?

Y

N

N (Guaranteed / Handoveror Guaranteed HS / <any>)

Admit!

• Air Speech Equivalent (ASE). The Air Speech Equivalent (ASE) Admission Policy is used to control the load in

both the uplink and the downlink. The table below shows the number of Air Speech Equivalents (ASEs) per AT&T supported Radio Access Bearer (RAB).

Table 14: Air Speech Equivalents (ASE)

Radio Connection Type ASEs

Signaling Radio Bearer 0.61

Conversational Circuit Switched Speech AMR 12.2kb 1.61

Interactive Packet Switched 64kb (UL or DL) 8.32

Interactive Packet Switched 128kb (UL or DL) 16.03

Page 45: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 45 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Interactive Packet Switched 384kb (UL for HS or DL) 40.27

HS for Downlink – A-DCH only 0.61

Multi RAB 64/64 (UL and DL) 9.32

Multi RAB HS 64/HS 9.32 / 1.61

Multi RAB HS 384/HS 41.27 / 1.61

The Air Speech Equivalent (ASE) provides a unit of Uu interface load. Through its use in the Admission Control algorithm, increases in noise in the uplink and downlink as a function of loading can be considered before the Radio Link is established.

• For the Uplink, the Air Speech Equivalent (ASE) is monitored and admission is blocked for all Guaranteed / Non-Handover, Non-Guaranteed / Handover and Guaranteed-HS / Non-Handover requests when the number of Air Speech Equivalents exceeds aseUlAdm [Cell, 500, ASE, Var.]. Non-Guaranteed / Non-Handover requests are blocked when the number of Air Speech Equivalents exceeds aseUlAdm [Cell, 500, ASE, Var.] - beMarginAseUl [Cell, 0, ASE, Var.]. Guaranteed / Handover and Guaranteed-HS / Handover requests are blocked when the number of Air Speech Equivalents exceeds aseUlAdm [Cell, 500, ASE, Var.] + aseUlAdmOffset [Cell, 40, ASE, Var.]. See the figure below.

Page 46: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 46 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 9: Admission Control (Uplink ASE Utilization)

Block!

Admit!

1

Guaranteed / Non-HO,Non-Guaranteed / HO orGuaranteed-HS / Non-

HO?

Y

N

Non-Guaranteed / Non-Handover?

Y

N (Guaranteed / Handover orGuaranteed HS / Handover)

Admit!

# of ASEs > aseUlAdm? Y

N

# of ASEs > aseUlAdm -beMarginAseUl?

Y

N

# of ASEs > aseUlAdm +aseUlAdmOffset?

Y

N

• For the Downlink, the Air Speech Equivalent (ASE) is monitored and admission is blocked for all Non-Guaranteed / Handover, Guaranteed / <any> and Guaranteed-HS / <any> requests when the number of Air Speech Equivalents exceeds aseDlAdm [Cell, 500, ASE, Var.]. Non-Guaranteed / Non-Handover requests are blocked when the number of Air Speech Equivalents exceeds aseDlAdm [Cell, 500, ASE, Var.] – beMarginAseDl [Cell, 0, ASE, Var.]. See the figure below.

Page 47: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 47 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 10: Admission Control (Downlink ASE Utilization)

Block!

1

Non-Guaranteed / HO,Guaranteed / <any> or

Guaranteed-HS / <any>?

Y

# of ASEs > aseDlAdm -beMarginAseDl?

Y

N (Non-Guaranteed / Non-Handover)

Admit!

# of ASEs > aseDlAdm? Y

N

N

Admit!

• Node B Hardware utilized. The Hardware Monitor provides Admission Control based upon an estimation of the hardware (Channel Elements) utilized in the Uplink and Downlink.

• For the Uplink, the Hardware Utilization is monitored and admission is blocked for all Guaranteed / Non-Handover, Non-Guaranteed / Handover and Guaranteed-HS / Non-Handover requests when the percent of Uplink Hardware Utilized exceeds ulHwAdm [Site, 80, %, Var.]. Non-Guaranteed / Non-Handover requests are blocked when the percent of Uplink Hardware Utilized exceeds ulHwAdm [Site, 80, %, Var.] – beMarginUlHw [Site, 0, %, Var.]. Guaranteed / Handover and Guaranteed-HS / Handover requests are blocked when the percent of Uplink Hardware Utilized arrives at 100%. See the figure below.

Page 48: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 48 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 11: Admission Control (Uplink Hardware Utilization)

Block!Admit until 100% ofUL HW is utilized!

1

Guaranteed / Non-HO,Non-Guaranteed / HO orGuaranteed-HS / Non-

HO?

Y

N

% UL HW utilization >ulHwAdm?

Y

N

Non-Guaranteed / Non-Handover?

Y

% UL HW utilization >ulHwAdm - beMarginUlHw?

Y

N

N (Guaranteed / Handover orGuaranteed HS / Handover)

Admit!

• For the Downlink, the Hardware Utilization is monitored and admission is blocked for all Guaranteed / Non-Handover, Non-Guaranteed / Handover and Guaranteed-HS / Non-Handover requests when the percent of Downlink Hardware Utilized exceeds dlHwAdm [Site, 100, %, Var.]. Non-Guaranteed / Non-Handover requests are blocked when the percent of Downlink Hardware Utilized exceeds dlHwAdm [Site, 100, %, Var.] – beMarginDlHw [Site, 0, %, Var.]. Guaranteed / Handover and Guaranteed-HS / Handover requests are blocked when the percent of Downlink Hardware Utilized arrives at 100%. See the figure below.

Page 49: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 49 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 12: Admission Control (Downlink Hardware Utilization)

Block!Admit until 100% ofDL HW is utilized!

1

Guaranteed / Non-HO,Non-Guaranteed / HO orGuaranteed-HS / Non-

HO?

Y

N

% DL HW utilization >dlHwAdm?

Y

N

Non-Guaranteed / Non-Handover?

Y

% DL HW utilization >dlHwAdm - beMarginDlHw?

Y

N

N (Guaranteed / Handover orGuaranteed HS / Handover)

Admit!

5.2.2.3 Emergency Call Redirect to 2G for Speech

If emergencyCallRedirect [RNC, 1=TRUE, Binary, Fixed] is set to TRUE, an emergency (911) call made by a UE on the UMTS network will be redirected to GSM. The call will be established on the GSM network after Cell Selection on the GSM network has taken place.

This procedure is applied when there is no existing Radio Connection. If there is an existing connection between the UE and Packet Switched Core Network, the 911 call will be placed through the 3G network. In this case, only the Cell ID of the serving cell will be used for location purposes.

The current recommendation is to enable this capability by setting emergencyCallRedirect [RNC, 1=TRUE, Binary, Fixed] to TRUE due to the fact that the E911 solution for WCDMA does not provide the level of location detection accuracy provided by the GSM solution.

Page 50: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 50 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.2.2.4 Uplink Pathloss Threshold for 384/HS

If Admission Control grants the request, and if ulPathlossCheckEnabled [Cell, FALSE, String, Var.] is set to TRUE, the amount of Uplink pathloss for a 384/HS Radio Access Bearer (RAB) request is determined. If the Uplink pathloss is greater than sf4UlPathlossThreshold [Cell, 170, dB, Var.] , then a 64k uplink Radio Access Bearer (RAB) is used instead of a 384kb Radio Access Bearer (RAB). This check only occurs at establishment and therefore is technically not a Down-Switch. However, it can be used to limit the number of HS capable UEs in 384kb uplink soft handover at the cell edge.

5.2.2.5 Directed Retry to GSM for Speech

Speech requests without ongoing packet connections (Multi-RAB) are considered for Directed Retry to GSM during RAB establishment based upon the setting of loadSharingDirRetryEnabled [RNC, 0=FALSE, Binary, Fixed]. If this configurable parameter is set to TRUE, and the WCDMA cell exceeds loadSharingGsmThreshold [Cell, 100, %, Fixed] of pwrAdm [Cell, 75, %, Var.], the UTRAN requests a blind inter-RAT handover for loadSharingGsmFraction [Cell, 100, %, Fixed] of the Directed Retry candidates to the directedRetryTarget [Cell, N/A, N/A, Var.] configured GSM cell via the core network.

The current recommendation is to disable this capability by setting loadSharingDirRetryEnabled [RNC, 0=FALSE, Binary, Fixed] to FALSE. All other parameters associated with this function are simply defaulted.

5.2.2.6 Inter-Frequency Load Sharing

If multiple UARFCNs are available at a given Node B loadSharingRrcEnabled [RNC, 0=FALSE, Binary, Fixed] is set the TRUE, Inter-Frequency Load Sharing will determine if the WCDMA cell exceeds loadSharingMargin [Cell, 0, %, Fixed] of pwrAdm [Cell, 75, %, Var.] at each call setup during Radio Resource Control (RRC) Connection Establishment. If the cell exceeds loadSharingMargin [Cell, 0, %, Fixed] of pwrAdm [Cell, 75, %, Var.], the UE will be directed to the UARFCN defined by the Inter-Frequency load sharing neighbor as indicated by the loadSharingCandidate [Nabr, N/A, N/A, Var.] flag.

The current recommendation is to disable this capability by setting loadSharingRrcEnabled [RNC, 0=FALSE, Binary, Fixed] to FALSE. All other parameters associated with this function are simply defaulted.

5.2.2.7 Packet Switched RAB Determination

If the Service requested of the UTRAN is Interactive Packet Switched and the UE is HSDPA capable:

• The Radio Access Bearer options are 384/HS (if allow384HsRab [RNC, 1=TRUE, Binary, Fixed] is set to TRUE) or 64/HS. The UE is then assigned based upon the setting of hsOnlyBestCell [RNC, 1=TRUE, Binary, Fixed] to the best cell in the Active Set.

The current recommendation is to set the value of hsOnlyBestCell [RNC, 1=TRUE, Binary, Fixed] to TRUE thereby allowing HSDPA to be supported on the best cell in the Active Set.

Page 51: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 51 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If the Service requested of the UTRAN is Interactive Packet Switched and the UE is not HS capable, packetEstMode [RNC, 1, Integer, Fixed] is used.

• If packetEstMode [RNC, 1, Integer, Fixed] =0, the attempt will be made to allocate the UE on RACH/FACH.

• If packetEstMode [RNC, 1, Integer, Fixed] =1, the attempt will be made to allocate the UE on 64/64.

• If packetEstMode [RNC, 1, Integer, Fixed] =2, then an attempt will be made to allocate the UE on 64/64, but if Admission Control blocks the assignment to a 64/64, the UE is sent to RACH/FACH.

The current recommendation is to set the value of packetEstMode [RNC, 1, Integer, Fixed] =2 thereby allowing an attempt at a 64kb/64kb Radio Access Bearer with fallback to RACH/FACH if you are denied.

The following table provides parameter ranges and default values involved Establishing a Call. They are listed in the same order they were presented. The Level column indicates the network element that owns the parameter. The class column indicates if the parameter is set based on Policy (must be set this way), Fixed (recommended to be set this way) and Variable (set at your discretion).

5.2.2.8 Active Queue Management (AQM)

Active Queue Management improves throughput for TCP based applications by selectively dropping packets when queues begin to reach overflow thus reducing the probability of the overflow occurring. The capability is controlled by the configurable parameter activeQueueMgmt [RNC, 0=OFF, Binary, Fixed].

5.3 Mobility and Connection Management

This section contains the protocols and configurable parameters involved in maintaining a call once it has been established. Measurement Fundamentals as they apply to Mobility Management and Power Control are explained. Intra-RAT (UMTS) and Inter-RAT (UMTS to GSM) Idle Mode Cell Reselection, Connected Mode Handover (including Inter-RAT) and HSDPA Cell Change are covered. Channel Switching and Congestion Control as they occur after Call Establishment are also included.

5.3.1 Measurement Fundamentals

Primary Common Pilot Channel (P-CPICH) Ec/No, Primary Common Pilot Channel (P-CPICH), Received Signal Code Power (RSCP) and UE Transmitted power are the quantities measured by the UE that when certain conditions are met; trigger events that may lead to one of the following:

• Cell Reselection in Idle Mode or CELL_FACH (intra or inter RAT)

• Handover in Connected Mode (CELL_DCH) (intra or inter RAT)

• HS Cell Change (intra or inter RAT)

CPICH Ec/No and CPICH RSCP are explained in the Design Criteria section.

Page 52: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 52 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.2 Cell Reselection in Idle Mode or CELL_FACH

In Idle Mode, the UE maintains a relationship with both sides of the Core Network (PS and CS) in order to allow for the establishment of calls. First, an event has to be triggered based upon configurable parameters sent in System Information Block (SIB), then the Cell Reselection candidates are ranked according to signal level and quality. In CELL_FACH, the UE is actually Connected Mode but is using Common Channels to relay User Plane data.

5.3.2.1 Idle Mode Cell Reselection Triggers

When in Idle Mode, URA_PCH or CELL_FACH, the UE communicates with one serving cell (no Soft Handover). The UE “camps” on this cell until one of the following triggers occurs:

• The cell is no longer suitable in terms of signal level (Srxlev) and quality (Squal). See “Camping on a Suitable Cell” in the Idle Mode section.

• The quality (Squal) of the serving cell falls below sIntraSearch [Cell, 22=10, dB, Fixed] at which point the UE will search for a better quality Intra-Frequency cell.

• If Inter-Frequency neighbors are assigned to the cell and the quality (Squal) of the serving cell falls below sInterSearch [Cell, 0, dB, Fixed]. If there are no Inter-Frequency neighbors defined on the cell, the setting of sInterSearch [Cell, 0, dB, Fixed] has no impact.

• If Inter-RAT neighbors are assigned to the cell and either of the following two conditions are met:

• The serving cell’s CPICH Ec/No becomes equal to or below qQualMin [Cell, -19, dB, Fixed] + sRatSearch [Cell, 4, dB, Fixed].

• The serving cell’s CPICH RSCP becomes equal to or below qRxLevMin [Cell, -115, dBm, Fixed] + sHcsRat [Cell, -105, dB, Fixed]. Negative values for sHcsRat [Cell, -105, dB, Fixed] are interpreted by the UE as 0.

• If there are no Inter-RAT neighbors defined on the cell, the settings of sRatSearch [Cell, 4, dB, Fixed] and sHcsRat [Cell, -105, dB, Fixed] have no impact.

The sHcsRat [Cell, -105, dB, Fixed] functionality is supported by CR130 which was implemented in the Qualcomm chipset in October of 2006. As such, it will not be advantageous to utilize sHcsRat [Cell, -105, dB, Fixed] until most of the UE in production support it.

If interFreqFddMeasIndicator [Cell, 0=FALSE, Binary, Fixed] is set to TRUE, a UE in CELL_FACH will evaluate Inter-Frequency and Inter-RAT neighbors using the same triggering mechanism used in Idle Mode. The UE performs Inter-frequency and Inter-RAT measurements during FACH measurement occasions. FACH measurement occasions are defined as being the frames where the following equation is fulfilled.

SFN = C-RNTI mod n * 2k

Where:

• SFN is the System Frame Number

• C-RNTI is the Cell Radio Network Temporary Identity

• n is 0, 1, 2 etc.

• k is fachMeasOccaCycLenCoeff [Cell, 4, Integer, Fixed]

Page 53: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 53 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.2.2 Candidate Ranking

After the UE has been triggered to perform measurements, the measurements that satisfy the Cell Selection S criteria (Squal and Srxlev are positive for UMTS neighbors or only Srxlev is positive for GSM neighbors) are ranked according to the R criteria.

R(s) = Qmeas(s) + qHyst(s)

R(n) = Qmeas(n) - qOffset(s,n)

Where:

• s is the serving cell

• n is the neighbor cell

• Qmeas is either the CPICH RSCP (qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_RSCP) or the CPICH Ec/No (qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_EC_NO) of the neighboring UMTS cell. The ranking for a GSM neighbor is always done using the serving cell’s CPICH RSCP and the neighboring GSM cell’s Received Signal Level.

• qHyst(s) is a hysteresis value read in System Information Block (SIB) 3 based upon qHyst1 [Cell, 2, dB, Fixed] if qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_RSCP or qHyst2 [Cell, 2, dB, Fixed] if qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_EC_NO.

• qOffset is an offset between the serving cell and the neighboring cell that can be used to adjust the border between the two cells. The parameter is set per neighbor using qOffset1sn if qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_RSCP or qOffset2sn [Nabr, 0, dB, Fixed] if qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed] =CPICH_EC_NO. qOffset1sn(UtranRelation) [Nabr, 0, dB, Fixed] is used for Intra-Frequency neighbor relationships, and qOffset1sn(GsmRelation) [Nabr, 7, dB, Fixed] is used for Inter-RAT or neighbor relationships.

The initial ranking is done using the measurement quantity CPICH RSCP.

• If a GSM cell is ranked better than the serving cell for the time interval treSelection [Cell, 1, seconds, Fixed], the UE performs Cell Reselection to that cell.

• If a UMTS cell is ranked better than the serving cell for the time interval treSelection [Cell, 1, seconds, Fixed] one of the following two possibilities will occur:

• If the measurement quantity for Cell Reselection is set to CPICH RSCP (qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed]), the UE performs Cell Reselection.

• If the measurement quantity for Cell Reselection is set to CPICH Ec/No (qualMeasQuantity [Cell, 2=CPICH_EC_NO, String, Fixed]), the UE performs a second ranking of the UMTS cells based on CPICH Ec/No and performs Cell Reselection to the best quality cell.

5.3.3 Handover in Connected Mode (CELL_DCH) – Intra-Frequency

Immediately after Call Setup, a UE is served by only one site. During RRC Connection Establishment the Serving Radio Network Controller (SRNC) sends the UE a MEASURMENT CONTROL message containing a list of neighbors and parameters values used to trigger neighbor measurements. This information was also sent in System Information Blocks (SIBs) 11 and 12 while the UE was in Idle Mode, so the UE has the information it needs in order to make neighbor measurements before it receives a MEASURMENT CONTROL message.

In Connected Mode, the UE continuously measures the Primary Common Pilot Channel (P-CPICH) Ec/No of all the cells in its Active Set (cells that are in soft handover), Monitored Set (cells which are on the neighbor list, but are not in soft handover) and Detected Set (cells that are not in the neighbor list).

Page 54: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 54 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

The UE Filters, Offsets and Weights the measurements to ensure the criteria for one of the following Events are met. If one of the criteria is met, the UE sends a MEASUREMENT REPORT to the RNC.

• Active Set Addition (Event 1a)

• Active Set Deletion (Event 1b)

• Active Set Replacement of worst cell (Event 1c)

• Change of Best Cell (Event 1d)

5.3.3.1 Active Set Addition (Event 1a)

If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of a cell not in the Active Set becomes greater than the Best Cell in the Active Set by reportingRange1a [RNC, 6, 0.5dB, Fixed] + hysteresis1a [RNC, 0, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger1a [RNC, 11=320, ms, Fixed] , then event 1a occurs. The UE then sends a MEASUREMENT REPORT message for event 1a to the Serving Radio Network Controller (SRNC). If the number of cells in the Active Set is less than maxActiveSet [RNC, 3, Radio Links, Fixed], the cell is considered for addition to the Active Set. If the number of cells in the Active Set is equal to maxActiveSet [RNC, 3, Radio Links, Fixed], then the cell is proposed as a replacement for the cell with the worst quality in the Active Set.

If the cell under consideration is not in the Monitored Set (not a configured neighbor), and its CPICH Ec/No is more than releaseConnOffset [RNC, 120, 0.1dB, Fixed] greater than the Best Cell in the Active Set, the call is disconnected. This is done to protect surrounding cells from Uplink interference. The UE will continue to send the event 1a MEASUREMENT REPORT each reportingInterval1a [RNC, 3=1, seconds, Fixed] until the Active Set is updated or the condition responsible for triggering the event is no longer valid.

Figure 13: Event 1a Trigger

Best Cell

CPICH Ec/No

reportingRange1a

Candidate Cell

timeToTrigger1a

hysteresis1a

MEASUREMENTREPORT to RNC

Time

Page 55: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 55 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.3.2 Active Set Deletion (Event 1b)

If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No (if measQuantity1 [Cell, 2=CPICH_EC_NO, String, Fixed] = CPICH_EC_NO or RSCP if measQuantity1 [Cell, 2=CPICH_EC_NO, String, Fixed] = CPICH_RSCP) of one of the cells in the Active Set becomes less than the Best Cell in the Active Set by reportingRange1b [RNC, 10, 0.5dB, Fixed] - hysteresis1b [RNC, 0, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger1b [RNC, 12=640, ms, Fixed] , then event 1b occurs. The UE then sends a MEASUREMENT REPORT message for event 1b to the Serving Radio Network Controller (SRNC). The cell is then removed from the Active Set.

If the call is supporting HSDPA, then Event 1b might also trigger a change of the Serving HS cell.

Figure 14: Event 1b Trigger

Best Cell

CPICH Ec/No

reportingRange1b

Cell in the Active Set

timeToTrigger1b

hysteresis1b

MEASUREMENTREPORT to RNC

Page 56: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 56 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.3.3 Active Set Replacement of worst cell (Event 1c)

If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No (if measQuantity1 [Cell, 2=CPICH_EC_NO, String, Fixed] = CPICH_EC_NO or RSCP if measQuantity1 [Cell, 2=CPICH_EC_NO, String, Fixed] = CPICH_RSCP) of a cell not in the Active Set becomes greater than the Worst Cell in the Active Set by hysteresis1c [RNC, 2, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger1c [RNC, 11=320, ms, Fixed] , and the number of cells in the Active Set is equal to maxActiveSet [RNC, 3, Radio Links, Fixed] , then event 1c occurs. The UE then sends a MEASUREMENT REPORT message for event 1c to the Serving Radio Network Controller (SRNC) and the cell is proposed as a replacement for the cell with the worst quality in the Active Set.

If the cell under consideration is not in the Monitored Set (not a configured neighbor), and its CPICH Ec/No is more than releaseConnOffset [RNC, 120, 0.1dB, Fixed] greater than the Best Cell in the Active Set, the call is disconnected. This is done to protect surrounding cells from Uplink interference.

The UE will continue to send the event 1c MEASUREMENT REPORT each reportingInterval1c [RNC, 3=1, seconds, Fixed] until the Active Set is updated or the condition responsible for triggering the event is no longer valid.

If the call is supporting HSDPA, then Event 1c might also trigger a change of the Serving HS cell.

Figure 15: Event 1c Trigger

Best Cell

CPICH Ec/No

New Cell

timeToTrigger1c

hysteresis1c

MEASUREMENTREPORT to RNC

Worst Cell in AS

Page 57: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 57 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.3.4 Change of Best Cell (Event 1d)

If the Filtered and Offset Primary Common Pilot Channel (P-CPICH) Ec/No of any cell in the Active Set becomes greater than the Best Cell in the Active Set by hysteresis1d [RNC, 15, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger1d [RNC, 14=2560, ms, Fixed] , then event 1d occurs. The UE then sends a MEASUREMENT REPORT message for event 1d to the Serving Radio Network Controller (SRNC).

Figure 16: Event 1d Trigger

Best Cell

CPICH Ec/No

Another Cell in AS

timeToTrigger1d

hysteresis1d

MEASUREMENTREPORT to RNC

5.3.3.5 Filtering, Offsetting and Weighting for Intra-Frequency measurements

Filtering: Before Events 1a, 1b, 1c or 1d can occur, the measurements made by the UE are Filtered according to the formula below:

Fn = (1-a) F n-1 + a M n

Where:

• Fn = The updated measurement.

• Fn-1 = the last (old) filtered measurement result.

• Mn = the Ec/No as measured by the UE.

• a = 1/2(k/2) where k is filterCoefficient1 [RNC, 2, coeff, Fixed].

Offsetting: The updated measurement (Fn) is then offset by individualOffset(UtranCell) [Cell, 0, 0.5dB, Fixed].

Page 58: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 58 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Weighting: For Events 1a, and 1b, w1a [RNC, 0, 0.1unit, Fixed] and w1b [RNC, 0, 0.1unit, Fixed] respectively can be added in order to give heavier weight to cells in the Active Set that are not the best cell in the Active Set.

5.3.4 Handover in Connected Mode (CELL_DCH) – Inter-Frequency or Inter-RAT

In Connected Mode, the UE continuously measures the Primary Common Pilot Channel (P-CPICH) Ec/No and Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set. When one of the following Events occurs, the UE is commanded to either start or stop Compressed Mode (CM) measurements for either Inter-RAT or Inter-Frequency neighbors.

The UE Filters, Offsets and Weights the measurements to ensure the criteria for one of the following Events are met. If one of the criteria is met, the UE sends a MEASUREMENT REPORT to the RNC.

• Current Used Frequency is Below Threshold (Event 2d) – Begin CM

• Current Used Frequency is Above Threshold (Event 2f) – Cease CM

• UE Transmit power is Above Threshold (Event 6d) – Begin CM

• UE Transmit power is Below Threshold (Event 6b) – Cease CM

The Serving RNC then determines whether the UE makes Compressed Mode (CM) messages on Inter-Frequency or Inter-RAT neighbors based upon configurable parameters.

Lastly, upon receiving the MEASUREMENT REPORT from the UE, the Serving RNC sends a MEASUREMENT CONTROL message to the UE with additional Event based criteria that the UE will use to evaluate its Inter-Frequency or Inter-RAT neighbors.

If hsToDchTrigger(poorQualityDetected) [RNC, 1=TRUE, Binary, Fixed] is set to 1=ON, UEs with HSDPA capability will be Down-Switched to an Interactive Packet Switched 64/64 Radio Access Bearer (RAB) for Compressed Mode measurements. If hsToDchTrigger(poorQualityDetected) [RNC, 1=TRUE, Binary, Fixed] is set to 0=OFF, HSDPA capable UEs could drop due to their not being allowed to make Compressed Mode measurements.

The following describes the triggering and evaluation mechanism involved in Inter-Frequency and Inter-RAT Handover. The Handover algorithm is the same for Speech and Interactive Packet Switched R99 Data. All Interactive Packet Switched R99 Data connections are Down-Switched to Interactive Packet Switched 64/64 to order to make Compressed Mode (CM) measurements.

5.3.4.1 Begin Compressed Mode – Current Used Frequency is Below Threshold (Event 2d)

For Cells that meet the hho (section 1.7) criteria: If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set becomes less than the absolute threshold usedFreqThresh2dEcno(hho) [Cell, -12, dB, Fixed] - hysteresis2d [RNC, 4, 0.5 dB, Fixed] / 2, for a time equal to timeToTrigger2dEcno [RNC, 320, ms, Fixed] , or if the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set becomes less than the absolute threshold usedFreqThresh2dRscp(hho) [Cell, -106 ±4, dBm, Fixed] - hysteresis2d [RNC, 4, 0.5 dB, Fixed] / 2, for a time equal to timeToTrigger2dRscp [RNC, 320, ms, Fixed] , then event 2d occurs. The UE then sends a MEASUREMENT REPORT message for event 2d to

Page 59: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 59 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

the Serving Radio Network Controller (SRNC). When the Serving Radio Network Controller (SRNC) receives event 2d, it commands the UE to begin Compressed Mode measurements.

For Cells that meet the sho (section 1.7) criteria: If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set becomes less than the absolute threshold usedFreqThresh2dEcno(sho) [Cell, -15, dB, Fixed] - hysteresis2d [RNC, 4, 0.5 dB, Fixed] / 2, for a time equal to timeToTrigger2dEcno [RNC, 320, ms, Fixed] , or if the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set becomes less than the absolute threshold usedFreqThresh2dRscp(sho) [Cell, -112, dBm, Fixed] - hysteresis2d [RNC, 4, 0.5 dB, Fixed] / 2, for a time equal to timeToTrigger2dRscp [RNC, 320, ms, Fixed] , then event 2d occurs. The UE then sends a MEASUREMENT REPORT message for event 2d to the Serving Radio Network Controller (SRNC). When the Serving Radio Network Controller (SRNC) receives event 2d, it commands the UE to begin Compressed Mode measurements.

Figure 17: Event 2d Trigger (Begin Compressed Mode)

CPICH Ec/Noor

CPICH RSCP

Best Cell in the Active Set

timeToTrigger2dEcnoor

timeToTrigger2dRscp

hysteresis2d

MEASUREMENTREPORT to RNC

usedFreqThresh2dEcnoor

usedFreqThresh2dRscp

For this section of the document, usedFreqThresh2dEcno and usedFreqThresh2dRscp apply when the UE is served by its Serving Radio Network Controller (SRNC). These parameters do not apply if the UE is served by a Drift Radio Network Controller (DRNC). For cases wherein the UE is served by a Drift Radio Network Controller (DRNC), usedFreqThresh2dEcnoDrnc [RNC, -12, dB, Fixed] and usedFreqThresh2dRscpDrnc [RNC, -106, dBm, Fixed] as configured on the SRNC apply.

Page 60: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 60 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.4.2 Cease Compressed Mode – Current Used Frequency is Above Threshold (Event 2f)

If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set becomes greater than the absolute threshold usedFreqRelThresh2fEcno [RNC, 2, dB, Fixed] + usedFreqThresh2dEcno + hysteresis2f [RNC, 2, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger2fEcno [RNC, 640, ms, Fixed] , and the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set is greater than the relative threshold usedFreqRelThresh2fRscp [RNC, 6, dB, Fixed] + usedFreqThresh2dRscp + hysteresis2f [RNC, 2, 0.5dB, Fixed] / 2, for a time equal to timeToTrigger2fRscp [RNC, 640, ms, Fixed] , then event 2f occurs. The UE then sends a MEASUREMENT REPORT message for event 2f to the Serving Radio Network Controller (SRNC). When the Serving Radio Network Controller (SRNC) receives event 2f, it commands the UE to stop all Compressed Mode measurements.

Figure 18: Event 2f Trigger (Cease Compressed Mode)

CPICH Ec/Noor

CPICH RSCP

Best Cell in the ActiveSet

timeToTrigger2dEcnoand

timeToTrigger2fRscp

hysteresis2f

MEASUREMENTREPORT to RNC

usedFreqRelThresh2dEcno + usedFreqRelThresh2fEcnoand

usedFreqRelThresh2dRscp + usedFreqRelThresh2fRscp

Page 61: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 61 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.4.3 Begin Compressed Mode – UE Transmit power is Above Threshold (Event 6d)

If txPowerConnQualMonEnabled [RNC, 0=FALSE, Binary, Fixed] is set to TRUE and the UE transmitted power is at maximum for a time equal to timeToTrigger6d [RNC, 320, ms, Fixed] , then event 6d occurs. The UE then sends a MEASUREMENT REPORT message for event 6d to the Serving Radio Network Controller (SRNC). When the Serving Radio Network Controller (SRNC) receives event 6d, it commands the UE to begin Compressed Mode measurements.

Figure 19: Event 6d Trigger (Begin Compressed Mode)

Maximum UE Tx Power

Power

UE Transmission Power

timeToTrigger6d

MEASUREMENTREPORT to RNC

Page 62: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 62 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.4.4 Cease Compressed Mode – UE Transmit power is Below Threshold (Event 6b)

If txPowerConnQualMonEnabled [RNC, 0=FALSE, Binary, Fixed] is set to TRUE and the UE transmitted power becomes less than the absolute threshold ueTxPowerThresh6b [RNC, 21, dB, Fixed] for a time equal to timeTrigg6b [RNC, 1280, ms, Fixed] , then event 6b occurs. The UE then sends a MEASUREMENT REPORT message for event 6b to the Serving Radio Network Controller (SRNC). When the Serving Radio Network Controller (SRNC) receives event 6b, it commands the UE to stop Compressed Mode measurements.

Figure 20: Event 6b Trigger (Cease Compressed Mode)

Power

UE Transmission Power

timeTrigg6b

MEASUREMENTREPORT to RNC

ueTxPowerThresh6b

5.3.4.5 Filtering, Offsetting and Weighting for Inter-Frequency or Inter-RAT measurements

Filtering: Before Events 2d or 6d can occur, the measurements made by the UE are Filtered according to the formula below:

Fn = (1-a) F n-1 + a M n

Where:

• Fn = The updated measurement.

• Fn-1 = the last (old) filtered measurement result.

• Mn = the Ec/No as measured by the UE.

• a = 1/2(k/2) where k is filterCoefficient2 [RNC, 2, coeff, Fixed] or filterCoeff6 [RNC, 3, coeff, Fixed] respectively for Events 2x or 6x.

Page 63: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 63 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Offsetting: The updated measurement (Fn) is then offset by individualOffset(UtranCell) [Cell, 0, 0.5dB, Fixed].

Weighting: For Events 2d, and 2f, usedFreqW2d [RNC, 10, 0.1unit, Fixed] or usedFreqW2f [RNC, 10, 0.1unit, Fixed] respectively can be added in order to give heavier weight to cells in the Active Set that are not the best cell in the Active Set.

5.3.4.6 Whether to measure Inter-Frequency or Inter-RAT

If Compressed Mode measurements are required of the UE, the following parameters are considered:

• Inter-Frequency measurements can be made only if FddIfHoSupp [RNC, 0=FALSE, Binary, Fixed] =TRUE.

• Compressed Mode measurements of Inter-RAT neighbors can be made only if FddGsmHoSupp [RNC, 1=TRUE, Binary, Fixed] =TRUE.

If all Inter-Frequency neighbors are within the same Serving Radio Network Controller (SRNC), hoType [Cell, 1=GSM_PREFERRED, String, Fixed] determines if Inter-Frequency or Inter-RAT neighbors are evaluated.

If however, all of the Inter-Frequency neighbors are not within the same Serving Radio Network Controller (SRNC), a parameter called defaultHoType [Cell, 1=GSM_PREFERRED, String, Fixed] set per uarfcnDl [Cell, N/A, Integer, Variable] for the Drift Radio Network Controller (DRNC) is used. This parameter has been implemented due to a standards limitation in the Iur interface.

hoType [Cell, 1=GSM_PREFERRED, String, Fixed] and defaultHoType [Cell, 1=GSM_PREFERRED, String, Fixed] have the following settings which determine how the UE will behave.

• If at least one cell in Active Set has hoType [Cell, 1=GSM_PREFERRED, String, Fixed] =0 (IF-Preferred), then Inter-Frequency neighbors are evaluated.

• If at least one cell in Active Set has hoType [Cell, 1=GSM_PREFERRED, String, Fixed] =1 (GSM-Preferred), and no cell has hoType [Cell, 1=GSM_PREFERRED, String, Fixed] =0 (IF-Preferred), then Inter-RAT neighbors are evaluated.

• If all cells in the Active Set have hoType [Cell, 1=GSM_PREFERRED, String, Fixed] =2 (None), then neither Inter-Frequency nor Inter-RAT neighbors are evaluated.

5.3.4.7 Compressed Mode Measurement evaluation

Upon receiving either Event 2d or Event 6d from the UE, the Serving RNC sends a MEASUREMENT CONTROL message to the UE with additional Event based criteria that the UE will use to evaluate the results of the Compressed Mode (CM) measurements.

• The algorithm looks to see what initiated the Compressed Mode (CM) trigger.

• CPICH Ec/No from Event 2d

• CPICH RSCP from Event 2d

• UE Transmission Power from Event 6d

• If the Compressed Mode trigger measured Inter-Frequency or Inter-RAT measurements.

The following details the algorithms and configurable parameters that apply based upon the type of trigger that initiated the Compressed Mode measurements.

Page 64: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 64 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If the Event 2d reported by the UE indicated the trigger occurred due to CPICH Ec/No for Inter-RAT measurements the following occurs:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set is less than usedFreqThresh2dEcno + utranRelThresh3aEcno [RNC, 2, dB, Fixed] – hysteresis3a [RNC, 4, 0.5dB, Fixed] / 2 and the Weighted absolute level of the GSM Broadcast Control CHannel (BCCH) is greater than gsmThresh3a [RNC, -98, dBm, Fixed] for a time equal to timeToTrigger3a [RNC, 6=100, ms, Fixed] then the UE sends a MEASUREMENT REPORT for event 3a to the Serving RNC and an Inter-RAT Handover commences.

Figure 21: Event 3a (EcNo)

GSM BCCH

Best Cell in the Active Set

timeToTrigger3a

hysteresis3a

MEASUREMENTREPORT to RNC

CPICH Ec/No orBCCH RxLev

usedFreqThresh2dEcno + utranRelThresh3aEcno

gsmThresh3a

Page 65: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 65 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If the Event 2d reported by the UE indicated the trigger occurred due to CPICH RSCP for Inter-RAT measurements the following occurs:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set is less than usedFreqThresh2dRscp + utranRelThresh3aRscp [RNC, 7, dB, Fixed] – hysteresis3a [RNC, 4, 0.5dB, Fixed] / 2 and the Weighted absolute level of the GSM Broadcast Control CHannel (BCCH) is greater than gsmThresh3a [RNC, -98, dBm, Fixed] for a time equal to timeToTrigger3a [RNC, 6=100, ms, Fixed] then the UE sends a MEASUREMENT REPORT for event 3a to the Serving RNC and an Inter-RAT Handover commences.

Figure 22: Event 3a (RSCP)

GSM BCCH

Best Cell in the ActiveSet

timeToTrigger3a

hysteresis3a

MEASUREMENTREPORT to RNC

CPICH RSCP orBCCH RxLev

usedFreqThresh2dRscp + utranRelThresh3aRscp

gsmThresh3a

Page 66: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 66 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If Event 6d was reported indicating the trigger occurred due to UE Transmit Power, the following occurs for Inter-RAT measurements:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set is less than usedFreqThresh2dRscp + utranRelThresh3aRscp [RNC, 7, dB, Fixed] + utranRelThreshRscp [RNC, 5, dB, Fixed] – hysteresis3a [RNC, 4, 0.5dB, Fixed] / 2 and the Weighted absolute level of the GSM Broadcast Control CHannel (BCCH) is greater than gsmThresh3a [RNC, -98, dBm, Fixed] for a time equal to timeToTrigger3a [RNC, 6=100, ms, Fixed] then the UE sends a MEASUREMENT REPORT for event 3a to the Serving RNC and an Inter-RAT Handover commences.

Figure 23: Event 3a (UE Tx)

usedFreqThresh2dRscp + utranRelThresh3aRscp+ utranRelThreshRscp

GSM BCCH

Best Cell in the ActiveSet

timeToTrigger3a

hysteresis3a

MEASUREMENTREPORT to RNC

CPICH RSCP orBCCH RxLev

gsmThresh3a

Filtering: Before Event 3a can occur, the measurements made by the UE are Filtered according to the formula below:

Fn = (1-a) F n-1 + a M n

Where:

• Fn = The updated measurement.

• Fn-1 = the last (old) filtered measurement result.

• Mn = the Ec/No as measured by the UE.

• a = 1/2(k/2) where k is gsmFilterCoefficient3 [RNC, 1, coeff, Fixed].

Offsetting: The updated measurement (Fn) is then offset by individualOffset(UtranCell) [Cell, 0, 0.5dB, Fixed].

Page 67: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 67 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Weighting: For Event 3a, utranCoefficient3 [RNC, 2, coeff, Fixed] can be used to give heavier weight to the serving cell while utranW3a [RNC, 10, 0.1unit, Fixed] can be used to give heavier weight to the candidate cell.

If the Event 2d reported by the UE indicated the trigger occurred due to CPICH Ec/No for Inter-Frequency measurements:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) Ec/No of the Best Cell in the Active Set is less than usedFreqThresh2dEcno + usedFreqRelThresh4_2bEcno [RNC, -1, dB, Fixed] – hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2 and the Waited estimated quality of the unused frequency is above both the absolute thresholds nonUsedFreqThresh4_2bEcno [RNC, -13, dB, Fixed] + hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2 and nonUsedFreqThresh4_2bRscp [RNC, -105, dBm, Fixed] + hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2, for at least timeTrigg4_2b [RNC, 100, ms, Fixed] , then the UE sends a MEASUREMENT REPORT for event 2b to the Serving RNC and an Inter-Frequency Handover commences.

Figure 24: Event 2b (EcNo)

Best Cell in the AS'used'

MEASUREMENTREPORT to RNC

nonUsedFreqThresh4_2bRscp

Candidate'non-unused'Frequency

usedFreqThresh2dEcno +usedFreqRelThresh4_2bEcno

timeTrigg4_2b

hyst4_2b

CPICH Ec/Noor

CPICH RSCP

nonUsedFreqThresh4_2bEcno

Page 68: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 68 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If the Event 2d reported by the UE indicated the trigger occurred due to CPICH RSCP for Inter-Frequency measurements:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set is less than usedFreqThresh2dRscp + UsedFreqRelThresh4_2bRscp [RNC, -3, dB, Fixed] – Hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2 and the Weighted estimated quality of the unused frequency is above both the absolute thresholds nonUsedFreqThresh4_2bEcno [RNC, -13, dB, Fixed] + hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2 and nonUsedFreqThresh4_2bRscp [RNC, -105, dBm, Fixed] + hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2, for at least timeTrigg4_2b [RNC, 100, ms, Fixed] , then the UE sends a MEASUREMENT REPORT for event 2b to the Serving RNC and an Inter-Frequency Handover commences.

Figure 25: Event 2b (RSCP)

Best Cell in the AS

MEASUREMENTREPORT to RNC

nonUsedFreqThresh4_2bRscp

Candidate(unused)

Frequency

usedFreqThresh2dRscp +usedFreqRelThresh4_2bRscp

timeTrigg4_2b

hyst4_2b

CPICH Ec/Noor

CPICH RSCP

nonUsedFreqThresh4_2bEcno

Page 69: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 69 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If Event 6d was reported indicating the trigger occurred due to UE Transmit Power, the following occurs for Inter-Frequency measurements:

• If the Filtered, Offset and Weighted Primary Common Pilot Channel (P-CPICH) RSCP of the Best Cell in the Active Set is less than usedFreqThresh2dRscp + UsedFreqRelThresh4_2bRscp [RNC, -3, dB, Fixed] + utranRelThreshRscp [RNC, 5, dB, Fixed] – hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2 and the Weighted RSCP of the unused frequency is greater than nonUsedFreqThresh4_2bRscp [RNC, -105, dBm, Fixed] + hyst4_2b [RNC, 10, 0.1dB, Fixed] / 2, for at least timeTrigg4_2b [RNC, 100, ms, Fixed] , then the UE sends a MEASUREMENT REPORT for event 2b to the Serving RNC and an Inter-Frequency Handover commences.

Figure 26: Event 2b (UE Tx)

usedFreqThresh2dRscp +usedFreqRelThresh4_2bRscp +

utranRelThreshRscpBest Cell in the AS'used'

MEASUREMENTREPORT to RNC

nonUsedFreqThresh4_2bRscp

Candidate'non-used'Frequency timeTrigg4_2b

hyst4_2b

CPICH RSCP

Filtering: Before Event 2b can occur, the measurements made by the UE are Filtered according to the formula below:

Fn = (1-a) F n-1 + a M n

Where:

• Fn = The updated measurement.

• Fn-1 = the last (old) filtered measurement result.

• Mn = the Ec/No as measured by the UE.

• a = 1/2(k/2) where k is filterCoeff4_2b [RNC, 2, coeff, Fixed].

Offsetting: The updated measurement (Fn) is then offset by individualOffset(UtranCell) [Cell, 0, 0.5dB, Fixed].

Weighting: For Event 2b, usedFreqW4_2b [RNC, 0, coeff, Fixed] can be used to give heavier weight to the serving cell while nonUsedFreqW4_2b [RNC, 0, coeff, Fixed] [RNC, 0, coeff, Fixed] can be used to give heavier weight to the candidate cell.

Page 70: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 70 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.5 HS Cell Change

hsQualityEstimate [RNC, 1=RSCP, Binary, Fixed] determines if whether Primary Common Pilot Channel (P-CPICH) Ec/No or Primary Common Pilot Channel (P-CPICH) RSCP is used. Based upon this setting, if one of the cells in the Active Set becomes greater than the Best Cell in the Active Set by hsHysteresis1d [RNC, 10, 0.1dB, Fixed] / 2, for a time equal to hsTimeToTrigger1d [RNC, 640, ms, Fixed] , then event 1d HS occurs. The UE then sends a MEASUREMENT REPORT message for event 1d HS to the Serving Radio Network Controller (SRNC). If hsCellChangeAllowed [RNC, 1=TRUE, Binary, Fixed] is set to TRUE, a Serving HS-DSCH Cell Change will occur.

Figure 27: Event 1d HS (HS Cell Change)

Best Cell

CPICH Ec/No or RSCP basedupon hsQualityEstimate

Another Cell in AS

hsTimeToTrigger1d

hsHysteresis1d

MEASUREMENTREPORT to RNC

The configurable parameter hsToDchTrigger is used to control whether the High Speed Downlink Shared Channel (HS-DSCH) is dropped or Down-Switched to CELL_DCH for the following cases:

• if the Intra-RNC HS Cell Change is triggered by Event 1d HS and if there are no other RNCs involved in the Cell Change, and the Cell Change triggered by Event 1d HS fails, hsToDchTrigger(changeOfBestCellIntraRnc) [RNC, 1=TRUE, Binary, Fixed] is checked. If it set to 1=TRUE, the UE is Down-Switched to CELL_DCH. If it is set to 0=FALSE, the call might be dropped. If HS Multi-RAB is in use, the speech connection is also dropped.

• If the Intra-RNC Cell Change is triggered by Event 1b or 1c and there are no other RNCs involved in the Cell Change, and the Cell Change triggered by either Event 1b or Event 1c fails, hsToDchTrigger(servHsChangeIntraRnc) [RNC, 1=TRUE, Binary, Fixed] is checked. If it is set to 1=TRUE, the UE is Down-Switched to CELL_DCH. If it is set to 0=FALSE, the call might be dropped. If HS Multi-RAB is in use, the speech connection is also dropped.

• If the Inter-RNC Cell Change is triggered by Event 1b or 1c and there is another RNC involved in the Cell Change, and the Cell Change triggered by either Event 1b or Event 1c fails, hsToDchTrigger(servHsChangeInterRnc) [RNC, 1=TRUE, Binary, Fixed] is checked. If it is set to 1=TRUE, the UE is Down-Switched to CELL_DCH. If it is set to 0=FALSE, the call might be dropped. If HS Multi-RAB is in use,

Page 71: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 71 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

the speech connection is also dropped.

• If the Inter-RAT or Inter-Frequency Cell Change is triggered by Event 2d or Event 6f, then either Inter-RAT or Inter-Frequency is involved. hsToDchTrigger(poorQualityDetected) [RNC, 1=TRUE, Binary, Fixed] is checked. If it is set to 1=TRUE, the UE is Down-Switched to CELL_DCH (64/64 RAB) in order to do Compressed Mode measurements. If it is set to 0=FALSE, the call might be dropped. In the case of HS Multi-RAB, the speech connection is also dropped.

In order to again obtain HSDPA service, the UE must first enter Idle Mode. Throughput on both the uplink and downlink must fall below downswitchThreshold [RNC, 0, 1kbit/s, Fixed] , for a time equal to downswitchTimer [RNC, 100, 100ms, Fixed]. Note that CELL_FACH is not supported over the Iur interface and is therefore not considered.

5.3.6 Channel Switching

There are basically two kinds of Channel Switching. They are called Channel Type Switching and Channel Rate Switching.

The Channel Type Switching algorithm applies after Interactive Class Call Establishment and allows for the most efficient use of resources by dynamically switching the User Plane data connection between the States of URA_PCH, CELL_FACH (Common Channels), and CELL_DCH (Dedicated Channels). The UEs are Channel Type switched based upon the volume of data being transferred. The Channel Type Switching algorithms are:

• Throughput triggered Dedicated (DCH/DCH) to Common Down-Switch

• Throughput triggered HS (DCH/HS or EUL/HS to Common Down-Switch

• Buffer Load triggered Common to Dedicated (DCH/DCH, DCH/HS or EUL/HS) Up-Switch

• Throughput triggered Common to Idle Mode Down-Switch

• Throughput triggered Idle Mode to URA_PCH Down-Switch

The Channel Rate Switching algorithm likewise applies after Interactive Class Call Establishment to CELL_DCH (Dedicated Channels) and allows for the most efficient use of resources by dynamically Channel Rate Switching among the available R99 Interactive Class Radio Access Bearers (RABs). The UEs are likewise Channel Rate switched based upon the volume of data being transferred over time. The Channel Rate Switching algorithms are:

• Throughput triggered Dedicated to Dedicated Down-Switch (Uplink)

• Throughput triggered Dedicated to Dedicated Down-Switch (Downlink)

• Throughput triggered Dedicated to Dedicated Up-Switch (Uplink)

• Throughput triggered Dedicated to Dedicated Up-Switch (Downlink)

• Coverage triggered Dedicated to Dedicated Down-Switch (Downlink only)

• Throughput triggered Multi-RAB (Speech and Data) Dedicated to Dedicated Down-Switch

In addition to a UE being Up-Switched and Down-Switched due to User Plane data volume, a UE can be Down-Switched for reasons of Congestion Control, Admission Control, Handover or Coverage.

• Admission Control can Down-Switch Interactive Class users to 64/64 when resources are needed for Hand-in or Call Establishment.

• In order to support Inter-RNC and Inter-RAT HS Cell Change , UEs are down-switched to DCH/DCH. In the Inter-RNC case, the UE must stay on DCH/DCH on the Drift RNC until after it transitions to Idle Mode. For the Inter-

Page 72: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 72 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

RAT case, the UE is down-switched to 64/64 to allow for Compressed Mode measurements of the 2G network. If the Compressed Mode measurements do not result in Inter-RAT Cell Change, the UE will return to its former DCH/HS or EUL/HS condition.

The Channel Type and Rate Switching algorithms base decisions upon three quantities:

• Buffer Load. Buffer load considers the size of the Radio Link Control (RLC) window and the total number of bytes in the Service Data Unit (SDU) buffers and retransmission buffers. All Channel Type Up-Switches from either Idle Mode or Common Channels are triggered by Buffer Load.

• Throughput. Uplink throughput is defined as the number of bits per second coming up from the Medium Access Control (MAC) Layer to the Radio Link Control (RLC) Layer. Downlink throughput is defined as the number of bits per second coming down from the Radio Link Control (RLC) Layer to the Medium Access Control (MAC) Layer. All Channel Rate Up-Switches and Down-Switches between Dedicated Channels are triggered by Throughput.

• Downlink Code Power. The Downlink code power based upon the power of the pilot bits of the Dedicated Physical Control CHannel (DPCCH).

The following sub sections define the algorithms wherein Up-Switches and Down-Switches occur.

Page 73: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 73 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.1 Throughput triggered Dedicated (DCH/DCH) to Common Down-Switch

While the UE is using DCH/DCH, throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink falls below downswitchThreshold [RNC, 0, 1kbit/s, Fixed] , for a time equal to downswitchTimer [RNC, 100, 100ms, Fixed] , a Down-Switch to CELL_FACH occurs as indicated below by the Red arrow. If the throughput on either the uplink or downlink increases above downswitchTimerThreshold [RNC, 0, 1kbit/s, Fixed] before downswitchTimer [RNC, 100, 100ms, Fixed] expires, the downswitchTimer [RNC, 100, 100ms, Fixed] is stopped and no Down-Switch is issued.

Figure 28: Dedicated (DCH/DCH) to Common Down-Switch

CELL_FACH(Common)

Idle Mode Dedicated (DCH/DCH) toCommon Down-Switch

Throughput

Uplink Throughput

downswitchTimer

Down-Switch toCommon

Channels occurs

Downlink Throughput

downswitchThresholdand

downswitchTimerThreshold

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 74: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 74 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.2 Throughput triggered HS (DCH/HS or EUL/HS) to Common Down-Switch

While the UE is on the High Speed Downlink Shared CHannel (HS-DSCH), throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink is 0 kb/s for hsdschInactivityTimer [RNC, 10, seconds, Fixed] , the UTRAN sends an Iu Release Request to the Core Network and the UE is sent to CELL_FACH State. Any active PDP Context is maintained.

Figure 29: HS (DCH/HS or EUL/HS) to Common Down-Switch

0 kb/s

Downlink Throughput

HS to Common Down-Switch

Uplink or DownlinkThroughput

hsdschInactivityTimer

Down-Switch toCELL_FACH occurs

Uplink Throughput

CELL_FACH(Common)

Idle Mode

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 75: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 75 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.3 Buffer Load triggered Common to Dedicated (DCH/DCH, DCH/HS or EUL/HS) Up-Switch

While the UE is in CELL_FACH, Radio Link Control (RLC) buffer loading is monitored on the uplink and downlink. If the Radio Link Control (RLC) buffer load in the uplink exceeds ulRlcBufUpswitch [RNC, 256, bytes, Fixed] , or if the Radio Link Control (RLC) buffer load in the downlink exceeds dlRlcBufUpswitch [RNC, 500, bytes, Fixed] , then an Up-Switch from Common Channels (CELL_FACH) to CELL_DCH occurs (subject to Admission Control ).

Figure 30: Common to Dedicated (DCH/DCH, DCH/HS or EUL/HS) Up-Switch

Uplink or Downlink RLC Buffer

Uplink RLC Buffer

Up-Switch toDedicated

Channel occursdlRlcBufUpswitch

Downlink RLC BufferulRlcBufUpswitch

Common to DedicatedUp-Switch

CELL_FACH(Common)

Idle Mode

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 76: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 76 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.4 Throughput triggered Common to URA_PCH Down-Switch

While the UE is in CELL_FACH (Common Channels), throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink is 0 kb/s for inactivityTimer [RNC, 10, seconds, Fixed] , the UE is sent to URA_PCH state. Any active PDP Context is maintained.

Figure 31: Common to URA_PCH Down-Switch

0 kb/s

Downlink Throughput

Uplink or Downlink Throughput

inactivityTimer

Down-Switch toURA_PCH occurs

Uplink Throughput

CELL_FACH(Common)

Idle Mode Common to URA_PCHDown-Switch

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 77: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 77 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.5 Throughput triggered URA_PCH to Idle Mode Down-Switch

While the UE is in URA_PCH state, throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink is 0 kb/s for inactivityTimerPch [RNC, 30, minutes, Fixed] , the UTRAN sends an Iu Release Request to the Core Network and the UE is sent to Idle Mode. Any active PDP Context is maintained.

Figure 32: URA_PCH to Idle Mode Down-Switch

CELL_FACH(Common)

Idle Mode URA_PCH to Idle ModeDown-Switch

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 78: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 78 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.6 Throughput triggered Dedicated to Dedicated Down-Switch (Downlink)

While the UE is using DCH/DCH; with or without Speech (MultiRAB), throughput is monitored on the downlink. If the throughput on the downlink falls below dlDownswitchBandwidthMargin [RNC, 80, %, Fixed] , for a time equal to dlThroughputDownswitchTimer [RNC, 20, 100ms, Fixed] , a Down-Switch to the next lower rate occurs as indicated below by the Red arrow.

Figure 33: Throughput triggered DCH to DCH Down-Switch (Downlink)

CELL_FACH(Common)

Idle Mode Dedicated (DCH/DCH) toDedicated Down-Switch

Throughput

dlThroughputDownswitchTimer

Down-Switchoccurs

Downlink Throughput

dlDownswitchBandwidthMargin

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 79: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 79 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.7 Throughput triggered Dedicated to Dedicated Down-Switch (Uplink)

While the UE is using DCH/HS or DCH/DCH; with or without Speech (MultiRAB), throughput is monitored on the Uplink. If the throughput on the Uplink falls below ulDownswitchBandwidthMargin [RNC, 80, %, Fixed] , for a time equal to ulThroughputDownswitchTimer [RNC, 20, 100ms, Fixed] , a Down-Switch to the next lower rate occurs as indicated below by the Red arrow.

Figure 34: Throughput triggered DCH to DCH Down-Switch (Uplink)

CELL_FACH(Common)

Idle Mode Dedicated to DedicatedDown-Switch

Throughput

ulThroughputDownswitchTimer

Down-SwitchoccursUplink Throughput

ulDownswitchBandwidthMargin

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 80: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 80 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.8 Throughput triggered Dedicated to Dedicated Up-Switch (Downlink)

While the UE is using DCH/DCH; with or without Speech (MultiRAB), the downlink throughput and Channelization Code Power are monitored for each UE. If the downlink throughput exceeds bandwidthMargin [RNC, 90, %, Fixed] of the current channel’s capability for an amount of time specified by upswitchTimer [RNC, 5, 100ms, Fixed] , and the Downlink throughput has been below dlThroughputAllowUpswitchThreshold [RNC, 0, %, Fixed] of the maximum channel bitrate, then the downlink code power is checked on all legs in the active set to see if an Up-Switch is possible. If dlThroughputAllowUpswitchThreshold [RNC, 0, %, Fixed] is set to 0, then it has no affect.

• The Code Power is checked using the same downswitchPwrMargin [RNC, 2, 0.5dB, Fixed] configurable parameter used in the Coverage triggered Dedicated to Dedicated Down-Switch. If the estimated power increase due to the Up-Switch (64 to 128 = 2.9dB, 128 to 384 = 4.7dB) is within maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] – downswitchPwrMargin [RNC, 2, 0.5dB, Fixed] – upswitchPwrMargin [RNC, 6, 0.5dB, Fixed] , then code power is considered to be available.

Figure 35: Code Power check for Up-Switch (Downlink)

maximumTransmissionPower

Power

Downlink Code Power

downswitchPwrMargin

upswitchPwrMargin

Page 81: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 81 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

If Code Power is available, then an Up-Switch is allowed to occur subject to Admission Control. When Up-Switching from 64kb, the first attempt will be made to Up-Switch to 384kb. If this attempt fails, a second attempt to Up-Switch to 128kb will be made.

Figure 36: Code Power check for Up-Switch (Downlink)

2nd Attempt 2nd Attempt2nd Attempt

1st Attempt1st Attempt1st Attempt

Throughput

DownlinkThroughput

bandwidthMargin

upswitchTimer

CELL_FACH(Common)

Idle Mode Dedicated to DedicatedUp-Switch

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Up-SwitchoccursdlThroughputAllowUpswitchThreshold

Page 82: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 82 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.9 Throughput triggered Dedicated to Dedicated Up-Switch (Uplink)

While the UE is using DCH/DCH or DCH/HS, throughput is monitored on the uplink. If the throughput on the uplink increases above bandwidthMarginUl [RNC, 90, %, Fixed] of the Radio Access Bearers capability for a time equal to upswitchTimerUl [RNC, 1, 100ms, Fixed] , and the Uplink throughput has been below ulThroughputAllowUpswitchThreshold [RNC, 90, %, Fixed] of the maximum channel bitrate, an Up-Switch to the next highest Radio Access Bearer (RAB) occurs as indicated below by the Red arrows. If ulThroughputAllowUpswitchThreshold [RNC, 90, %, Fixed] is set to 0, then it has no affect.

Figure 37: Throughput Triggered Up-Switch (Uplink)

Throughput

Uplink Throughput

Up-Switch tonext highestRAB occurs

bandwidthMarginUl

upswitchTimerUl

CELL_FACH(Common)

Idle Mode Dedicated to DedicatedDown-Switch

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

ulThroughputAllowUpswitchThreshold

Page 83: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 83 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.10 Coverage triggered Dedicated to Dedicated Down-Switch

Coverage, or rather the lack of coverage, may cause the downlink code power to increase to its maximum. In this case, a Down-Switch from 64/384 to 64/128 or from 64/128 to 64/64 is preferable to exhausting power and possibly dropping the connection. The algorithm periodically (every 1 second) monitors downlink code power on all legs in the Active Set. If the downlink code power on all legs in the Active Set is within downswitchPwrMargin [RNC, 2, 0.5dB, Fixed] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] , then coverageTimer [RNC, 10, 100ms, Fixed] is started. If the code power on all of the legs stays above maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] - reportHysteresis [RNC, 6, 0.5dB, Fixed] before coverageTimer [RNC, 10, 100ms, Fixed] expires, the UE is Down-Switched to the next lowest Radio Access Bearer (RAB).

Figure 38: Covered Triggered Ded. to Ded. Down-Switch

maximumTransmissionPower

Power

Downlink Code Power

Down-Switch tonext lowest RAB

downswitchPwrMargin

coverageTimer

reportHysteresis

CELL_FACH(Common)

Idle Mode Dedicated (DCH/DCH) toDedicated Down-Switch

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH

DCH / HS

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

Page 84: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 84 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.11 Throughput triggered Speech + Data Multi-RAB Down-Switch

While the UE has a DCH/HS Multi-RAB or DCH/HS Multi-RAB with Speech connection, throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink is 0 kb/s for downswitchTimerSp [RNC, 2, 0.5seconds, Fixed] , the connection is Down-Switched to CS Conversational 12.2k AMR speech and PS Interactive 0/0 data (SP0).

Figure 39: Throughput Triggered Down-Switch (Multi-RAB)

0 kb/s

Downlink Throughput

Uplink or HS DownlinkThroughput

downswitchTimerSp

Down-Switch toIdle occurs

Uplink Throughput

CELL_FACH(Common)

Idle Mode Down-Switch to SP0

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH with Speech

DCH / HS with Speech

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

0/0 with Speech

Page 85: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 85 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.12 Throughput triggered Speech + Data Multi-RAB Up-Switch

While the UE has a Multi-RAB CS Conversational 12.2k AMR speech and PS Interactive 0/0 data (SP0) connection, the Radio Link Control (RLC) buffer load is monitored on the uplink and downlink. If the Radio Link Control (RLC) buffer load in the uplink exceeds ulRlcBufUpswitchMrab [RNC, 8, bytes, Fixed] or likewise if the Radio Link Control (RLC) buffer load in the downlink exceeds dlRlcBufUpswitchMrab [RNC, 8, 100bytes, Fixed] an Up-Switch to CS Conversational 12.2k AMR speech and PS Interactive 64/64 or 64/HS will occur subject to Admission Control.

Figure 40: Throughput Triggered Up-Switch (Multi-RAB)

UL RLC Buffer Load

Uplink or Downlink RLC Buffer Load

Up-Switch toMulti-RAB 64/64or 64/HS occurs

DL RLC Buffer Load

dlRlcBufUpswitchMrab ulRlcBufUpswitchMrab

CELL_FACH(Common)

Idle Mode Up-Switch from SP0

64/384 384/384128/384

64/128 384/128128/128

64/64 384/64128/64

DCH / DCH with Speech

DCH / HS with Speech

EUL / HS

EUL/HS

64/HS

384/HS

URA_PCH

0/0 with Speech

Page 86: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 86 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.6.13 Throughput triggered 2xPS or Speech + 2xPS Multi-RAB Down-Switch

While the UE has two simultaneous DCH/DCH data RABs or Speech plus two simultaneous DCH/DCH data RABs, throughput is monitored on the uplink and downlink. If the throughput on both the uplink and downlink for one of the Data RABs is 0 kb/s for inactivityTimeMultiPsInteractive [RNC, 50, 100ms, Fixed] , that Data RAB is released.

Figure 41: Throughput Triggered Down-Switch (2xPSMulti-RAB)

0 kb/s

Downlink Throughput

Throughput

inactivityTimeMultiPsInteractive

Data RAB isreleased

Uplink Throughput

5.3.7 HSDPA Scheduling

Given all HSDPA users are Interactive / Background Class and as such have no priority over each other, there needs to be an ability to determine how the HS-DSCH is utilized among multiple users on a cell in order to use the resource in the most efficient manner. queueSelectAlgorithm [Cell, 3, Integer, Fixed] controls the method used to accomplish this. The options are:

• 1=ROUND_ROBIN. Users are prioritized based upon the amount of data waiting to be transmitted to them. The longer the user has to wait, the higher their priority. There is no consideration for signal quality (CQI).

• 2=PROPORTIONAL_FAIR_MEDIUM. In addition to the Round Robin method, a ‘medium’ consideration is given to the users CQI. Because more time is given to users with better signal quality, cell throughput is improved over both ROUND_ROBIN and PROPORTIONAL_FAIR_LOW. However, users with worse quality will not be scheduled as often and as such will need the resource for a longer period of time.

• 3=PROPORTIONAL_FAIR_LOW. In addition to the Round Robin method, a ‘low’ consideration is given to the users CQI. Because more time is given to users with better signal quality, cell throughput is improved over ROUND_ROBIN. However, users with worse quality will not be scheduled as often and as such will need the resource for a longer period of time.

• 4=PROPORTIONAL_FAIR_HIGH. In addition to the Round Robin method, a ‘high’ consideration is given to the users CQI. Because more time is given to users with better signal quality, cell throughput is improved over ROUND_ROBIN, PROPORTIONAL_FAIR_LOW and PROPORTIONAL_FAIR_MEDIUM. However, users with worse quality will not be scheduled as often and as such will need the resource for a longer period of time.

• 5=MAXIMUM_CQI. The user’s quality (CQI) is considered over how much data is waiting to be transmitted to them. Because this option favors signal quality over everything else, cell throughput is maximized.

• 6=EQUAL_RATE. This option provides equal opportunity to all users on the cell regardless of signal quality or data waiting to be transmitted. Based upon airRateTypeSelector [Cell, 1=TRANSMITTED, Integer, Fixed] , either Transmitted (acknowledged + unacknowledged) or Acknowledged only data can be used to determine each user’s rate.

Page 87: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 87 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

5.3.8 EUL Scheduling

In the interests of getting version 3.0 of the Vol. II Field Guide published, the parameters involved in EUL Sheduling will be defined out of context. Version 3.1 will remedy this. The following comes directly from the CPI.

eulTargetRate [Cell, 128, 1kbit/s, Fixed]

• Defines the target scheduled grant for the cell that is the EUL scheduler aims to give all users at least eulTargetRate kbps.

eulNoReschUsers [Cell, 5, E-DCH users, Fixed]

• Defines the number of simultaneous users per cell that are allowed to perform rescheduling.

eulMaxNoSchEdch [Cell, 16, E-DCH users, Fixed]

• Defines the maximum number of simultaneous scheduled serving E-DCH users having a scheduled data rate larger then zero kbps.

eulNoErgchGroups [Cell, 4, E-RGCH groups, Fixed]

• Defines the number of E-RGCH groups per channelization code and cell.

eulMaxShoRate [Cell, 1472, 1kbit/s, Fixed]

• Defines the maximum rate that may be allocated in the serving cell for scheduled data to an E-DCH user during a soft(er) handover.

eulReservedHwBandwidthSchedDatNonServCell [Cell, 128, 1kbit/s, Fixed]

• In soft handover, the non-serving cell shall reserve the hardware resources needed for this rate as well as non-scheduled data.

eulThermalLevelPrior [Cell, -1040, 0.1dBm, Fixed]

• This parameter is the assumed mean of the noise floor including feeder and TMA contribution. It describes the mean of the prior information distribution of the noise floor. Normally the default value should be used, but in case for example the RX-chain is wrongly configured this parameter can be set to a different value.

eulSlidingWindowTime [Cell, 1800, seconds, Fixed]

• This parameter is the length of the sliding window during which a thermal noise level is calculated.

eulMinMarginCoverage [Cell, 10, -, Fixed]

• Defines the minimum margin for the interference contribution from sources other than DCH traffic and thermal noise (interference from other cells, sources external to the WCDMA system and so on.).

eulNoiseFloorLock [Cell, 0=FALSE, -, Fixed]

• If eulNoiseFloorLock [Cell, 0=FALSE, -, Fixed] is set to 0=FALSE, the noise floor is determined according to the measurement algorithm. If set to 1=TRUE, eulNoiseFloorLock [Cell, 0=FALSE, -, Fixed] locks the noise floor level. The noise floor level is locked to eulOptimalNoiseFloorEstimate [Cell, -1040, 0.1dBm, Fixed].

eulMaxRotCoverage [Cell, 100, 0.1dB, Fixed]

Page 88: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 88 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Defines the maximum RoT level that is allowed to preserve coverage (includes all uplink traffic and external interference).

eulMaxOwnUuLoad [Cell, 80, 0.1dB, Fixed]

• Defines the maximum allowed power-controlled noise (includes power-controlled RoT including contributions from all uplink traffic) in own cell.

harqTransmUlTti10Max

• Defines the maximum number of HARQ transmission attempts for a MAC-e PDU.

5.3.9 Congestion Detection and Resolution

The Congestion Control algorithm has the ability to order the Admission Control algorithm to block admission requests in order to reduce congestion. It can also Down-Switch Interactive Packet Switched users to lower throughput Radio Access Bearers (RABs) in an effort to reduce congestion while maintaining Retainability.

Congestion must initially be detected, then measures must be taken to resolve it. The following sections cover the parameters used for Congestion Detection and Resolution.

5.3.9.1 Congestion Detection

Congestion is detected through Downlink power utilization and Uplink Received Total Wideband Power (RTWP) measurements obtained through the Node B. The cell is considered Congested when either of these criteria is met.

• Downlink Congestion. When the Downlink Transmitted Carrier Power exceeds pwrAdm [Cell, 75, %, Var.] + pwrAdmOffset [Cell, 10, %, Var.] + pwrOffset [Cell, 5, %, Fixed] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] for a period of time greater than pwrHyst [Cell, 300, ms, Fixed] , the Downlink is considered congested. The Congested condition is not resolved until the Downlink Transmitted Carrier Power is reduced below pwrAdm [Cell, 75, %, Var.] + pwrAdmOffset [Cell, 10, %, Var.] of maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] for a period of time greater than pwrHyst [Cell, 300, ms, Fixed].

The pwrAdm [Cell, 75, %, Var.] and pwrAdmOffset [Cell, 10, %, Var.] parameters are also used in Admission Control.

Page 89: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 89 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Figure 42: Congestion Detection (Downlink)

Power

Node B Carrier Power pwrHyst

Cell is CongestedpwrAdm

maximumTransmissionPower

pwrAdmOffset

pwrOffset

Page 90: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 90 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Uplink Congestion. When the Uplink Received Total Wideband Power (RTWP) exceeds iFCong [Cell, 621, 0.1dBm, Fixed] + iFOffset [Cell, 0, 0.1dB, Fixed] for a period of time greater than iFHyst [Cell, 6000, 10ms, Fixed] , the Uplink is considered congested. The Congested condition is not resolved until the Uplink Transmitted Carrier Power is reduced below iFCong [Cell, 621, 0.1dBm, Fixed] + iFOffset [Cell, 0, 0.1dB, Fixed] for a period of time greater than iFHyst [Cell, 6000, 10ms, Fixed].

Figure 43: Congestion Detection (Uplink)

Recived Total WidebandPower (RTWP)

RTWP measured byNode B

iFHyst

Uplink isCongested

iFOffset

iFCong

5.3.9.2 Congestion Resolution

Action is taken in the form of blocking new connections (Call Establishments and Hand-ins) and by reducing the rate of existing Interactive Packet Switched connections. If the Congestion is due to Downlink Power Utilization, all new connections are blocked and actions are taken to resolve the Congestion. If the Congestion is due to Uplink Received Total Wideband Power (RTWP), only Call Establishments are blocked as hand-ins reduce Uplink Received Total Wideband Power (RTWP).

In the case of Downlink Congestion, beyond blocking Call Establishments and Hand-ins, actions are taken to reduce the amount of downlink power used. This is done by reducing the number of Air Speech Equivalents served by the cell until the Congestion condition is resolved. These actions are taken in the following order.

1. Immediately after Downlink Congested is detected, releaseAseDlNg [Cell, 3, ASE, Fixed] Non-Guaranteed Air Speech Equivalents (ASEs) are released in the downlink and timers tmInitialGhs [Cell, 500, ms, Fixed] and tmInitialG [Cell, 3000, ms, Fixed] are started. As long as the congestion situation persists, releaseAseDlNg [Cell, 3, ASE, Fixed] Non-Guaranteed Air Speech Equivalents (ASEs) are released every tmCongActionNg [Cell, 800, ms, Fixed].

2. If Downlink Congestion persists after all the Non-Guaranteed ASEs in downlink are released and the timer tmInitialGhs [Cell, 500, ms, Fixed] expires, releaseAseDlGhs [Cell, 0, 0.ASE, Fixed] Guaranteed-HS Air Speech Equivalents (ASEs) are released in the downlink. As long as the congestion situation persists, tmCongActionGhs [Cell, 300, ms, Fixed] Guaranteed-HS Air Speech Equivalents (ASEs) are released every releaseAseDlGhs [Cell, 0, 0.ASE, Fixed].

Page 91: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 91 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

3. If Downlink Congestion persists after all Non-Guaranteed and Guaranteed-HS are released in the downlink and the timer tmInitialG [Cell, 3000, ms, Fixed] has expired, releaseAseDl [Cell, 1, ASE, Fixed] Guaranteed Air Speech Equivalents (ASEs) are released in the downlink. As long as the congestion situation persists, releaseAseDl [Cell, 1, ASE, Fixed] Guaranteed Air Speech Equivalents (ASEs) are released every tmCongAction [Cell, 2000, ms, Fixed].

5.3.10 Radio Connection Supervision

The Radio Connection for UEs in CELL_FACH, CELL_DCH and those using HSDPA is continuously monitored in an effort to ensure the RNS has control of the UE. The following describes the parameters that apply to each condition.

• Synchronization in CELL_FACH. When a UE enters CELL_FACH, it also starts a timer whose maximum value is set by cchWaitCuT [RNC, 9, 5minutes, Fixed]. While in CELL_FACH, the UE sends Cell Update message every t305 [RNC, 3=30, minutes, Fixed] minutes. Upon receiving a Cell Update CONFIRM, the UE restarts the cchWaitCuT [RNC, 9, 5minutes, Fixed] timer. If the cchWaitCuT [RNC, 9, 5minutes, Fixed] timer expires, the release of the connection is triggered. The cchWaitCuT [RNC, 9, 5minutes, Fixed] timer is stopped and reset to 0 if the UE enters CELL_DCH.

• Uplink Synchronization in CELL_DCH. When nOutSyncInd [Cell, 10, frames, Fixed] number of consecutive frames are out-of-sync, a timer, rlFailureT [Cell, 10, 0.1seconds, Fixed] is started. If rlFailureT [Cell, 10, 0.1seconds, Fixed] expires, the Radio Link Set is considered out-of-sync and a Radio Link Failure is reported to the Serving Radio Network Controller (SRNC). If while the Radio Link is out-of-sync, and nInSyncInd [Cell, 3, frames, Fixed] number of frames are in-sync, the Radio Link is considered in-sync and a Radio Link Restore is reported to the Serving Radio Network Controller (SRNC). The connection is considered lost if the last Radio Link has been out-of-sync for dchRcLostT [RNC, 50, 0.1seconds, Fixed].

• Downlink Synchronization in CELL_DCH. When n313=100 number of consecutive frames are out-of-sync, a timer t313=3s.] is started. If t313 expires, the Radio Link is considered out-of-sync and a Radio Link Failure is reported to the Serving Radio Network Controller (SRNC). If while the Radio Link is out-of-sync, and n315=1 number of frames are in-sync, the Radio Link is considered in-sync and a Radio Link Restore is reported to the Serving Radio Network Controller (SRNC). Note that none of the Downlink Synchronization parameters are currently operator configurable.

• HSDPA Supervision. For UEs with HSDPA capability, hsDschRcLostT [RNC, 100, 0.1seconds, Fixed] is used. The connection is considered lost if the Radio Link containing the High Speed Downlink Shared Channel (HS-DSCH) has been out-of-sync for hsDschRcLostT [RNC, 100, 0.1seconds, Fixed].

5.3.11 Downlink and Uplink Power Control

This section details the parameters used to control Uplink and Downlink power for CELL_FACH, CELL_DCH and HSDPA.

5.3.11.1 Maximum Forward Access CHannel (FACH) Power

The Forward Access CHannel (FACH) can carry either Control Plane or User Plane data.

• Control Plane. When the Forward Access CHannel (FACH) is used to support the Broadcast Control CHannel (BCCH), Common Control CHannel (CCCH), or Dedicated Control Channel (DCCH), its maximum power is set relative to the Primary Common Pilot CHannel power (PCPICH) using maxFach1Power [Cell, 18, 0.1dB, Fixed].

• User Plane. When the Forward Access CHannel (FACH) is used to support the Dedicated Traffic Channel (DTCH), its maximum power is set relative to the Primary Common Pilot CHannel power (PCPICH) using maxFach2Power [Cell, 15, 0.1dB, Fixed].

• Power offsets relative to the Data Field for the Transport Format Combination Indicator (TFCI) and Pilot

Page 92: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 92 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Fields. pOffset1Fach [Cell, 0, 0.1dB, Fixed] for the TFCI field and pOffset3Fach [Cell, 0, 0.1dB, Fixed] for the Pilot field take over once the initial offsets have been established by pO1 [RNC, 0, 0.25dB, Fixed] and pO3 [RNC, 12, 0.25dB, Fixed].

5.3.11.2 Downlink CELL_DCH Power Settings

There are parameters associated with maintaining upper and lower limits for power per Radio Link on the Downlink.

• Minimum Downlink Transmitted Code Power. It is possible to set the maximum extent to which Power Control can reduce the power of a Radio Link. The minimum downlink Transmitted Code Power is set relative to the Primary Common Pilot CHannel (P-CPICH) power through minPwrRl [Cell, -150, 0.1dB, Fixed].

• Maximum Downlink Transmitted Code Power. When determining the Maximum Downlink Transmitted Code Power for a Radio Link, the maximum bit rate of the Radio Link must be considered. The following table indicates the maximum bit rate for each Radio Link supported by AT&T.

Table 15: Maximum Bit Rates per Radio Link

Radio Connection Type Maximum Bitrates

Signaling Radio Bearer 14800

Conversational Circuit Switched Speech AMR 12.2kb 15900

Interactive Packet Switched 64kb 67700

Interactive Packet Switched 128kb 138100

Interactive Packet Switched 384kb 406900

HS for Downlink – A-DCH only 3700

The following parameters are used to determine the Maximum Downlink Transmitted Code Power for a Radio Link based upon the Radio Link’s maximum bit rate.

• Requests for a Radio Link bit rates below minimumRate [Cell, 1590, 10bps, Fixed] are allocated a maximum Transmitted Code Power of minPwrMax [Cell, 0, 0.1dB, Fixed] relative to the Primary Common Pilot Channel (CPICH) power.

• Requests for a Radio Link bit rates between minimumRate [Cell, 1590, 10bps, Fixed] and interRate [Cell, 7760, 10bps, Fixed] are allocated a maximum Transmitted Code Power of interPwrMax [Cell, 38, 0.1dB, Fixed] relative to the Primary Common Pilot Channel (CPICH) power.

• Requests for a Radio Link bit rates between interRate [Cell, 7760, 10bps, Fixed] and maxRate [Cell, 40690, 10bps, Fixed] are allocated a maximum Transmitted Code Power of maxPwrMax [Cell, 48, 0.1dB, Fixed] relative to the Primary Common Pilot Channel (CPICH) power.

The initial downlink Dedicated Physical Data CHannel (DPDCH) power after Soft Handover is determined using the following formula:

P_DL_DPDCH = primaryCpichPower [Cell, 300, 0.1dBm, Fixed] + (dlInitSirTarget [RNC, 41, 0.1dB, Fixed] - Ec/No_PCPICH) + cSho + 10 log(2/SF_DL_DPDCH)

Where:

• P_DL_DPDCH is the initial downlink Dedicated Physical Data CHannel (DPDCH) power at handover.

• primaryCpichPower [Cell, 300, 0.1dBm, Fixed] sets the power of the Primary Common Pilot Channel (P-CPICH)

Page 93: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 93 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

sent in SIB 5.

• dlInitSirTarget [RNC, 41, 0.1dB, Fixed] sets the required initial Signal to Interference Ratio (SIR) Target.

• Ec/No_PCPICH is the ratio of Chip Energy to the Noise Power Spectral Density of the Primary Common Pilot CHannel (P-CPICH) as measured by the UE. If this measurement is not available, ecNoPcpichDefault [RNC, -16, dB, Fixed] is used.

• cSho used to offset the value of P_DL_DPDCH by a handover margin (mSHO) and a configurable parameter initShoPowerParam [RNC, -2, 1dB, Fixed].

• SF_DL_DPDCH is the Spreading Factor of the downlink Dedicated Physical Data CHannel (DPDCH).

The initial downlink Dedicated Physical Data CHannel (DPDCH) power after Hard Inter-Frequency Handover is determined using the following formula:

P_DL_DPDCH = primaryCpichPower [Cell, 300, 0.1dBm, Fixed] + (dlInitSirTarget [RNC, 41, 0.1dB, Fixed] - Ec/No_PCPICH) + cNbifho [RNC, 10, 0.1dB, Fixed] + 10 log(2/SF_DL_DPDCH)

Where:

• P_DL_DPDCH is the initial downlink Dedicated Physical Data CHannel (DPDCH) power at handover.

• primaryCpichPower [Cell, 300, 0.1dBm, Fixed] sets the power of the Primary Common Pilot Channel (P-CPICH) sent in SIB 5.

• dlInitSirTarget [RNC, 41, 0.1dB, Fixed] sets the required initial Signal to Interference Ratio (SIR) Target.

• Ec/No_PCPICH is the ratio of Chip Energy to the Noise Power Spectral Density of the Primary Common Pilot CHannel (P-CPICH) as measured by the UE. If this measurement is not available, ecNoPcpichDefault [RNC, -16, dB, Fixed] is used.

• cNbifho [RNC, 10, 0.1dB, Fixed] is used to offset the value of P_DL_DPDCH by a taking into account the Inter-Frequency handover margins.

• SF_DL_DPDCH is the Spreading Factor of the downlink Dedicated Physical Data CHannel (DPDCH).

5.3.11.3 Downlink Power Balancing

Initial downlink power is achieved on the first Radio Link using the procedures and configurable parameters covered in the Call Establishment section. Once additional Radio Links are added to the Active Set, it becomes important to coordinate the downlink power from multiple serving cells. Keep in mind, all cells in the Active Set listen to the same Transmit Power Control (TPC) commands from the UE. Over time, it is possible for the cells serving the UE to transmit at significantly different power levels relative to each other. This is known as downlink Power Drift. The following algorithm is used to manage Power Drift.

dlPcMethod [RNC, 3=BALANCING, Integer, Fixed] is used in conjunction with Inner Loop Power Control to manage Power Drift. The options are FIXED, NO_BALANCING, BALANCING and FIXED_BALANCING.

• 1=FIXED. Both Power Balancing and downlink Inner Loop Power Control are disabled. The downlink power is kept at a constant level of fixedPowerDl [RNC, 65, 0.5dB, Fixed].

• 2=NO_BALANCING. Downlink Inner Loop Power Control is active for any number of Radio Links in the Active Set, but Power Balancing is not.

• 3=BALANCING. Power Balancing and Inner Loop Power Control are active.

• 4=FIXED_BALANCING. Downlink Inner Loop Power Control is active is there is only one Radio Link in the Active Set. Once another Radio Link is added to the Active Set, Downlink Inner Power Control is deactivated and the

Page 94: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 94 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

downlink power from each serving cell converges on the power level set by fixedRefPower [RNC, 65, 0.5dB, Fixed].

5.3.11.4 High Speed Downlink Packet Access (HSDPA) Power and Code Control

High Speed Downlink Packet Access (HSDPA) utilizes the following channels. The power and code related parameters are presented within their respective context.

• High-Speed Shared Control Channel (HS-SCCH). This downlink channel carries hybrid-ARQ and the High Speed Dedicated Shared CHannel (HS-DSCH) Transport Format and Resource Combination (TFRC) selection information from the MAC-hs in the Node B to the scheduled UE. The numHsScchCodes [Cell, 3, codes, Fixed] parameter denotes the number of High Speed Dedicated Shared CHannels (HS-DSCH) in the cell as well as the number of HS users that can share a single TTI. If flexibleSchedulerOn [RNC, 1=TRUE, Binary, Fixed] is set to 1=TRUE, the maximum and minimum power of the High Speed Shared Control CHannel (HS-SCCH) are set through hsScchMaxCodePower [Cell, -20, 0.5dB, Fixed] and hsScchMinCodePower [Cell, -150, 0.5dB, Fixed] relative to the Primary Common Pilot Channel (PCPICH). The dynamic power control of the High Speed Shared Control CHannel (HS-SCCH) is based upon measurements sent from the UE, and can be offset by qualityCheckPower [Cell, 0, 0.5dB, Fixed] if necessary.

• High Speed Physical Downlink Shared CHannel (HS-PDSCH). The Transport Channel called the High Speed Downlink Shared Channel (HS-DSCH) is mapped to one or more High Speed Physical Downlink Shared CHannels (HS-PDSCH). The maximum power of each High Speed Physical Downlink Shared CHannel (HS-PDSCH) is set to maximumTransmissionPower [Cell, 400, 0.1dBm, Var.] - hsPowerMargin [Cell, 2, 0.5dB, Fixed]. The number of Spreading Factor 16 High Speed Physical Downlink Shared CHannels (HS-PDSCH) reserved for HSDPA is controlled through numHsPdschCodes [Cell, 4, codes, Fixed]. If dynamicHsPdschCodeAdditionOn [RNC, 1=TRUE, Binary, Fixed] is set to 1=TRUE, then the maximum number of Spreading Factors 16 that can be made available for the High Speed Physical Downlink Shared CHannels (HS-PDSCH) is limited to maxNumHsPdschCodes [Cell, 10, codes, Fixed]. If flexibleSchedulerOn [RNC, 1=TRUE, Binary, Fixed] is set to 1=TRUE, then up to 4 users can be code multiplexed on a single 2ms TTI.

• High-Speed Dedicated Physical Control CHannel (HS-DPCCH). This uplink control channel is used by the UE to report the measured downlink channel quality and to request the retransmission of erroneous transport blocks on the High Speed Downlink Shared Channel (HS-DSCH). The measured downlink channel quality is reported through use of the Channel Quality Indicator (CQI). Power is controlled on the High-Speed Dedicated Physical Control CHannel (HS-DPCCH) relative to the Dedicated Physical Control Channel (DPCCH).

5.3.11.5 Uplink Power Control

There are two options for how Uplink Outer Loop power control is done. The algorithm is chosen using ulOuterLoopRegulator [RNC, 1=JUMP, Integer, Fixed]. Both algorithms observe BLER on the uplink

• If ulOuterLoopRegulator [RNC, 1=JUMP, Integer, Fixed] is set to CONSTANT_STEP, and an erroneous block is detected, the uplink SIR target is increased by ulSirStep [RNC, 10, 0.1dB, Fixed] until a number of consecutive blocks are correctly received at which time the uplink SIR target is decreased by an equal step. The number of consecutive blocks necessary to decrease the SIR target is dependant upon the BLER target.

• If ulOuterLoopRegulator [RNC, 1=JUMP, Integer, Fixed] is set to JUMP, and an erroneous block is detected, the uplink SIR target is increased by ulSirStep [RNC, 10, 0.1dB, Fixed]. When a block is correctly received, the uplink SIR target is decreased by a fraction of ulSirStep [RNC, 10, 0.1dB, Fixed]. The fraction is based upon the BLER target.

The BLER target for both the downlink and the upink is configurable for each RAB Type and Transport Channel (UeRcTrCh) instance. The first table below correlates the UeRc with the RAB Type and the UeRcTrChId with the UeRcTrCh Instance. The recommended value for each RAB combination supported by AT&T is listed below in the second table.

Page 95: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 95 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 16: UeRc, RAB and UeRcTrCh Identification

UeRc RAB Type UeRcTrCh Id UeRcTrCh Instance

1 Standalone RRC on DCH 1 The only DCH

2 Speech 1 RRC Conn

2 Speech 2 Speech subflow 1

2 Speech 3 Speech subflow 2

2 Speech 4 Speech subflow 3

5 Packet 64/64 1 RRC Conn

5 Packet 64/64 2 Packet RAB

6 Packet 64/128 1 RRC Conn

6 Packet 64/128 2 Packet RAB

18 Packet 128/128 1 RRC Conn

18 Packet 128/128 2 Packet RAB

7 Packet 64/384 1 RRC Conn

7 Packet 64/384 2 Packet RAB

9 Speech + Packet 0kbps 1 RRC Conn

9 Speech + Packet 0kbps 2 Speech subflow 1

9 Speech + Packet 0kbps 3 Speech subflow 2

9 Speech + Packet 0kbps 4 Speech subflow 3

9 Speech + Packet 0kbps 5 Packet RAB

10 Speech + Packet 64kbps 1 RRC Conn

10 Speech + Packet 64kbps 2 Speech subflow 1

10 Speech + Packet 64kbps 3 Speech subflow 2

10 Speech + Packet 64kbps 4 Speech subflow 3

10 Speech + Packet 64kbps 5 Packet RAB

11 Pre-configured RRC only 1 The only DCH

12 Pre-configured Speech 1 RRC Conn

12 Pre-configured Speech 2 Speech subflow 1

12 Pre-configured Speech 3 Speech subflow 2

12 Pre-configured Speech 4 Speech subflow 3

15 PS Interactive 64/HS - HS-DSCH 1 RRC connection

15 PS Interactive 64/HS - HS-DSCH 2 PS Interactive on A-DCH

16 PS Interactive 384/HS - HS-DSCH 1 RRC connection

16 PS Interactive 384/HS - HS-DSCH 2 PS Interactive on A-DCH

19 Speech+PS Interactive 64/HS 1 RRC Conn

19 Speech+PS Interactive 64/HS 2 PS Interactive on A-DCH

19 Speech+PS Interactive 64/HS 3 Speech subflow 1

19 Speech+PS Interactive 64/HS 4 Speech subflow 2

Page 96: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 96 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

UeRc RAB Type UeRcTrCh Id UeRcTrCh Instance

19 Speech+PS Interactive 64/HS 5 Speech subflow 3

20 Speech+PS Interactive 384/HS 1 RRC Conn

20 Speech+PS Interactive 384/HS 2 PS Interactive on A-DCH

20 Speech+PS Interactive 384/HS 3 Speech subflow 1

20 Speech+PS Interactive 384/HS 4 Speech subflow 2

20 Speech+PS Interactive 384/HS 5 Speech subflow 3

The table below provides the recommended values for the uplink and downlink for each RAB combination defined in the table above. The first integer in parenthesis indicates the UeRc, the second integer indicates the UeRcTrCh Id. The values are in 10Log10(BLER quality target), for example if the desired BLER quality target is 1%, then blerQualityTarget = 10Log10(0.01) which results in a value of -20.

Table 17: blerQualityTarget values

blerQualityTargetDl (UeRc,UeRcTrCh) blerQualityTargetUl (UeRc,UeRcTrCh)

(1,1) [RNC, -20, 10 Log10(BLER), Fixed] (1,1) [RNC, -20, 10 Log10(BLER), Fixed]

(2,1) [RNC, -20, 10 Log10(BLER), Fixed] (2,1) [RNC, -20, 10 Log10(BLER), Fixed]

(2,2) [RNC, -20, 10 Log10(BLER), Fixed] (2,2) [RNC, -20, 10 Log10(BLER), Fixed]

(2,3) [RNC, -20, 10 Log10(BLER), Fixed] (2,3) [RNC, -20, 10 Log10(BLER), Fixed]

(2,4) [RNC, -20, 10 Log10(BLER), Fixed] (2,4) [RNC, -20, 10 Log10(BLER), Fixed]

(5,1) [RNC, -20, 10 Log10(BLER), Fixed] (5,1) [RNC, -20, 10 Log10(BLER), Fixed]

(5,2) [RNC, -20, 10 Log10(BLER), Fixed] (5,2) [RNC, -20, 10 Log10(BLER), Fixed]

(6,1) [RNC, -20, 10 Log10(BLER), Fixed] (6,1) [RNC, -20, 10 Log10(BLER), Fixed]

(6,2) [RNC, -20, 10 Log10(BLER), Fixed] (6,2) [RNC, -20, 10 Log10(BLER), Fixed]

(18,1) [RNC, -20, 10 Log10(BLER), Fixed] (18,1) [RNC, -20, 10 Log10(BLER), Fixed]

(18,2) [RNC, -20, 10 Log10(BLER), Fixed] (18,2) [RNC, -20, 10 Log10(BLER), Fixed]

(7,1) [RNC, -20, 10 Log10(BLER), Fixed] (7,1) [RNC, -20, 10 Log10(BLER), Fixed]

(7,2) [RNC, -20, 10 Log10(BLER), Fixed] (7,2) [RNC, -20, 10 Log10(BLER), Fixed]

(9,1) [RNC, -20, 10 Log10(BLER), Fixed] (9,1) [RNC, -20, 10 Log10(BLER), Fixed]

(9,2) [RNC, -20, 10 Log10(BLER), Fixed] (9,2) [RNC, -20, 10 Log10(BLER), Fixed]

(9,3) [RNC, -20, 10 Log10(BLER), Fixed] (9,3) [RNC, -20, 10 Log10(BLER), Fixed]

(9,4) [RNC, -20, 10 Log10(BLER), Fixed] (9,4) [RNC, -20, 10 Log10(BLER), Fixed]

(9,5) [RNC, -20, 10 Log10(BLER), Fixed] (9,5) [RNC, -20, 10 Log10(BLER), Fixed]

(10,1) [RNC, -20, 10 Log10(BLER), Fixed] (10,1) [RNC, -20, 10 Log10(BLER), Fixed]

(10,2) [RNC, -20, 10 Log10(BLER), Fixed] (10,2) [RNC, -20, 10 Log10(BLER), Fixed]

(10,3) [RNC, -20, 10 Log10(BLER), Fixed] (10,3) [RNC, -20, 10 Log10(BLER), Fixed]

(10,4) [RNC, -20, 10 Log10(BLER), Fixed] (10,4) [RNC, -20, 10 Log10(BLER), Fixed]

(10,5) [RNC, -20, 10 Log10(BLER), Fixed] (10,5) [RNC, -20, 10 Log10(BLER), Fixed]

(11,1) [RNC, -20, 10 Log10(BLER), Fixed] (11,1) [RNC, -20, 10 Log10(BLER), Fixed]

Page 97: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 97 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

blerQualityTargetDl (UeRc,UeRcTrCh) blerQualityTargetUl (UeRc,UeRcTrCh)

(12,1) [RNC, -20, 10 Log10(BLER), Fixed] (12,1) [RNC, -20, 10 Log10(BLER), Fixed]

(12,2) [RNC, -20, 10 Log10(BLER), Fixed] (12,2) [RNC, -20, 10 Log10(BLER), Fixed]

(12,3) [RNC, -20, 10 Log10(BLER), Fixed] (12,3) [RNC, -20, 10 Log10(BLER), Fixed]

(12,4) [RNC, -20, 10 Log10(BLER), Fixed] (12,4) [RNC, -20, 10 Log10(BLER), Fixed]

(15,1) [RNC, -30, 10 Log10(BLER), Fixed] (15,1) [RNC, -20, 10 Log10(BLER), Fixed]

(15,2) [RNC, -20, 10 Log10(BLER), Fixed] (15,2) [RNC, -20, 10 Log10(BLER), Fixed]

(16,1) [RNC, -30, 10 Log10(BLER), Fixed] (16,1) [RNC, -20, 10 Log10(BLER), Fixed]

(16,2) [RNC, -20, 10 Log10(BLER), Fixed] (16,2) [RNC, -20, 10 Log10(BLER), Fixed]

(19,1) [RNC, -30, 10 Log10(BLER), Fixed] (19,1) [RNC, -20, 10 Log10(BLER), Fixed]

(19,2) [RNC, -20, 10 Log10(BLER), Fixed] (19,2) [RNC, -20, 10 Log10(BLER), Fixed]

(19,3) [RNC, -20, 10 Log10(BLER), Fixed] (19,3) [RNC, -20, 10 Log10(BLER), Fixed]

(19,4) [RNC, -20, 10 Log10(BLER), Fixed] (19,4) [RNC, -20, 10 Log10(BLER), Fixed]

(19,5) [RNC, -20, 10 Log10(BLER), Fixed] (19,5) [RNC, -20, 10 Log10(BLER), Fixed]

(20,1) [RNC, -30, 10 Log10(BLER), Fixed] (20,1) [RNC, -20, 10 Log10(BLER), Fixed]

(20,2) [RNC, -20, 10 Log10(BLER), Fixed] (20,2) [RNC, -20, 10 Log10(BLER), Fixed]

(20,3) [RNC, -20, 10 Log10(BLER), Fixed] (20,3) [RNC, -20, 10 Log10(BLER), Fixed]

(20,4) [RNC, -20, 10 Log10(BLER), Fixed] (20,4) [RNC, -20, 10 Log10(BLER), Fixed]

(20,5) [RNC, -20, 10 Log10(BLER), Fixed] (20,5) [RNC, -20, 10 Log10(BLER), Fixed]

5.3.11.6 EUL Related Power Control

maxUserEhichErgchPowerDl

• Determines the maximum power level transmitted on the E-HICH and E-RGCH channels. Set relative to the primaryCpichPower [Cell, 300, 0.1dBm, Fixed].

maxEagchPowerDl

• Determines the maximum power level transmitted on the E-AGCH channel. Set relative to the primaryCpichPower [Cell, 300, 0.1dBm, Fixed].

transmissionTargetError

• Wanted percentage of E-DCH frames for which the actual number of Harq transmissions is greater than the target number of Harq transmissions.

ulInitSirTargetEdch

• Initial Uplink SIR Target for RABs using E-DCH.

Page 98: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 98 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

6. OSS Overview

Someone new to either UTRAN in general or Ericsson’s implementation of UTRAN must first understand the availability of OSS-RC related services, i.e. fault, performance and configuration management of the Radio and Core networks. Given the proper understanding and access, the engineer can then measure performance and optimize configuration based upon the recommendations given throughout this document.

The proceedures outlined in this seciton are based upon Ericsson OSS-RC release R4.

Figure 1 below depicts the UTRAN with its various links including links to the OSS. User access to the OSS is made available through a Citrix server.

Figure 44: OSS Connectivity

Core Network

User EquipmentUser Equipment

NodeB

OSS-RC

RXI

Iur

Mur

Mut

Mub

Prospect

Mun

RNC

RNC

Iub

Iu

Citrix Server

Citrix Client

Prospect Client/Web

BusinessObjectsClient

Page 99: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 99 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

6.1 Configuration Management

There are various methods by which Ericsson UTRAN configurable parameters can be viewed and updated. This section explains the procedures that must be followed in order to obtain the necessary network access and credentials (username and password).

Network element addition / deletion procedures are not included in this document.

6.1.1 Configuration Access Procedures

The access process varies from region to region. Each region’s process is outlined below. Once credentials are obtained, the user must install a Citrix ICA client on their local machine or laptop. The software can be obtained by going to http://www.citrix.com. Once installed, use the “Add ICA Connection” wizard to add a connection to one of your region’s Citrix Servers.

Table 18: Configuration Management Access Procedures

Region Process Citrix Server IP

Central Go to https://nslogins.edc.cingular.net/ and click on “E” for the “Ericsson UMTS OSS Lcye1ms”. Answer the questions that follow.

ICA 1 - 10.175.144.68

ICA 2 - 10.175.144.71

Northeast Contact Dan Padowski with the Northeast Region OSS Team. Send your CUID along with a list of markets to which you need access.

ICA 1 - 10.189.19.9

ICA 2 - 10.189.19.11

West Go to https://wnsuam.wnsnet.attws.com then click on “Request Access” and provide the appropriate information to request access to the Western Region Ericsson UMTS OSS – E7.

ICA 1 - 166.174.241.254

ICA 2 - 155.174.242.1

Southeast Go to https://nslogins.edc.cingular.net/login.cfm and enter your appropriate domain username and password. Click on “Login Request Form”, then answer the questions that follow.

OSS 1

ICA 1 - 10.184.18.71

ICA 2 - 10.184.18.72

OSS 2

ICA 1 - 10.184.18.141

ICA 2 - 10.184.18.142

6.1.2 Configuration Methods

There are three main methods used to control the configuration of the UTRAN

• Export configuration data then import configuration changes through the OSS. This is the preferred method for bulk changes. An externally prepared configuration (Bulk CM file) is transferred to the OSS then imported into a “Planned Area”. When the Planned Area is activated, the RNC and/or Node B configuration are updated. The tool used is called the “WCDMA RAN Explorer” and is accessed by right clicking on the OSS desktop and selecting Configuration, WCDMA radio access network, then WCDMA RAN explorer.

Page 100: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 100 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Enter configuration changes via the OSS Graphical User Interface (GUI). This is the Ericsson preferred method. First, a “Planned Area” is created, changes are made to it using the Graphical User Interface, then the Planned Area is activated and the RNC and/or Node B configuration are updated, i.e. the Planned Area becomes the Valid Area. The tool used is called the “WCDMA RAN Explorer” and is accessed by right clicking on the desktop and selecting Configuration, WCDMA radio access network, then WCDMA RAN explorer.

• Make configuration changes in the UTRAN via a ChangeAll script. A ChangeAll script is written using a specific format in a text file (ChangeAll.txt). The script is then executed as a task in the Job Manager application. ChangeAll allows the user to make global parameter changes to specific network elements.

• Use EMAS (Element Manager Software). EMAS exists on each network element (Node B, RNC, RXI) and allows the user to directly view and change the individual network element’s configuration. EMAS is typically not used to change parameters that affect multiple network elements e.g. neighbor lists. EMAS uses a web client from either the OSS via Citrix, or from your laptop assuming you are not blocked by any firewalls.

The Ericsson OSS for UMTS does not support an operator available command line interface.

6.2 Performance Management

There are currently three options available that can be used to access performance data.

• Business Objects. Business Objects is a third party application supported by Ericsson that can be used to query the OSS performance reporting database. Business Object can be used on the OSS via a Citrix client or by using a Business Object client installed on your laptop. See the Business Objects access procedure below for access instructions.

• Prospect. This performance reporting platform is also known as Watchmark which was purchased by Vallent. Web browser and laptop client options are available. See the Prospect Access procedure below for access instructions.

• Tektronix Probes. Probes have been installed on every interface from end to end in the network. Statistical data is sent to the Prospect database for KPI creation. The Tektronix Probe solution also has its own reporting interface accessible via a Citrix client. See the Tektronix Probe Access procedure below for access instructions.

6.2.1 Performance Access Procedures

This section provides information concerning how one goes about obtaining access and credentials to the various Performance Reporting systems.

6.2.1.1 Business Object Access

Business Objects access and credentials can be obtained at the same time you request access to the OSS. The Business Objects client software and installation instructions are available at http://ossweb.sc.attws.com/NWS/. A “bomain.key” file is required in order to access the Business Objects server.

6.2.1.2 Prospect Access

The Prospect Performance reporting system is nationally based.

• The Prospect client software and installation instructions are available at http://ossweb.sc.attws.com/PES/APPS/Prospect/.

Page 101: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 101 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Credentials can be obtained by going to http://dataops.sc.attws.com/OSS/Account/Request.htm. Click on “P” for Prospect.

• The web interface is accessible via http://alnpspctweb03.wnsnet.attws.com:8080/pweb/login.jsp

6.2.1.3 Tektronix Probe Access

The Tektronix Probe reporting system is nationally based.

• Credentials can be obtained by going to http://ns.cingular.net/sites/nis/operations_support_systems/account_request_hub.aspx. Click on “G” for GeoProbe.

• The Citrix interface is accessible via 10.36.12.106. User Documentation can be found here http://nebot.wnsnet.attws.com/docs/nis/geoprobe/quickstart.htm.

6.2.2 Ericsson Counter Types

Ericsson has seven different types of counters. Each type is designated based upon how each counter is created.

• Peg Counter. A Peg Counter is simply incremented by 1 at each occurrence of a specific event. All Peg Counters begin with pm…

• Gauge Counter. A Gauge Counter can be increased or decreased depending upon the activity in the system. All Gauge Counters begin with pm…

• Accumulator. An Accumulator Counter is increased by the value of a sample. The result is the sum of the values of the samples taken over the sample interval. Accumulator counters always begin with pmSum… or pmSumOfSamp…

• Scan Counter. A Scan Counter is incremented by 1 each time a specific condition exists when scanned. Scans for the condition occur at regular intervals. In most cases a separate counter exists that counts the number of scans. All Scan Counters begin with pmSamples…

• Probability Density Function (PDF). These types of counters result from periodically reading the value of a quantity. The value is then used to increment a corresponding counter. The counters are arranged in bins that represent segments of the range of possible values. All Probability Density Function counters begin with pm…

• Discrete Distributed Measurement (DDM). Discrete Distributed Measurements are a series of values recorded during a reporting period. At the end of the reporting period, each discrete measurement is recorded. All Discrete Distributed Measurements begin with pm…

• Calculated Statistics. A Calculated Statistic results from a calculation made in the database. The counters that contribute to the calculated value may or may not exist by themselves. All Calculated Statistics begin with cm…

Counters can also be grouped based upon where they are created.

• RNC Counters

• Node B Counters

• RXI Counters

• OSS-RC Counters. These include only Calculated Statistics.

6.2.3 Call Trace Capability

Ericsson supports three different types of call trace called UETR, CTR and GPEH. Each is briefly described below. Each is launched from the Performance menu in the OSS Network Explorer.

Page 102: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 102 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• UETR. The User Equipment Traffic Recording capability allows for up to 16 specified UEs to be concurrently traced on a single RNC. The individual UEs are specified by IMSI. One or more event or measurement messages within one or more of the following protocol groups can be recorded: NBAP, RANAP, RNSAP and RRC.

Although only one UE can be traced per UETR session, up to 16 concurrent sessions can be run on a single RNC.

• CTR. Cell Traffic Recording allows for the collection of one or more NBAP, RANAP, RNSAP or RRC event or measurement messages from the first 16 UEs that request an RRC Connection setup on the specified cell. Up to 2 CTR recordings can be run concurrently.

• GPEH. The General Performance and Event Handling capability records internal node and inter-node events as defined in a GPEH subscription profile.

6.3 Fault Management

Fault Management allows for the identification of network elements that are currently, or have recently been in a compromised condition due to a hardware or software failure. Ericsson provides tools that allow the user to view network elements currently in fault. A fault history is also available for each network element.

6.3.1 Alarm Status Matrix

The Alarm Status Matrix provides a graphical overview of the fault status of network elements. The status of the network element is indicated by its color. The Alarm List Viewer is available via the OSS by right clicking on the desktop, then Alarm, View Alarms, Alarm Status Matrix. After running Alarm Status Matrix, you must select a group of Managed Objects by clicking on File, then Managed Objects and selecting the appropriate network element. The Alarm Status Matrix is typically the starting point for determining the status of the network.

6.3.2 Alarm List Viewer

The Alarm List Viewer is available via the OSS by right clicking on the desktop, then Alarm, View Alarms, Alarm List Viewer. Current alarms for a network element or group of network elements can be viewed by clicking on File, then Managed Objects and selecting the appropriate network element.

6.3.3 Alarm Log Browser

Running the Alarm Log Browser starts an alarm search wizard that allows the user to input variables such as date / time range and network element selection. It also allows for result filtering and sorting. The result can provide a historical view of the faults of a particular network element.

Page 103: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 103 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

7. Counter and Recording Activation

7.1 Counter Activation

In order for counter values to be placed in the OSS-RC database, they must be activated for collection. There are limitations for the number of counters that may be activated concurrently.

– RNC – 750,000 counters

– Node B – 10,000 counters

– RXI – 50,000 counters

An alarm is triggered if the maximum number of counters is exceeded.

7.1.1 Table Definitions

The table below contains all of the operator available Ericsson UTRAN counters and an indication of whether or not each should be activated. The columns are explained as follows.

• Column A indicates the Managed Object (MO) to which each Counter belongs.

• Column B indicates the “Level” for each Counter, e.g. “Site”, “Cell”, “Transport”, ect. Note that the “Cell” based counters are gathered at the RNC due to most of them being attributed to the Best Cell in the Active Set.

• Column C indicates the Counter name.

• Column D indicates whether the counter should be activated or not. If the counter should be activated, the field indicates the Scanner Name. See the Implementation section below for suggested Scanner Names.

• Column E provides a reason for the counter’s activation, e.g. “Level 1 Scorecard”, “Dimensioning”, etc.

There is also a companion Excel spreadsheet. The “Counters” sheet contains all of the operator available Ericsson UTRAN counters The “Revision Notes” sheet contains details concerning how and why each counter was activated.

7.1.2 Subscription Profiles

A Data Collection Subscription Profile, also known as a “Statistics Profile” or a “Scanner” defines specific counters activated within one or more Radio Network Controller (RNC) served by an OSS. There are two predefined RNC based Scanners called the “Primary Scanner” and the “Secondary Scanner” and a predefined Site based Scanner.

You may at your discretion, choose to define User Defined Scanners per OSS or per Market.

7.1.2.1 Define UD Scanners per OSS

• Pro: Easier to work with, simpler to standardize.

• Pro: Allows for fewer Scanners.

Page 104: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 104 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

• Con: Sites can only be added to a profile if all the selected sites have IP connectivity. This is difficult to achieve since there almost always a site that has connection issues.

Example UD Scanner names:

• National_RNC_P5MD

• National_URel_P5MD

• National_Site_P5MD

• National_RXI_P5MD

7.1.2.2 Defining UD Scanners per Market

• Pros: Easier to add new sites to a Scanner since site failures in other RNCs will only affect those Scanners.

• Con: More difficult to manage.

Example UD Scanner names:

• National_RNC_P5MD - keep all RNCs grouped

• National_URel_P5MD - keep all URel grouped

• National_RXI_P5MD - keep all RXI grouped

• National_AtlaSite_P5MD

• National_MargSite_P5MD

• National_PrrnSite_P5MD

Page 105: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 105 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Table 19: Counter Activation

MO Class Resolution Counter Active within scanner Reason Aal0TpVccTp Transport - RNC pmBwErrBlocks No Aal0TpVccTp Transport - RNC pmBwLostCells No Aal0TpVccTp Transport - RNC pmBwMissinsCells No Aal0TpVccTp Transport - RNC pmFwErrBlocks No Aal0TpVccTp Transport - RNC pmFwLostCells National_RNC_P5MD Troubleshooting Aal0TpVccTp Transport - RNC pmFwMissinsCells No Aal0TpVccTp Transport - RNC pmLostBrCells National_RNC_P5MD Troubleshooting Aal0TpVccTp Transport - RNC pmLostFpmCells National_RNC_P5MD Troubleshooting Aal1TpVccTp Transport pmBwErrBlocks No Aal1TpVccTp Transport pmBwLostCells No Aal1TpVccTp Transport pmBwMissinsCells No Aal1TpVccTp Transport pmFwErrBlocks No Aal1TpVccTp Transport pmFwLostCells No Aal1TpVccTp Transport pmFwMissinsCells No Aal1TpVccTp Transport pmLostBrCells No Aal1TpVccTp Transport pmLostFpmCells No Aal2Ap Transport - RNC pmExisOrigConns No Aal2Ap Transport - RNC pmExisTermConns No Aal2Ap Transport - RNC pmExisTransConns No Aal2Ap Transport - RNC pmNrOfRemotelyBlockedAal2Path No Aal2Ap Transport - RNC pmSuccInConnsRemote National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccInConnsRemoteQosClassA National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccInConnsRemoteQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccInConnsRemoteQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccInConnsRemoteQosClassD No Aal2Ap Transport - RNC pmSuccOutConnsRemote National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccOutConnsRemoteQosClassA National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccOutConnsRemoteQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccOutConnsRemoteQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmSuccOutConnsRemoteQosClassD No Aal2Ap Transport - RNC pmUnRecMessages No Aal2Ap Transport - RNC pmUnRecParams No

Page 106: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 106 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Aal2Ap Transport - RNC pmUnSuccInConnsLocalQosClassA National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsLocalQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsLocalQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsLocalQosClassD No Aal2Ap Transport - RNC pmUnSuccInConnsRemoteQosClassA National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsRemoteQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsRemoteQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccInConnsRemoteQosClassD No Aal2Ap Transport - RNC pmUnSuccOutConnsLocalQosClassA No Aal2Ap Transport - RNC pmUnSuccOutConnsLocalQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccOutConnsLocalQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccOutConnsLocalQosClassD No Aal2Ap Transport - RNC pmUnSuccOutConnsRemoteQosClassA No Aal2Ap Transport - RNC pmUnSuccOutConnsRemoteQosClassB National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccOutConnsRemoteQosClassC National_RNC_P5MD Troubleshooting Aal2Ap Transport - RNC pmUnSuccOutConnsRemoteQosClassD No Aal2PathVccTp Transport - RNC pmBwErrBlocks No Aal2PathVccTp Transport - RNC pmBwLostCells No Aal2PathVccTp Transport - RNC pmBwMissinsCells No Aal2PathVccTp Transport - RNC pmDiscardedEgressCpsPackets No Aal2PathVccTp Transport - RNC pmEgressCpsPackets No Aal2PathVccTp Transport - RNC pmFwErrBlocks No Aal2PathVccTp Transport - RNC pmFwLostCells National_RNC_P5MD Troubleshooting Aal2PathVccTp Transport - RNC pmFwMissinsCells No Aal2PathVccTp Transport - RNC pmIngressCpsPackets No Aal2PathVccTp Transport - RNC pmLostBrCells National_RNC_P5MD Troubleshooting Aal2PathVccTp Transport - RNC pmLostFpmCells National_RNC_P5MD Troubleshooting Aal2Sp Transport - RNC pmUnsuccessfulConnsInternal No Aal5TpVccTp Transport - RNC pmBwErrBlocks No Aal5TpVccTp Transport - RNC pmBwLostCells No Aal5TpVccTp Transport - RNC pmBwMissinsCells No Aal5TpVccTp Transport - RNC pmFwErrBlocks No Aal5TpVccTp Transport - RNC pmFwLostCells National_RNC_P5MD Troubleshooting Aal5TpVccTp Transport - RNC pmFwMissinsCells No

Page 107: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 107 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Aal5TpVccTp Transport - RNC pmLostBrCells National_RNC_P5MD Troubleshooting Aal5TpVccTp Transport - RNC pmLostFpmCells National_RNC_P5MD Troubleshooting AgpsPositioning RNC pmPositioningReqAttAgps No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqAttEsAgps No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqSuccAgps No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqSuccAgpsQosSucc No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqSuccEsAgps No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqSuccEsAgpsQosSucc No Add when AGPS is GA AgpsPositioning RNC pmPositioningReqUnsuccAgpsAbort No Add when AGPS is GA Aich Site pmNegativeMessages National_Site_P5MD Troubleshooting Aich Site pmPositiveMessages National_Site_P5MD Troubleshooting AntennaBranch Site pmNoOfPowLimSlots National_Site_P5MD Troubleshooting

AtmPort Transport - RNC/Site pmReceivedAtmCells National_RNC_P5MD/National_Site_P5MD Dimensioning

AtmPort Transport - RNC/Site pmSecondsWithUnexp No

AtmPort Transport - RNC/Site pmTransmittedAtmCells National_RNC_P5MD/National_Site_P5MD Dimensioning

Carrier Site pmAverageRssi RBS Primary PREDEF.PRIMARY.STATS Carrier Site pmTransmittedCarrierPower RBS Primary PREDEF.PRIMARYSTATS - Dimensioning CcDevice RNC pmSamplesMeasuredCcSpLoad Secondary Scanner Secondary Scanner CcDevice RNC pmSumMeasuredCcSpLoad Secondary Scanner Secondary Scanner CchFrameSynch RNC pmNoCchDiscardedDataFramesE No CchFrameSynch RNC pmNoCchDiscardedDataFramesL No CchFrameSynch RNC pmNoCchTimingAdjContrFrames No DcDevice RNC pmSamplesMeasuredDcSpLoad Secondary Scanner Secondary Scanner DcDevice RNC pmSumMeasuredDcSpLoad Secondary Scanner Secondary Scanner DchFrameSynch RNC pmNoDchDlTimingAdjContrFrames No DchFrameSynch RNC pmNoDchUlDataFramesOutsideWindow No DchFrameSynch RNC pmNoDlDchDiscardedDataFramesE No DchFrameSynch RNC pmNoDlDchDiscardedDataFramesL No DchFrameSynch RNC pmNoUlDchDiscardedDataFramesE No DchFrameSynch RNC pmNoUlDchDiscardedDataFramesL No DownlinkBaseBandPool Site pmApomcOfMdlr No DownlinkBaseBandPool Site pmApomcOfMdsr No DownlinkBaseBandPool Site pmApomcOfSpreadersUsed No

Page 108: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 108 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason DownlinkBaseBandPool Site pmNoOfRadioLinksSf128 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRadioLinksSf16 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRadioLinksSf256 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRadioLinksSf32 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRadioLinksSf4 No Sf4 not supported in the Downlink DownlinkBaseBandPool Site pmNoOfRadioLinksSf64 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRadioLinksSf8 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf128 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf16 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf256 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf32 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf4 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf64 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmNoOfRlAdditionFailuresSf8 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf128 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf16 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf256 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf32 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf4 No Sf4 not supported in the Downlink DownlinkBaseBandPool Site pmSetupAttemptsSf64 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupAttemptsSf8 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf128 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf16 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf256 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf32 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf4 No Sf4 not supported in the Downlink DownlinkBaseBandPool Site pmSetupFailuresSf64 National_Site_P5MD Dimensioning DownlinkBaseBandPool Site pmSetupFailuresSf8 National_Site_P5MD Dimensioning E1PhysPathTerm Transport pmEs No E1PhysPathTerm Transport pmSes No E1PhysPathTerm Transport pmUas No E1Ttp Transport pmEs No E1Ttp Transport pmSes No E1Ttp Transport pmUas No

Page 109: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 109 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason E3PhysPathTerm Transport pmEs No E3PhysPathTerm Transport pmSes No E3PhysPathTerm Transport pmUas No EDchResources Site pmCommonChPowerEul National_Site_P5MD Dimensioning EDchResources Site pmNoActive10msFramesEul National_Site_P5MD Dimensioning EDchResources Site pmNoAllowedEul National_Site_P5MD Dimensioning EDchResources Site pmNoiseFloor National_Site_P5MD Dimensioning EDchResources Site pmNoSchEdchEul National_Site_P5MD Dimensioning EDchResources Site pmNoUlUuLoadLimitEul National_Site_P5MD Dimensioning EDchResources Site pmOwnUuLoad National_Site_P5MD Dimensioning EDchResources Site pmSumAckedBitsCellEul National_Site_P5MD Troubleshooting EDchResources Site pmSumNackedBitsCellEul National_Site_P5MD Troubleshooting EDchResources Site pmTotalRotCoverage National_Site_P5MD Dimensioning EDchResources Site pmTotRateGrantedEul National_Site_P5MD Dimensioning EDchResources Site pmWaitingTimeEul National_Site_P5MD Dimensioning EthernetLink Transport pmNoOfIfInDiscards No EthernetLink Transport pmNoOfIfInErrors No EthernetLink Transport pmNoOfIfInNUcastPkts No EthernetLink Transport pmNoOfIfInUcastPkts No EthernetLink Transport pmNoOfifOutDiscards No EthernetLink Transport pmNoOfIfOutNUcastPkts No EthernetLink Transport pmNoOfIfOutUcastPkts No Eul RNC pmEulDowntimeAuto National_Site_P5MD Troubleshooting Eul RNC pmEulDowntimeMan National_Site_P5MD Troubleshooting FastEthernet RNC pmIfInBroadcastPkts No FastEthernet RNC pmIfInDiscards No FastEthernet RNC pmIfInErrors No FastEthernet RNC pmIfInMulticastPkts No FastEthernet RNC pmIfInOctetsHi No FastEthernet RNC pmIfInOctetsLo No FastEthernet RNC pmIfInUcastPkts No FastEthernet RNC pmIfInUnknownProtos No FastEthernet RNC pmIfOutBroadcastPkts No FastEthernet RNC pmIfOutDiscards No

Page 110: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 110 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason FastEthernet RNC pmIfOutErrors No FastEthernet RNC pmIfOutMulticastPkts No FastEthernet RNC pmIfOutOctetsHi No FastEthernet RNC pmIfOutOctetsLo No FastEthernet RNC pmIfOutUcastPkts No GigaBitEthernet RNC pmDot1qTpVlanPortInDiscardsLink1 No GigaBitEthernet RNC pmDot1qTpVlanPortInDiscardsLink2 No GigaBitEthernet RNC pmIfInBroadcastPktsLink1 No GigaBitEthernet RNC pmIfInBroadcastPktsLink2 No GigaBitEthernet RNC pmIfInDiscardsLink1 No GigaBitEthernet RNC pmIfInDiscardsLink2 No GigaBitEthernet RNC pmIfInErrorsLink1 No GigaBitEthernet RNC pmIfInErrorsLink2 No GigaBitEthernet RNC pmIfInMulticastPktsLink1 No GigaBitEthernet RNC pmIfInMulticastPktsLink2 No GigaBitEthernet RNC pmIfInOctetsLink1Hi No GigaBitEthernet RNC pmIfInOctetsLink1Lo No GigaBitEthernet RNC pmIfInOctetsLink2Hi No GigaBitEthernet RNC pmIfInOctetsLink2Lo No GigaBitEthernet RNC pmIfInUcastPktsLink1 No GigaBitEthernet RNC pmIfInUcastPktsLink2 No GigaBitEthernet RNC pmIfInUnknownProtosLink1 No GigaBitEthernet RNC pmIfInUnknownProtosLink2 No GigaBitEthernet RNC pmIfOutBroadcastPktsLink1 No GigaBitEthernet RNC pmIfOutBroadcastPktsLink2 No GigaBitEthernet RNC pmIfOutDiscardsLink1 No GigaBitEthernet RNC pmIfOutDiscardsLink2 No GigaBitEthernet RNC pmIfOutErrorsLink1 No GigaBitEthernet RNC pmIfOutErrorsLink2 No GigaBitEthernet RNC pmIfOutMulticastPktsLink1 No GigaBitEthernet RNC pmIfOutMulticastPktsLink2 No GigaBitEthernet RNC pmIfOutOctetsLink1Hi No GigaBitEthernet RNC pmIfOutOctetsLink1Lo No GigaBitEthernet RNC pmIfOutOctetsLink2Hi No

Page 111: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 111 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason GigaBitEthernet RNC pmIfOutOctetsLink2Lo No GigaBitEthernet RNC pmIfOutUcastPktsLink1 No GigaBitEthernet RNC pmIfOutUcastPktsLink2 No GsmRelation Inter-RAT pmNoAttOutIratHoCs57 National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoAttOutIratHoMulti National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoAttOutIratHoSpeech National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoAttOutIratHoStandalone National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoAttOutSbHoSpeech No Add when SBHO is GA GsmRelation Inter-RAT pmNoFailOutIratHoCs57GsmFailure National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoCs57ReturnOldChNotPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoCs57ReturnOldChPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoCs57UeRejection National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoMultiGsmFailure National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoMultiReturnOldChNotPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoMultiReturnOldChPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoMultiUeRejection National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoSpeechGsmFailure National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoSpeechReturnOldChNotPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoSpeechReturnOldChPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoSpeechUeRejection National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoStandaloneGsmFailure National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoStandaloneReturnOldChNotPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoStandaloneReturnOldChPhyChFail National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutIratHoStandaloneUeRejection National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoFailOutSbHoSpeechGsmFailure No Add when SBHO is GA GsmRelation Inter-RAT pmNoFailOutSbHoSpeechReturnOldChNotPhyChFail No Add when SBHO is GA GsmRelation Inter-RAT pmNoFailOutSbHoSpeechReturnOldChPhyChFail No Add when SBHO is GA GsmRelation Inter-RAT pmNoFailOutSbHoSpeechUeRejection No Add when SBHO is GA GsmRelation Inter-RAT pmNoOutIratCcAtt National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoOutIratCcReturnOldCh National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoOutIratCcSuccess National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoSuccessOutIratHoCs57 National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoSuccessOutIratHoMulti National_RNC_P5MD Level 1 and 3 Scorecard GsmRelation Inter-RAT pmNoSuccessOutIratHoSpeech National_RNC_P5MD Level 1 and 3 Scorecard

Page 112: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 112 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason GsmRelation Inter-RAT pmNoSuccessOutIratHoStandalone National_RNC_P5MD Level 3 Scorecard GsmRelation Inter-RAT pmNoSuccessOutSbHoSpeech No Add when SBHO is GA Handover RNC pmNoSbHoMeasStart No Add when SBHO is GA Handover RNC pmNoSuccessSbHo No Add when SBHO is GA Handover RNC pmTotNoSbHo No Add when SBHO is GA Hsdsch Cell pmHsDowntimeAuto Primary Scanner Primary Scanner Hsdsch Cell pmHsDowntimeMan Primary Scanner Primary Scanner HsDschResources Site pmAckReceived National_Site_P5MD Troubleshooting HsDschResources Site pmAverageUserRate National_Site_P5MD Dimensioning HsDschResources Site pmIubMacdPduCellReceivedBits National_Site_P5MD Dimensioning HsDschResources Site pmNackReceived National_Site_P5MD Troubleshooting HsDschResources Site pmNoActiveSubFrames National_Site_P5MD Troubleshooting HsDschResources Site pmNoInactiveRequiredSubFrames National_Site_P5MD Troubleshooting HsDschResources Site pmNoOfHsUsersPerTti National_Site_P5MD Dimensioning HsDschResources Site pmRemainingResourceCheck National_Site_P5MD Dimensioning HsDschResources Site pmReportedCqi National_Site_P5MD Troubleshooting HsDschResources Site pmSampleNumHsPdschCodesAdded National_Site_P5MD Dimensioning HsDschResources Site pmSumAckedBits National_Site_P5MD Troubleshooting HsDschResources Site pmSumNonEmptyUserBuffers National_Site_P5MD Troubleshooting HsDschResources Site pmSumNumHsPdschCodesAdded National_Site_P5MD Dimensioning HsDschResources Site pmSumOfHsScchUsedPwr National_Site_P5MD Dimensioning HsDschResources Site pmSumTransmittedBits National_Site_P5MD Dimensioning HsDschResources Site pmTransmittedCarrierPowerNonHs National_Site_P5MD Dimensioning HsDschResources Site pmUsedCqi National_Site_P5MD Troubleshooting ImaGroup Transport pmGrFc No ImaGroup Transport pmGrFcFe No ImaGroup Transport pmGrUasIma No ImaLink Transport - Site pmIvIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmOifIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmRxFc National_Site_P5MD Troubleshooting ImaLink Transport - Site pmRxFcFe National_Site_P5MD Troubleshooting ImaLink Transport - Site pmRxStuffIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmRxUusIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmRxUusImaFe National_Site_P5MD Troubleshooting

Page 113: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 113 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason ImaLink Transport - Site pmSesIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmSesImaFe National_Site_P5MD Troubleshooting ImaLink Transport - Site pmTxFc National_Site_P5MD Troubleshooting ImaLink Transport - Site pmTxFcFe National_Site_P5MD Troubleshooting ImaLink Transport - Site pmTxStuffIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmTxUusIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmTxUusImaFe National_Site_P5MD Troubleshooting ImaLink Transport - Site pmUasIma National_Site_P5MD Troubleshooting ImaLink Transport - Site pmUasImaFe National_Site_P5MD Troubleshooting Ip Transport pmNoOfHdrErrors No Ip Transport pmNoOfIpAddrErrors No Ip Transport pmNoOfIpForwDatagrams No Ip Transport pmNoOfIpInDiscards No Ip Transport pmNoOfIpInReceives No Ip Transport pmNoOfIpOutDiscards No Ip Transport pmNoOfIpReasmOKs No Ip Transport pmNoOfIpReasmReqds No IpAccessHostGpb Transport pmIcmpInDestUnreachs No IpAccessHostGpb Transport pmIcmpInEchoReps No IpAccessHostGpb Transport pmIcmpInEchos No IpAccessHostGpb Transport pmIcmpInErrors No IpAccessHostGpb Transport pmIcmpInMsgs No IpAccessHostGpb Transport pmIcmpInParamProbs No IpAccessHostGpb Transport pmIcmpInRedirects No IpAccessHostGpb Transport pmIcmpInSrcQuenchs No IpAccessHostGpb Transport pmIcmpInTimeExcds No IpAccessHostGpb Transport pmIcmpOutDestUnreachs No IpAccessHostGpb Transport pmIcmpOutEchoReps No IpAccessHostGpb Transport pmIcmpOutEchos No IpAccessHostGpb Transport pmIcmpOutErrors No IpAccessHostGpb Transport pmIcmpOutMsgs No IpAccessHostGpb Transport pmIcmpOutParmProbs No IpAccessHostGpb Transport pmIpFragCreates No IpAccessHostGpb Transport pmIpFragFails No

Page 114: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 114 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason IpAccessHostGpb Transport pmIpFragOKs No IpAccessHostGpb Transport pmIpInAddrErrors No IpAccessHostGpb Transport pmIpInDelivers No IpAccessHostGpb Transport pmIpInDiscards No IpAccessHostGpb Transport pmIpInHdrErrors No IpAccessHostGpb Transport pmIpInReceives No IpAccessHostGpb Transport pmIpInUnknownProtos No IpAccessHostGpb Transport pmIpOutDiscards No IpAccessHostGpb Transport pmIpOutRequests No IpAccessHostGpb Transport pmIpReasmFails No IpAccessHostGpb Transport pmIpReasmOKs No IpAccessHostGpb Transport pmIpReasmReqds No IpAccessHostGpb Transport pmUdpInDatagrams No IpAccessHostGpb Transport pmUdpInErrors No IpAccessHostGpb Transport pmUdpNoPorts No IpAccessHostGpb Transport pmUdpOutDatagrams No IpAccessHostSpb RNC pmIcmpInDestUnreachs No IpAccessHostSpb RNC pmIcmpInEchoReps No IpAccessHostSpb RNC pmIcmpInEchos No IpAccessHostSpb RNC pmIcmpInErrors No IpAccessHostSpb RNC pmIcmpInMsgs No IpAccessHostSpb RNC pmIcmpInParamProbs No IpAccessHostSpb RNC pmIcmpInRedirects No IpAccessHostSpb RNC pmIcmpInSrcQuenchs No IpAccessHostSpb RNC pmIcmpInTimeExcds No IpAccessHostSpb RNC pmIcmpOutDestUnreachs No IpAccessHostSpb RNC pmIcmpOutEchoReps No IpAccessHostSpb RNC pmIcmpOutEchos No IpAccessHostSpb RNC pmIcmpOutErrors No IpAccessHostSpb RNC pmIcmpOutMsgs No IpAccessHostSpb RNC pmIcmpOutParmProbs No IpAccessHostSpb RNC pmIpFragCreates No IpAccessHostSpb RNC pmIpFragFails No IpAccessHostSpb RNC pmIpFragOKs No

Page 115: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 115 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason IpAccessHostSpb RNC pmIpInAddrErrors No IpAccessHostSpb RNC pmIpInDelivers No IpAccessHostSpb RNC pmIpInDiscards No IpAccessHostSpb RNC pmIpInHdrErrors No IpAccessHostSpb RNC pmIpInReceives No IpAccessHostSpb RNC pmIpInUnknownProtos No IpAccessHostSpb RNC pmIpOutDiscards No IpAccessHostSpb RNC pmIpOutRequests No IpAccessHostSpb RNC pmIpReasmFails No IpAccessHostSpb RNC pmIpReasmOKs No IpAccessHostSpb RNC pmIpReasmReqds No IpAccessHostSpb RNC pmUdpInDatagrams No IpAccessHostSpb RNC pmUdpInErrors No IpAccessHostSpb RNC pmUdpNoPorts No IpAccessHostSpb RNC pmUdpOutDatagrams No IpAtmLink Transport pmNoOfIfInDiscards No IpAtmLink Transport pmNoOfIfInErrors No IpAtmLink Transport pmNoOfIfInNUcastPkts No IpAtmLink Transport pmNoOfIfInUcastPkts No IpAtmLink Transport pmNoOfifOutDiscards No IpAtmLink Transport pmNoOfIfOutNUcastPkts No IpAtmLink Transport pmNoOfIfOutUcastPkts No IpEthPacketDataRouter RNC pmNoFaultyIpPackets No IpEthPacketDataRouter RNC pmNoRoutedIpBytesDl No IpEthPacketDataRouter RNC pmNoRoutedIpBytesUl No IpEthPacketDataRouter RNC pmNoRoutedIpPacketsDl No IpEthPacketDataRouter RNC pmNoRoutedIpPacketsUl No IpEthPacketDataRouter RNC pmSamplesPacketDataRab No IpEthPacketDataRouter RNC pmSumPacketDataRab No IpInterface RNC pmDot1qTpVlanPortInFrames No IpInterface RNC pmDot1qTpVlanPortOutFrames No IpInterface RNC pmIfStatsIpAddrErrors No IpInterface RNC pmIfStatsIpInDiscards No IpInterface RNC pmIfStatsIpInHdrErrors No

Page 116: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 116 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason IpInterface RNC pmIfStatsIpInReceives No IpInterface RNC pmIfStatsIpOutDiscards No IpInterface RNC pmIfStatsIpOutRequests No IpInterface RNC pmIfStatsIpUnknownProtos No IubDataStreams Site pmCapAlloclubHsLimitingRatio National_Site_P5MD Dimensioning IubDataStreams Site pmDchFramesCrcMismatch National_Site_P5MD Dimensioning IubDataStreams Site pmDchFramesLate National_Site_P5MD Dimensioning IubDataStreams Site pmDchFramesReceived National_Site_P5MD Dimensioning IubDataStreams Site pmDchFramesTooLate National_Site_P5MD Dimensioning IubDataStreams Site pmEdchIubLimitingRatio National_Site_P5MD Dimensioning IubDataStreams Site pmHsDataFramesLost National_Site_P5MD Dimensioning IubDataStreams Site pmHsDataFramesReceived National_Site_P5MD Dimensioning IubDataStreams Site pmIubMacdPduRbsReceivedBits National_Site_P5MD Dimensioning IubDataStreams Site pmNoUlIubLimitEul National_Site_P5MD Dimensioning IubDataStreams Site pmRbsHsPdschCodePrio National_Site_P5MD Dimensioning IubDataStreams Site pmTargetHsRate National_Site_P5MD Dimensioning IubEdch RNC pmEdchDataFrameDelayIub National_RNC_P5MD Troubleshooting IurLink RNC pmNoAttIncCnhhoCsNonSpeech No Add when CNHHO is GA IurLink RNC pmNoAttIncCnhhoSpeech No Add when CNHHO is GA IurLink RNC pmNoNormalRabReleaseCs64 Secondary Scanner Secondary Scanner IurLink RNC pmNoNormalRabReleaseCsStream Secondary Scanner Secondary Scanner IurLink RNC pmNoNormalRabReleasePacket Secondary Scanner Secondary Scanner IurLink RNC pmNoNormalRabReleasePacketStream Secondary Scanner Secondary Scanner IurLink RNC pmNoNormalRabReleaseSpeech Secondary Scanner Secondary Scanner IurLink RNC pmNoOfRlForDriftingUesPerDrnc Secondary Scanner Secondary Scanner IurLink RNC pmNoSuccIncCnhhoCsNonSpeech No Add when CNHHO is GA IurLink RNC pmNoSuccIncCnhhoSpeech No Add when CNHHO is GA IurLink RNC pmNoSystemRabReleaseCs64 Secondary Scanner Secondary Scanner IurLink RNC pmNoSystemRabReleaseCsStream Secondary Scanner Secondary Scanner IurLink RNC pmNoSystemRabReleasePacket Secondary Scanner Secondary Scanner - Level 3 Scorecard IurLink RNC pmNoSystemRabReleasePacketStream Secondary Scanner Secondary Scanner - Level 3 Scorecard

IurLink RNC pmNoSystemRabReleaseSpeech Secondary Scanner Secondary Scanner - Level 1 and 3 Scorecard

J1PhysPathTerm Transport pmEs No J1PhysPathTerm Transport pmSes No

Page 117: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 117 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason J1PhysPathTerm Transport pmUas No LoadControl RNC pmAdmittedRequestsB0 No LoadControl RNC pmAdmittedRequestsB1 No LoadControl RNC pmAdmittedRequestsF0 No LoadControl RNC pmAdmittedRequestsF1 No LoadControl RNC pmAdmittedRequestsF2 No LoadControl RNC pmAdmittedRequestsF3 No LoadControl RNC pmAdmittedRequestsF4 No LoadControl RNC pmRefusedRequestsB0 No LoadControl RNC pmRefusedRequestsB1 No LoadControl RNC pmRefusedRequestsF0 No LoadControl RNC pmRefusedRequestsF1 No LoadControl RNC pmRefusedRequestsF2 No LoadControl RNC pmRefusedRequestsF3 No LoadControl RNC pmRefusedRequestsF4 No LoadControl RNC pmSamplesMeasuredLoad Secondary Scanner Secondary Scanner LoadControl RNC pmSumMeasuredLoad Secondary Scanner Secondary Scanner LocationArea RNC pmCnInitPagingToIdleUeLa National_RNC_P5MD Dimensioning M3uAssociation Transport pmNoOfAspacAckReceived No M3uAssociation Transport pmNoOfAspacAckSent No M3uAssociation Transport pmNoOfAspacReceived No M3uAssociation Transport pmNoOfAspacSent No M3uAssociation Transport pmNoOfAspdnAckReceived No M3uAssociation Transport pmNoOfAspdnAckSent No M3uAssociation Transport pmNoOfAspdnReceived No M3uAssociation Transport pmNoOfAspdnSent No M3uAssociation Transport pmNoOfAspiaAckReceived No M3uAssociation Transport pmNoOfAspiaAckSent No M3uAssociation Transport pmNoOfAspiaReceived No M3uAssociation Transport pmNoOfAspiaSent No M3uAssociation Transport pmNoOfAspupAckReceived No M3uAssociation Transport pmNoOfAspupAckSent No M3uAssociation Transport pmNoOfAspupReceived No M3uAssociation Transport pmNoOfAspupSent No

Page 118: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 118 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason M3uAssociation Transport pmNoOfCommunicationLost No M3uAssociation Transport pmNoOfCongestions No M3uAssociation Transport pmNoOfDataMsgRec No M3uAssociation Transport pmNoOfDataMsgSent No M3uAssociation Transport pmNoOfDaudMsgRec No M3uAssociation Transport pmNoOfDaudMsgSent No M3uAssociation Transport pmNoOfDavaRec No M3uAssociation Transport pmNoOfDavaSent No M3uAssociation Transport pmNoOfDunaRec No M3uAssociation Transport pmNoOfDunaSent No M3uAssociation Transport pmNoOfDupuRec No M3uAssociation Transport pmNoOfDupuSent No M3uAssociation Transport pmNoOfErrorMsgRec No M3uAssociation Transport pmNoOfErrorMsgSent No M3uAssociation Transport pmNoOfM3uaDataMsgDiscarded No M3uAssociation Transport pmNoOfNotifyMsgRec No M3uAssociation Transport pmNoOfSconRec No M3uAssociation Transport pmNoOfSconSent No MediumAccessUnit Transport pmNoOfDot3StatsFCSErrors No MediumAccessUnit Transport pmNoOfDot3StatsLateCollisions No Mtp3bAp Transport pmNoOfAdjacentSPNotAccessible No Mtp3bAp Transport pmNoOfUserPartUnavailRec No Mtp3bSlAnsi Transport pmNoOfAALINServiceInd No Mtp3bSlChina Transport pmNoOfAALOUTInd No Mtp3bSlItu Transport pmNoOfCBDSent No Mtp3bSlTtc Transport pmNoOfCOOXCOSent No Mtp3bSlTtc Transport pmNoOfLocalLinkCongestCeaseRec No Mtp3bSlTtc Transport pmNoOfLocalLinkCongestRec No Mtp3bSlTtc Transport pmNoOfMSURec No Mtp3bSlTtc Transport pmNoOfMSUSent No Mtp3bSpAnsi Transport pmNoOfCBARec No Mtp3bSpAnsi Transport pmNoOfCBASent No Mtp3bSpAnsi Transport pmNoOfChangeBackDeclRec No Mtp3bSpAnsi Transport pmNoOfChangeOverRec No

Page 119: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 119 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Mtp3bSpAnsi Transport pmNoOfCOAXCARec No Mtp3bSpAnsi Transport pmNoOfCOAXCASent No Mtp3bSpAnsi Transport pmNoOfControlledRerouteSuccessPerf No Mtp3bSpAnsi Transport pmNoOfECARec No Mtp3bSpAnsi Transport pmNoOfECASent No Mtp3bSpAnsi Transport pmNoOfECOSent No Mtp3bSpAnsi Transport pmNoOfEmergencyChangeOverRec No Mtp3bSpAnsi Transport pmNoOfForcedRerouteSuccessPerf No Mtp3bSpAnsi Transport pmNoOfIncomingAssocEstabRequestInStateDownWhenStateEstabIsBlocked No Mtp3bSpAnsi Transport pmNoOfLowerPrioMsgDiscarded No Mtp3bSpAnsi Transport pmNoOfMaxTrialsForAssocActivReached No Mtp3bSpAnsi Transport pmNoOfMaxTrialsForAssocEstabReached No Mtp3bSpAnsi Transport pmNoOfSctpAssociationRestart No Mtp3bSpAnsi Transport pmNoOfSctpBufOverflow No Mtp3bSpAnsi Transport pmNoOfSctpCommunicationErr No Mtp3bSpAnsi Transport pmNoOfSctpNetworkStatusChange No Mtp3bSpAnsi Transport pmNoOfSctpResumeSending No Mtp3bSpAnsi Transport pmNoOfSctpSendFailure No Mtp3bSpAnsi Transport pmNoOfSLTAFirstTimeOutRec No Mtp3bSpAnsi Transport pmNoOfSLTASecondTimeOutRec No Mtp3bSpAnsi Transport pmNoOfSuccessAssocAbort No Mtp3bSpAnsi Transport pmNoOfSuccessAssocEstablish No Mtp3bSpAnsi Transport pmNoOfSuccessAssocShutDown No Mtp3bSpAnsi Transport pmNoOfTimerT21WasStarted No Mtp3bSpAnsi Transport pmNoOfTRARec No Mtp3bSpAnsi Transport pmNoOfTRASent No Mtp3bSpAnsi Transport pmNoOfUnsuccessAssocEstablish No Mtp3bSpAnsi Transport pmNoOfUnsuccessForcedRerouting No Mtp3bSpAnsi Transport pmNoOfUPMsgDiscardedDueToRoutingErr No Mtp3bSpChina Transport pmNoOfCBARec No Mtp3bSpChina Transport pmNoOfCBASent No Mtp3bSpChina Transport pmNoOfChangeBackDeclRec No Mtp3bSpChina Transport pmNoOfChangeOverRec No Mtp3bSpChina Transport pmNoOfCOAXCARec No

Page 120: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 120 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Mtp3bSpChina Transport pmNoOfCOAXCASent No Mtp3bSpChina Transport pmNoOfControlledRerouteSuccessPerf No Mtp3bSpChina Transport pmNoOfECARec No Mtp3bSpChina Transport pmNoOfECASent No Mtp3bSpChina Transport pmNoOfECOSent No Mtp3bSpChina Transport pmNoOfEmergencyChangeOverRec No Mtp3bSpChina Transport pmNoOfForcedRerouteSuccessPerf No Mtp3bSpChina Transport pmNoOfIncomingAssocEstabRequestInStateDownWhenStateEstabIsBlocked No Mtp3bSpChina Transport pmNoOfLowerPrioMsgDiscarded No Mtp3bSpChina Transport pmNoOfMaxTrialsForAssocActivReached No Mtp3bSpChina Transport pmNoOfMaxTrialsForAssocEstabReached No Mtp3bSpChina Transport pmNoOfSctpAssociationRestart No Mtp3bSpChina Transport pmNoOfSctpBufOverflow No Mtp3bSpChina Transport pmNoOfSctpCommunicationErr No Mtp3bSpChina Transport pmNoOfSctpNetworkStatusChange No Mtp3bSpChina Transport pmNoOfSctpResumeSending No Mtp3bSpChina Transport pmNoOfSctpSendFailure No Mtp3bSpChina Transport pmNoOfSLTAFirstTimeOutRec No Mtp3bSpChina Transport pmNoOfSLTASecondTimeOutRec No Mtp3bSpChina Transport pmNoOfSuccessAssocAbort No Mtp3bSpChina Transport pmNoOfSuccessAssocEstablish No Mtp3bSpChina Transport pmNoOfSuccessAssocShutDown No Mtp3bSpChina Transport pmNoOfTimerT21WasStarted No Mtp3bSpChina Transport pmNoOfTRARec No Mtp3bSpChina Transport pmNoOfTRASent No Mtp3bSpChina Transport pmNoOfUnsuccessAssocEstablish No Mtp3bSpChina Transport pmNoOfUnsuccessForcedRerouting No Mtp3bSpChina Transport pmNoOfUPMsgDiscardedDueToRoutingErr No Mtp3bSpItu Transport pmNoOfCBARec No Mtp3bSpItu Transport pmNoOfCBASent No Mtp3bSpItu Transport pmNoOfChangeBackDeclRec No Mtp3bSpItu Transport pmNoOfChangeOverRec No Mtp3bSpItu Transport pmNoOfCOAXCARec No Mtp3bSpItu Transport pmNoOfCOAXCASent No

Page 121: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 121 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Mtp3bSpItu Transport pmNoOfControlledRerouteSuccessPerf No Mtp3bSpItu Transport pmNoOfECARec No Mtp3bSpItu Transport pmNoOfECASent No Mtp3bSpItu Transport pmNoOfECOSent No Mtp3bSpItu Transport pmNoOfEmergencyChangeOverRec No Mtp3bSpItu Transport pmNoOfForcedRerouteSuccessPerf No Mtp3bSpItu Transport pmNoOfIncomingAssocEstabRequestInStateDownWhenStateEstabIsBlocked No Mtp3bSpItu Transport pmNoOfLowerPrioMsgDiscarded No Mtp3bSpItu Transport pmNoOfMaxTrialsForAssocActivReached No Mtp3bSpItu Transport pmNoOfMaxTrialsForAssocEstabReached No Mtp3bSpItu Transport pmNoOfSctpAssociationRestart No Mtp3bSpItu Transport pmNoOfSctpBufOverflow No Mtp3bSpItu Transport pmNoOfSctpCommunicationErr No Mtp3bSpItu Transport pmNoOfSctpNetworkStatusChange No Mtp3bSpItu Transport pmNoOfSctpResumeSending No Mtp3bSpItu Transport pmNoOfSctpSendFailure No Mtp3bSpItu Transport pmNoOfSLTAFirstTimeOutRec No Mtp3bSpItu Transport pmNoOfSLTASecondTimeOutRec No Mtp3bSpItu Transport pmNoOfSuccessAssocAbort No Mtp3bSpItu Transport pmNoOfSuccessAssocEstablish No Mtp3bSpItu Transport pmNoOfSuccessAssocShutDown No Mtp3bSpItu Transport pmNoOfTimerT21WasStarted No Mtp3bSpItu Transport pmNoOfTRARec No Mtp3bSpItu Transport pmNoOfTRASent No Mtp3bSpItu Transport pmNoOfUnsuccessAssocEstablish No Mtp3bSpItu Transport pmNoOfUnsuccessAssocShutDown Mtp3bSpItu Transport pmNoOfUnsuccessForcedRerouting No Mtp3bSpItu Transport pmNoOfUPMsgDiscardedDueToRoutingErr No Mtp3bSpTtc Transport pmNoOfSctpBufOverflow Mtp3bSpTtc Transport pmInStateDownWhenStateEstabIsBlocked Mtp3bSpTtc Transport pmNoOfCBARec No Mtp3bSpTtc Transport pmNoOfCBASent No Mtp3bSpTtc Transport pmNoOfChangeBackDeclRec No Mtp3bSpTtc Transport pmNoOfChangeOverRec No

Page 122: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 122 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Mtp3bSpTtc Transport pmNoOfCOAXCARec No Mtp3bSpTtc Transport pmNoOfCOAXCASent No Mtp3bSpTtc Transport pmNoOfControlledRerouteSuccessPerf No Mtp3bSpTtc Transport pmNoOfECARec No Mtp3bSpTtc Transport pmNoOfECASent No Mtp3bSpTtc Transport pmNoOfECOSent No Mtp3bSpTtc Transport pmNoOfEmergencyChangeOverRec No Mtp3bSpTtc Transport pmNoOfForcedRerouteSuccessPerf No Mtp3bSpTtc Transport pmNoOfIncomingAssocEstabRequest No Mtp3bSpTtc Transport pmNoOfIncomingAssocEstabRequestInStateDownWhenStateEstabIsBlocked No Mtp3bSpTtc Transport pmNoOfMaxTrialsForAssocActivReached No Mtp3bSpTtc Transport pmNoOfMaxTrialsForAssocEstabReached No Mtp3bSpTtc Transport pmNoOfSctpAssociationRestart No Mtp3bSpTtc Transport pmNoOfSctpBufOverflow No Mtp3bSpTtc Transport pmNoOfSctpCommunicationErr No Mtp3bSpTtc Transport pmNoOfSctpNetworkStatusChange No Mtp3bSpTtc Transport pmNoOfSctpResumeSending No Mtp3bSpTtc Transport pmNoOfSctpSendFailure No Mtp3bSpTtc Transport pmNoOfSLTAFirstTimeOutRec No Mtp3bSpTtc Transport pmNoOfSLTASecondTimeOutRec No Mtp3bSpTtc Transport pmNoOfSuccessAssocAbort No Mtp3bSpTtc Transport pmNoOfSuccessAssocEstablish No Mtp3bSpTtc Transport pmNoOfSuccessAssocShutDown No Mtp3bSpTtc Transport pmNoOfTRARec No Mtp3bSpTtc Transport pmNoOfTRASent No Mtp3bSpTtc Transport pmNoOfUnsuccessAssocEstablish No Mtp3bSpTtc Transport pmNoOfUnsuccessAssocShutDown No Mtp3bSpTtc Transport pmNoOfUnsuccessForcedRerouting No Mtp3bSpTtc Transport pmNoOfUPMsgDiscardedDueToRoutingErr No Mtp3bSr Transport pmNoOfSecondsAccumulatedRouteUnavailable No Mtp3bSrs Transport pmNoOfDiscardedMsgFromBroadToNarrow No Mtp3bSrs Transport pmNoOfSecsAccRouteSetUnavailable No Mtp3bSrs Transport pmNoOfTransferAllowedRec No Mtp3bSrs Transport pmNoOfTransferControlledRec No

Page 123: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 123 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Mtp3bSrs Transport pmNoOfTransferProhibitedRec No NbapCommon Site pmNoOfDiscardedMsg No NbapCommon Site pmNoOfDiscardedNbapMessages National_Site_P5MD Dimensioning NniSaalTp Transport - RNC pmLinkInServiceTime No NniSaalTp Transport - RNC pmNoOfAlignmentFailures No NniSaalTp Transport - RNC pmNoOfAllSLFailures No NniSaalTp Transport - RNC pmNoOfLocalCongestions National_RNC_P5MD Troubleshooting NniSaalTp Transport - RNC pmNoOfNoResponses No NniSaalTp Transport - RNC pmNoOfOtherErrors No NniSaalTp Transport - RNC pmNoOfProtocolErrors No NniSaalTp Transport - RNC pmNoOfReceivedSDUs No NniSaalTp Transport - RNC pmNoOfRemoteCongestions No NniSaalTp Transport - RNC pmNoOfSentSDUs No NniSaalTp Transport - RNC pmNoOfSequenceDataLosses No NniSaalTp Transport - RNC pmNoOfUnsuccReTransmissions No Os155SpiTtp Transport pmMsBbe No Os155SpiTtp Transport pmMsEs No Os155SpiTtp Transport pmMsSes No Os155SpiTtp Transport pmMsUas No Ospf Transport pmNoOfOspfOriginateNewLsas No Ospf Transport pmNoOfOspfRxNewLsas No OspfArea Transport pmNoOfOspfSpfRuns No OspfInterface Transport pmNoOfOspfIfEvents No PacketDataRouter RNC pmNoFaultyIpPackets National_RNC_P5MD Dimensioning PacketDataRouter RNC pmNoRoutedIpBytesDl National_RNC_P5MD Dimensioning PacketDataRouter RNC pmNoRoutedIpBytesUl National_RNC_P5MD Dimensioning PacketDataRouter RNC pmNoRoutedIpPacketsDl National_RNC_P5MD Dimensioning PacketDataRouter RNC pmNoRoutedIpPacketsUl National_RNC_P5MD Dimensioning PacketDataRouter RNC pmSamplesPacketDataRab No PacketDataRouter RNC pmSumPacketDataRab No Paging RNC pmCnInitPagingToIdleUe No Paging RNC pmNoPageDiscardCmpLoadC National_RNC_P5MD Dimensioning PdrDevice RNC pmSamplesMeasuredPdrSpLoad Secondary Scanner Secondary Scanner PdrDevice RNC pmSumMeasuredPdrSpLoad Secondary Scanner Secondary Scanner

Page 124: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 124 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Prach Site pmNoPreambleFalseDetection National_Site_P5MD Troubleshooting Prach Site pmPopagationDelay No Prach Site pmReceivedPreambleSir No Prach Site pmSuccReceivedBlocks No Prach Site pmUnsuccReceivedBlocks No Rach Cell pmFaultyTransportBlocks National_RNC_P5MD Troubleshooting Rach Cell pmNoRecRandomAccSuccess National_RNC_P5MD Troubleshooting Rach Cell pmTransportBlocks National_RNC_P5MD Troubleshooting RadioLinks Site pmAverageSir No RadioLinks Site pmAverageSirError No RadioLinks Site pmDpcchBer No RadioLinks Site pmDpchCodePowerSf128 No Consider activating RadioLinks Site pmDpchCodePowerSf16 No Consider activating RadioLinks Site pmDpchCodePowerSf256 No Consider activating RadioLinks Site pmDpchCodePowerSf32 No Consider activating RadioLinks Site pmDpchCodePowerSf4 No RadioLinks Site pmDpchCodePowerSf64 No Consider activating RadioLinks Site pmDpchCodePowerSf8 No Consider activating RadioLinks Site pmDpdchBer No RadioLinks Site pmOutOfSynch National_Site_P5MD Troubleshooting RadioLinks Site pmRLSSupSynchToUnsynch National_Site_P5MD Troubleshooting RadioLinks Site pmRLSSupWaitToOutOfSynch National_Site_P5MD Troubleshooting RadioLinks Site pmUISynchTime No RadioLinks Site pmUISynchTimeSHO No Ranap RNC pmNnsfLoadDistributionRouted No Add when Streaming QoS is GA Ranap RNC pmNnsfNriRouted No Rcs RNC pmNoReleaseCchWaitCuT Secondary Scanner Secondary Scanner Rcs RNC pmNoReleaseDchRcLostT Secondary Scanner Secondary Scanner Rcs RNC pmNoRlcErrors Secondary Scanner Secondary Scanner RncFunction RNC pmMocnRedirections No RncFunction RNC pmNoDiscardSduDcch No RncFunction RNC pmNoDiscardSduDtch No RncFunction RNC pmNoInvalidRabEstablishAttempts National_RNC_P5MD Troubleshooting RncFunction RNC pmNoInvalidRabReleaseAttempts No

Page 125: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 125 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason RncFunction RNC pmNoIuSigEstablishAttemptCs No RncFunction RNC pmNoIuSigEstablishAttemptPs No RncFunction RNC pmNoIuSigEstablishSuccessCs No RncFunction RNC pmNoIuSigEstablishSuccessPs No RncFunction RNC pmNoOfPacketCallDuration1 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDuration2 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDuration3 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDuration4 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDurationHs1 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDurationHs2 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDurationHs3 Primary Scanner Primary Scanner RncFunction RNC pmNoOfPacketCallDurationHs4 Primary Scanner Primary Scanner RncFunction RNC pmNoOfRedirectedEmergencyCalls Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmNoRabEstablishFailureUeCapability Secondary Scanner Secondary Scanner RncFunction RNC pmNoReceivedSduDcch No RncFunction RNC pmNoReceivedSduDtch No RncFunction RNC pmNoRetransPduDcch No RncFunction RNC pmNoRetransPduDtch No RncFunction RNC pmNoSentPduDcch No RncFunction RNC pmNoSentPduDtch No RncFunction RNC pmPositioningReqAtt No RncFunction RNC pmPositioningReqSucc No

RncFunction RNC pmSentPacketData1 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketData2 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketData3 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketData4 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketDataHs1 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketDataHs2 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketDataHs3 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

RncFunction RNC pmSentPacketDataHs4 Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

Page 126: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 126 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason RncFunction RNC pmSentPacketDataInclRetrans1 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetrans2 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetrans3 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetrans4 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetransHs1 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetransHs2 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetransHs3 Primary Scanner Primary Scanner RncFunction RNC pmSentPacketDataInclRetransHs4 Primary Scanner Primary Scanner RncFunction RNC pmTotalPacketDuration1 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDuration2 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDuration3 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDuration4 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDurationHs1 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDurationHs2 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDurationHs3 Primary Scanner Primary Scanner - Level 3 Scorecard RncFunction RNC pmTotalPacketDurationHs4 Primary Scanner Primary Scanner - Level 3 Scorecard RoutingArea RNC pmCnInitPagingToIdleUeRa No SccpAccountingCriteria Transport pmNoOfMsg No SccpAccountingCriteria Transport pmNoOfOctets No Sccpch Site pmNoOfTfc1OnFach1 No Add when FACH is GA Sccpch Site pmNoOfTfc2OnFach1 No Add when FACH is GA Sccpch Site pmNoOfTfc3OnFach2 No Add when FACH is GA SccpPolicing Transport pmNoOfRejectMsg No SccpScrc Transport pmNoOfConnectFailure No SccpScrc Transport pmNoOfHopCounterViolation No SccpScrc Transport pmNoOfRoutingFailNetworkCongest No SccpScrc Transport pmNoOfRoutingFailNoTransAddrOfSuchNature No SccpScrc Transport pmNoOfRoutingFailNoTransSpecificAddr No SccpScrc Transport pmNoOfRoutingFailReasonUnknown No SccpScrc Transport pmNoOfRoutingFailSubsysUnavail No SccpScrc Transport pmNoOfRoutingFailUnequippedSubsys No SccpScrc Transport pmNoOfRoutingFailure No SccpScrc Transport pmNoOfRoutingFailurePointCodeUnAvail No SccpSp Transport pmNoOfConInUseExceedHighWaterMark No

Page 127: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 127 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason SccpSp Transport pmNoOfConInUseReceededLowWaterMark No SccpSp Transport pmNoOfCREFRecFromNL No SccpSp Transport pmNoOfCREFSentToNL No SccpSp Transport pmNoOfCRRec No SccpSp Transport pmNoOfCRSent No SccpSp Transport pmNoOfDT1Rec No SccpSp Transport pmNoOfDT1Sent No SccpSp Transport pmNoOfERRRec No SccpSp Transport pmNoOfERRSent No SccpSp Transport pmNoOfLUDTRec No SccpSp Transport pmNoOfLUDTSSent No SccpSp Transport pmNoOfRLSDRecFromNL No SccpSp Transport pmNoOfRLSDSentToNL No SccpSp Transport pmNoOfSubsysAllowedSent No SccpSp Transport pmNoOfUDTRec No SccpSp Transport pmNoOfUDTSent No SccpSp Transport pmNoOfUDTSRec No SccpSp Transport pmNoOfUDTSSent No SccpSp Transport pmNoOfXUDTRec No SccpSp Transport pmNoOfXUDTSent No SccpSp Transport pmNoOfXUDTSRec No SccpSp Transport pmNoOfXUDTSSent No Sctp Transport pmSctpAborted No Sctp Transport pmSctpActiveEstab No Sctp Transport pmSctpCurrEstab No Sctp Transport pmSctpPassiveEstab No Sctp Transport pmSctpShutdowns No Sctp Transport pmSctpStatAssocOutOfBlue No Sctp Transport pmSctpStatChecksumErrorCounter No Sctp Transport pmSctpStatCommResume No Sctp Transport pmSctpStatCommStop No Sctp Transport pmSctpStatFragmentedUserMsg No Sctp Transport pmSctpStatOutOfOrderRecChunks No Sctp Transport pmSctpStatOutOfOrderSendChunks No

Page 128: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 128 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Sctp Transport pmSctpStatReassembledUserMsg No Sctp Transport pmSctpStatRecChunks No Sctp Transport pmSctpStatRecChunksDropped No Sctp Transport pmSctpStatReceivedControlChunks No Sctp Transport pmSctpStatReceivedPackages No Sctp Transport pmSctpStatRetransChunks No Sctp Transport pmSctpStatSentChunks No Sctp Transport pmSctpStatSentChunksDropped No Sctp Transport pmSctpStatSentControlChunks No Sctp Transport pmSctpStatSentPackages No SecurityHandling RNC pmIntegrityFailureRrcMsg National_RNC_P5MD Troubleshooting Sts1SpeTtp Transport pmEsp No Sts1SpeTtp Transport pmSesp No Sts1SpeTtp Transport pmUasp No Sts3CspeTtp Transport pmEsp No Sts3CspeTtp Transport pmSesp No Sts3CspeTtp Transport pmUasp No T1PhysPathTerm Transport - Site pmEs National_Site_P5MD Troubleshooting T1PhysPathTerm Transport - Site pmSes National_Site_P5MD Troubleshooting T1PhysPathTerm Transport - Site pmUas National_Site_P5MD Troubleshooting T1Ttp Transport - RXI pmEs National_RXI_P5MD Troubleshooting T1Ttp Transport - RXI pmSes National_RXI_P5MD Troubleshooting T1Ttp Transport - RXI pmUas National_RXI_P5MD Troubleshooting T3PhysPathTerm Transport - Site pmEsCpp National_Site_P5MD Troubleshooting T3PhysPathTerm Transport - Site pmSesCpp National_Site_P5MD Troubleshooting T3PhysPathTerm Transport - RBS pmUas No UePositioning RNC pmPositioningReqAttCellId No UePositioning RNC pmPositioningReqAttEsCellId No UePositioning RNC pmPositioningReqReAttCellId No UePositioning RNC pmPositioningReqReAttEsCellId No UePositioning RNC pmPositioningReqReAttSuccCellId No UePositioning RNC pmPositioningReqSuccCellId No UePositioning RNC pmPositioningReqSuccCellIdQosSucc No UeRc RNC pmDlDchTrafficVolumeBeforeSplit National_RNC_P5MD Dimensioning

Page 129: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 129 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UeRc RNC pmDlFachTrafficVolume National_RNC_P5MD Dimensioning UeRc RNC pmFaultyTransportBlocksAcUl Primary Scanner Primary Scanner UeRc RNC pmNoRabEstablishAttempts National_RNC_P5MD Troubleshooting UeRc RNC pmNoRabEstablishSuccess National_RNC_P5MD Troubleshooting UeRc RNC pmNoRabReleaseAttempts National_RNC_P5MD Troubleshooting UeRc RNC pmNoRabReleaseSuccess National_RNC_P5MD Troubleshooting UeRc RNC pmSamplesRabEstablish National_RNC_P5MD Troubleshooting UeRc RNC pmSumRabEstablish National_RNC_P5MD Troubleshooting UeRc RNC pmTransportBlocksAcUl Primary Scanner Primary Scanner UeRc RNC pmUlDchTrafficVolumeAfterComb National_RNC_P5MD Dimensioning UeRc RNC pmUlRachTrafficVolume National_RNC_P5MD Dimensioning UniSaalTp Transport - RNC pmLinkInServiceTime No UniSaalTp Transport - RNC pmNoOfAllSLFailures No UniSaalTp Transport - RNC pmNoOfLocalCongestions National_RNC_P5MD Troubleshooting UniSaalTp Transport - RNC pmNoOfNoResponses No UniSaalTp Transport - RNC pmNoOfOtherErrors No UniSaalTp Transport - RNC pmNoOfProtocolErrors No UniSaalTp Transport - RNC pmNoOfReceivedSDUs No UniSaalTp Transport - RNC pmNoOfRemoteCongestions No UniSaalTp Transport - RNC pmNoOfSentSDUs No UniSaalTp Transport - RNC pmNoOfSequenceDataLosses No UniSaalTp Transport - RNC pmNoOfUnsuccReTransmissions No UplinkBaseBandPool Site pmApomcOfRakeRecUsed No UplinkBaseBandPool Site pmApomcOfUlLinkCap National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmHwCePoolEul National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfIbho National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf128 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf16 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf256 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf32 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf4 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf64 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoOfRadioLinksSf8 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmNoUlHwLimitEul National_Site_P5MD Dimensioning

Page 130: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 130 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UplinkBaseBandPool Site pmSetupAttemptsSf128 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf16 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf256 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf32 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf4 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf64 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupAttemptsSf8 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf128 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf16 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf256 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf32 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf4 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf64 National_Site_P5MD Dimensioning UplinkBaseBandPool Site pmSetupFailuresSf8 National_Site_P5MD Dimensioning Ura RNC pmCnInitPagingToUraUe No Add when URA is GA Ura RNC pmSamplesRabUra No Add when URA is GA Ura RNC pmSumRabUra No Add when URA is GA Ura RNC pmUtranInitPagingToUraUe No Add when URA is GA UtranCell Cell pmCellDowntimeAuto Primary Scanner Primary Scanner UtranCell Cell pmCellDowntimeMan Primary Scanner Primary Scanner UtranCell Cell pmChSwitchAttemptFachUra No Add when URA is GA UtranCell Cell pmChSwitchAttemptUraFach No Add when URA is GA UtranCell Cell pmChSwitchDch128Fach National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchDch384Fach National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchDch64Fach National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchFachDch National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchFachIdle Primary Scanner Primary Scanner UtranCell Cell pmChSwitchP128P384 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchP128P64 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchP384P128 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchP64P128 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchSp0Sp64 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchSp64Sp0 National_RNC_P5MD Troubleshooting UtranCell Cell pmChSwitchSuccFachUra No Add when URA is GA

Page 131: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 131 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmChSwitchSuccUraFach No Add when URA is GA UtranCell Cell pmCmAttDlHls National_RNC_P5MD Troubleshooting UtranCell Cell pmCmAttDlSf2 National_RNC_P5MD Troubleshooting UtranCell Cell pmCmAttUlHls National_RNC_P5MD Troubleshooting UtranCell Cell pmCmAttUlSf2 National_RNC_P5MD Troubleshooting UtranCell Cell pmCmStop National_RNC_P5MD Troubleshooting UtranCell Cell pmCmSuccDlHls National_RNC_P5MD Troubleshooting UtranCell Cell pmCmSuccDlSf2 National_RNC_P5MD Troubleshooting UtranCell Cell pmCmSuccUlHls National_RNC_P5MD Troubleshooting UtranCell Cell pmCmSuccUlSf2 National_RNC_P5MD Troubleshooting UtranCell Cell pmDlRlcUserPacketThp Secondary Scanner Secondary Scanner UtranCell Cell pmDlTrafficVolumeAmr4750 No Add when Multirate AMR is GA UtranCell Cell pmDlTrafficVolumeAmr5900 No Add when Multirate AMR is GA UtranCell Cell pmDlTrafficVolumeAmr7950 No Add when Multirate AMR is GA UtranCell Cell pmDlTrafficVolumeCs12 National_RNC_P5MD Dimensioning UtranCell Cell pmDlTrafficVolumeCs57 No UtranCell Cell pmDlTrafficVolumeCs64 No UtranCell Cell pmDlTrafficVolumePs128 National_RNC_P5MD Dimensioning UtranCell Cell pmDlTrafficVolumePs384 National_RNC_P5MD Dimensioning UtranCell Cell pmDlTrafficVolumePs64 National_RNC_P5MD Dimensioning UtranCell Cell pmDlTrafficVolumePs8 No Add when Streaming QoS is GA UtranCell Cell pmDlTrafficVolumePsCommon National_RNC_P5MD Dimensioning UtranCell Cell pmDlTrafficVolumePsStr128 No Add when Streaming QoS is GA UtranCell Cell pmDlTrafficVolumePsStr16 No Add when Streaming QoS is GA UtranCell Cell pmDlTrafficVolumePsStr64 No Add when Streaming QoS is GA UtranCell Cell pmDlUpswitchAttemptHigh National_RNC_P5MD Troubleshooting UtranCell Cell pmDlUpswitchAttemptHs Secondary Scanner Secondary Scanner UtranCell Cell pmDlUpswitchAttemptLow National_RNC_P5MD Troubleshooting UtranCell Cell pmDlUpswitchAttemptMedium National_RNC_P5MD Troubleshooting UtranCell Cell pmDlUpswitchSuccessHigh National_RNC_P5MD Troubleshooting UtranCell Cell pmDlUpswitchSuccessHs Secondary Scanner Secondary Scanner UtranCell Cell pmDlUpswitchSuccessLow National_RNC_P5MD Troubleshooting UtranCell Cell pmDlUpswitchSuccessMedium National_RNC_P5MD Troubleshooting UtranCell Cell pmDownSwitchAttempt Secondary Scanner Secondary Scanner

Page 132: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 132 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmDownSwitchSuccess Secondary Scanner Secondary Scanner UtranCell Cell pmEnableEulHhoAttempt No UtranCell Cell pmEnableEulHhoSuccess No UtranCell Cell pmEnableHsHhoAttempt No UtranCell Cell pmEnableHsHhoSuccess No UtranCell Cell pmEnableHsHhoSuccess No UtranCell Cell pmEulHarqTransmTti10Failure National_RNC_P5MD Troubleshooting UtranCell Cell pmEulHarqTransmTti10PsInteractive National_RNC_P5MD Troubleshooting UtranCell Cell pmEulHarqTransmTti10Srb National_RNC_P5MD Troubleshooting UtranCell Cell pmEulMacesPduTti10DelivPsInteractive No UtranCell Cell pmEulMacesPduTti10DelivSrb No UtranCell Cell pmEulMacesPduTti10UndelivPsInteractive No UtranCell Cell pmEulMacesPduTti10UndelivSrb National_RNC_P5MD Troubleshooting UtranCell Cell pmEulToDchAttempt National_RNC_P5MD Troubleshooting UtranCell Cell pmEulToDchSuccess National_RNC_P5MD Troubleshooting UtranCell Cell pmFailedChSwitch National_RNC_P5MD Troubleshooting UtranCell Cell pmFailedDchChSwitch National_RNC_P5MD Troubleshooting UtranCell Cell pmFaultyTransportBlocksBcUl National_RNC_P5MD Troubleshooting UtranCell Cell pmHsToDchAttempt National_RNC_P5MD Troubleshooting UtranCell Cell pmHsToDchSuccess National_RNC_P5MD Troubleshooting UtranCell Cell pmInactivityMultiPsInt No UtranCell Cell pmInactivityPsStreamIdle Secondary Scanner Secondary Scanner UtranCell Cell pmInterFreqMeasCmStart National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmInterFreqMeasCmStop National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmInterFreqMeasNoCmStart National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmInterFreqMeasNoCmStop National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmIratHoGsmMeasCmStart National_RNC_P5MD Troubleshooting UtranCell Cell pmIratHoGsmMeasNoCmStart National_RNC_P5MD Troubleshooting UtranCell Cell pmNoCellDchDisconnectAbnorm Secondary Scanner Secondary Scanner - Level 3 Scorecard UtranCell Cell pmNoCellDchDisconnectNormal Secondary Scanner Secondary Scanner UtranCell Cell pmNoCellFachDisconnectAbnorm Secondary Scanner Secondary Scanner UtranCell Cell pmNoCellFachDisconnectNormal Secondary Scanner Secondary Scanner UtranCell Cell pmNoCellUpdAttempt Secondary Scanner Secondary Scanner UtranCell Cell pmNoCellUpdSuccess Secondary Scanner Secondary Scanner

Page 133: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 133 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmNoCs64DchDiscAbnorm Secondary Scanner Secondary Scanner - Level 3 Scorecard UtranCell Cell pmNoCs64DchDiscNormal Secondary Scanner Secondary Scanner UtranCell Cell pmNoCsStreamDchDiscAbnorm Primary Scanner Primary Scanner - Level 3 Scorecard UtranCell Cell pmNoCsStreamDchDiscNormal Primary Scanner Primary Scanner UtranCell Cell pmNoDirRetryAtt Primary Scanner Primary Scanner UtranCell Cell pmNoDirRetrySuccess Secondary Scanner Secondary Scanner - Level 3 Scorecard UtranCell Cell pmNoDlChCodeAllocAltCodeCm National_RNC_P5MD Dimensioning UtranCell Cell pmNoDlChCodeAllocAttemptCm National_RNC_P5MD Dimensioning UtranCell Cell pmNoEulCcAttempt No UtranCell Cell pmNoEulCcSuccess No UtranCell Cell pmNoEulHardHoReturnOldChSource No UtranCell Cell pmNoEulHardHoReturnOldChTarget No UtranCell Cell pmNoFailedAfterAdm Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptExceedConnLimit Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptLackDlAse Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptLackDlChnlCode Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptLackDlHw National_RNC_P5MD Dimensioning UtranCell Cell pmNoFailedRabEstAttemptLackDlHwBest National_RNC_P5MD Dimensioning UtranCell Cell pmNoFailedRabEstAttemptLackDlPwr Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptLackUlAse Secondary Scanner Secondary Scanner UtranCell Cell pmNoFailedRabEstAttemptLackUlHw National_RNC_P5MD Dimensioning UtranCell Cell pmNoFailedRabEstAttemptLackUlHwBest National_RNC_P5MD Dimensioning UtranCell Cell pmNoHsCcAttempt Secondary Scanner Secondary Scanner UtranCell Cell pmNoHsCcSuccess Secondary Scanner Secondary Scanner UtranCell Cell pmNoHsHardHoReturnOldChSource Primary Scanner Primary Scanner UtranCell Cell pmNoHsHardHoReturnOldChTarget Primary Scanner Primary Scanner UtranCell Cell pmNoIncomingEulHardHoAttempt No UtranCell Cell pmNoIncomingEulHardHoSuccess No UtranCell Cell pmNoIncomingHsHardHoAttempt Primary Scanner Primary Scanner UtranCell Cell pmNoIncomingHsHardHoSuccess Secondary Scanner Secondary Scanner UtranCell Cell pmNoInCsIratHoAdmFail No Add when 2G to 3G HO is GA UtranCell Cell pmNoInCsIratHoAtt No Add when 2G to 3G HO is GA UtranCell Cell pmNoInCsIratHoSuccess No Add when 2G to 3G HO is GA UtranCell Cell pmNoLoadSharingRrcConn Primary Scanner Primary Scanner

Page 134: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 134 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmNoLoadSharingRrcConnCs No UtranCell Cell pmNoLoadSharingRrcConnPs No UtranCell Cell pmNoNonServingCellReqDeniedEul National_RNC_P5MD Dimensioning UtranCell Cell pmNoNormalRabReleaseAmrNb National_RNC_P5MD Troubleshooting UtranCell Cell pmNoNormalRabReleaseCs64 Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRabReleaseCsStream Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRabReleasePacket Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRabReleasePacketStream Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRabReleasePacketStream128 Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRabReleasePacketUra No Add when URA is GA UtranCell Cell pmNoNormalRabReleaseSpeech Primary Scanner Primary Scanner UtranCell Cell pmNoNormalRbReleaseEul National_RNC_P5MD Troubleshooting UtranCell Cell pmNoNormalRbReleaseHs Primary Scanner Primary Scanner UtranCell Cell pmNoOfIurSwDownNgCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfIurTermCsCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfIurTermHsCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfIurTermSpeechCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfNonHoReqDeniedCs Primary Scanner Primary Scanner UtranCell Cell pmNoOfNonHoReqDeniedEul National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfNonHoReqDeniedHs Primary Scanner Primary Scanner UtranCell Cell pmNoOfNonHoReqDeniedInteractive Primary Scanner Primary Scanner UtranCell Cell pmNoOfNonHoReqDeniedPsStr128 Primary Scanner Primary Scanner UtranCell Cell pmNoOfNonHoReqDeniedPsStreaming Primary Scanner Primary Scanner UtranCell Cell pmNoOfNonHoReqDeniedSpeech Primary Scanner Primary Scanner UtranCell Cell pmNoOfReturningEmergencyCalls Secondary Scanner Secondary Scanner UtranCell Cell pmNoOfReturningRrcConn Secondary Scanner Secondary Scanner UtranCell Cell pmNoOfRlForDriftingUes Secondary Scanner Secondary Scanner UtranCell Cell pmNoOfRlForNonDriftingUes Secondary Scanner Secondary Scanner UtranCell Cell pmNoOfSampAseDl Secondary Scanner Secondary Scanner - Dimensioning UtranCell Cell pmNoOfSampAseUl Secondary Scanner Secondary Scanner - Dimensioning UtranCell Cell pmNoOfSwDownEulCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfSwDownHsCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfSwDownNgAdm Secondary Scanner Secondary Scanner UtranCell Cell pmNoOfSwDownNgCong National_RNC_P5MD Dimensioning

Page 135: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 135 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmNoOfSwDownNgHo National_RNC_P5MD Troubleshooting UtranCell Cell pmNoOfTermCsCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOfTermSpeechCong National_RNC_P5MD Dimensioning UtranCell Cell pmNoOutgoingEulHardHoAttempt National_RNC_P5MD Troubleshooting UtranCell Cell pmNoOutgoingEulHardHoSuccess National_RNC_P5MD Troubleshooting UtranCell Cell pmNoOutgoingHsHardHoAttempt Primary Scanner Primary Scanner UtranCell Cell pmNoOutgoingHsHardHoSuccess Secondary Scanner Secondary Scanner UtranCell Cell pmNoPacketDchDiscAbnorm Secondary Scanner Secondary Scanner - Level 3 Scorecard UtranCell Cell pmNoPacketDchDiscNormal Secondary Scanner Secondary Scanner UtranCell Cell pmNoPagingAttemptCnInitDcch National_RNC_P5MD Troubleshooting UtranCell Cell pmNoPagingAttemptUtranRejected National_RNC_P5MD Troubleshooting UtranCell Cell pmNoPagingType1Attempt No UtranCell Cell pmNoPagingType1AttemptCs No UtranCell Cell pmNoPagingType1AttemptPs No UtranCell Cell pmNoPsStream128Ps8DchDiscAbnorm No Add when Streaming QoS is GA UtranCell Cell pmNoPsStream128Ps8DchDiscNormal No Add when Streaming QoS is GA UtranCell Cell pmNoPsStream64Ps8DchDiscAbnorm Primary Scanner Primary Scanner - Level 3 Scorecard UtranCell Cell pmNoPsStream64Ps8DchDiscNormal Primary Scanner Primary Scanner UtranCell Cell pmNoRabEstablishAttemptAmrNb National_RNC_P5MD Troubleshooting UtranCell Cell pmNoRabEstablishAttemptCs57 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishAttemptCs64 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishAttemptPacketInteractive Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishAttemptPacketInteractiveEul National_RNC_P5MD Troubleshooting UtranCell Cell pmNoRabEstablishAttemptPacketInteractiveHs Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishAttemptPacketStream Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishAttemptPacketStream128 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard

UtranCell Cell pmNoRabEstablishAttemptSpeech Primary Scanner Primary Scanner - Level 1 and 3 Scorecard and Dimensioning

UtranCell Cell pmNoRabEstablishSuccessAmrNb National_RNC_P5MD Troubleshooting UtranCell Cell pmNoRabEstablishSuccessCs57 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishSuccessCs64 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishSuccessPacketInteractive Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishSuccessPacketInteractiveEul National_RNC_P5MD Troubleshooting UtranCell Cell pmNoRabEstablishSuccessPacketInteractiveHs Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoRabEstablishSuccessPacketStream Primary Scanner Primary Scanner - Level 1 and 3 Scorecard

Page 136: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 136 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmNoRabEstablishSuccessPacketStream128 Primary Scanner Primary Scanner - Level 1 and 3 Scorecard

UtranCell Cell pmNoRabEstablishSuccessSpeech Primary Scanner Primary Scanner - Level 1 and 3 Scorecard and Dimensioning

UtranCell Cell pmNoRejRrcConnMpLoadC Secondary Scanner Secondary Scanner UtranCell Cell pmNoReqDeniedAdm Secondary Scanner Secondary Scanner UtranCell Cell pmNoRlDeniedAdm National_RNC_P5MD Dimensioning UtranCell Cell pmNoRrcCsReqDeniedAdm Primary Scanner Dimensioning UtranCell Cell pmNoRrcPsReqDeniedAdm National_RNC_P5MD Dimensioning UtranCell Cell pmNoRrcReqDeniedAdm National_RNC_P5MD Dimensioning UtranCell Cell pmNoServingCellReqDeniedEul National_RNC_P5MD Dimensioning UtranCell Cell pmNoSpeechDchDiscAbnorm Secondary Scanner Secondary Scanner - Level 3 Scorecard UtranCell Cell pmNoSpeechDchDiscNormal Secondary Scanner Secondary Scanner UtranCell Cell pmNoSysRelSpeechNeighbr Secondary Scanner Secondary Scanner UtranCell Cell pmNoSysRelSpeechSoHo Secondary Scanner Secondary Scanner UtranCell Cell pmNoSysRelSpeechUlSynch Secondary Scanner Secondary Scanner UtranCell Cell pmNoSystemRabReleaseAmrNb National_RNC_P5MD Troubleshooting UtranCell Cell pmNoSystemRabReleaseCs64 Primary Scanner Primary Scanner UtranCell Cell pmNoSystemRabReleaseCsStream Primary Scanner Primary Scanner UtranCell Cell pmNoSystemRabReleasePacket Primary Scanner Primary Scanner - Level 3 Scorecard UtranCell Cell pmNoSystemRabReleasePacketStream Primary Scanner Primary Scanner - Level 3 Scorecard UtranCell Cell pmNoSystemRabReleasePacketStream128 Primary Scanner Primary Scanner - Level 3 Scorecard UtranCell Cell pmNoSystemRabReleasePacketUra No Add when URA is GA UtranCell Cell pmNoSystemRabReleaseSpeech Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmNoSystemRbReleaseEul National_RNC_P5MD Troubleshooting UtranCell Cell pmNoSystemRbReleaseHs Primary Scanner Primary Scanner UtranCell Cell pmNoTimesCellFailAddToActSet Secondary Scanner Secondary Scanner UtranCell Cell pmNoTimesIfhoCellFailAddToActSet National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmNoTimesIfhoRlAddToActSet National_RNC_P5MD Troubleshooting - IF UtranCell Cell pmNoTimesRlAddToActSet Secondary Scanner Secondary Scanner UtranCell Cell pmNoTimesRlDelFrActSet Secondary Scanner Secondary Scanner UtranCell Cell pmNoTimesRlRepInActSet Secondary Scanner Secondary Scanner UtranCell Cell pmNoTpSwitchSp64Speech Primary Scanner Primary Scanner UtranCell Cell pmNoUraUpdAttempt No Add when URA is GA UtranCell Cell pmNoUraUpdSuccess No Add when URA is GA UtranCell Cell pmRabEstablishEcAttempt National_RNC_P5MD Troubleshooting

Page 137: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 137 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmRabEstablishEcSuccess National_RNC_P5MD Troubleshooting UtranCell Cell pmRes1 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRes2 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRes3 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRes4 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRes5 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRes6 Activated by RES Recording Level 3 Scorecard UtranCell Cell pmRlAddAttemptsBestCellCsConvers National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddAttemptsBestCellPacketHigh National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddAttemptsBestCellPacketLow National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddAttemptsBestCellSpeech National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddAttemptsBestCellStandAlone National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddAttemptsBestCellStream No Add when Streaming QoS is GA UtranCell Cell pmRlAddSuccessBestCellCsConvers National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddSuccessBestCellPacketHigh National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddSuccessBestCellPacketLow National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddSuccessBestCellSpeech National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddSuccessBestCellStandAlone National_RNC_P5MD Troubleshooting UtranCell Cell pmRlAddSuccessBestCellStream No Add when Streaming QoS is GA UtranCell Cell pmSamplesActDlRlcTotPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSamplesActDlRlcUserPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSamplesActUlRlcTotPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSamplesActUlRlcUserPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSamplesAmr12200RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesAmr4750RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesAmr5900RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesAmr7950RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesBestAmr12200RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesBestAmr4750RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesBestAmr5900RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSamplesBestAmr7950RabEstablish No Add when Multirate AMR is GA

UtranCell Cell pmSamplesBestCs12Establish Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

UtranCell Cell pmSamplesBestCs12PsIntRabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSamplesBestCs57RabEstablish Primary Scanner Primary Scanner

Page 138: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 138 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmSamplesBestCs64PsIntRabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSamplesBestCs64RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesBestDchPsIntRabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesBestPsEulRabEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSamplesBestPsHsAdchRabEstablish Primary Scanner Dimensioning UtranCell Cell pmSamplesBestPsStr128Ps8RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesBestPsStr64Ps8RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesCompMode National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesCs12Ps0RabEstablish National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesCs12Ps64RabEstablish National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesCs12RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesCs57RabEstablish No UtranCell Cell pmSamplesCs64Ps8RabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSamplesCs64RabEstablish No UtranCell Cell pmSamplesFachPsIntRabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSamplesPsEulRabEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSamplesPsHsAdchRabEstablish Secondary Scanner Secondary Scanner - Dimensioning UtranCell Cell pmSamplesPsInteractive Primary Scanner Primary Scanner UtranCell Cell pmSamplesPsStr128Ps8RabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSamplesPsStr64Ps8RabEstablish No UtranCell Cell pmSamplesRabFach National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesRrcOnlyEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSamplesUesWith1Rls1RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith1Rls2RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith1Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith2Rls2RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith2Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith2Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith3Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith3Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUesWith4Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSamplesUlRssi National_RNC_P5MD Troubleshooting UtranCell Cell pmSumActDlRlcTotPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSumActDlRlcUserPacketThp Primary Scanner Primary Scanner

Page 139: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 139 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmSumActUlRlcTotPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSumActUlRlcUserPacketThp Primary Scanner Primary Scanner UtranCell Cell pmSumAmr12200RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumAmr4750RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumAmr5900RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumAmr7950RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumBestAmr12200RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumBestAmr4750RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumBestAmr5900RabEstablish No Add when Multirate AMR is GA UtranCell Cell pmSumBestAmr7950RabEstablish No Add when Multirate AMR is GA

UtranCell Cell pmSumBestCs12Establish Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

UtranCell Cell pmSumBestCs12PsIntRabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSumBestCs57RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumBestCs64PsIntRabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSumBestCs64RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumBestDchPsIntRabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumBestPsEulRabEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSumBestPsHsAdchRabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumBestPsStr128Ps8RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumBestPsStr64Ps8RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumCompMode National_RNC_P5MD Dimensioning UtranCell Cell pmSumCs12Ps0RabEstablish National_RNC_P5MD Dimensioning UtranCell Cell pmSumCs12Ps64RabEstablish National_RNC_P5MD Dimensioning UtranCell Cell pmSumCs12RabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumCs57RabEstablish No UtranCell Cell pmSumCs64Ps8RabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSumCs64RabEstablish No UtranCell Cell pmSumFachPsIntRabEstablish Primary Scanner Primary Scanner UtranCell Cell pmSumOfSampAseDl Secondary Scanner Secondary Scanner - Dimensioning UtranCell Cell pmSumOfSampAseUl Secondary Scanner Secondary Scanner - Dimensioning UtranCell Cell pmSumOfTimesMeasOlDl Secondary Scanner Secondary Scanner UtranCell Cell pmSumOfTimesMeasOlUl Secondary Scanner Secondary Scanner UtranCell Cell pmSumPsEulRabEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSumPsHsAdchRabEstablish Secondary Scanner Secondary Scanner - Dimensioning

Page 140: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 140 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmSumPsInteractive Primary Scanner Primary Scanner UtranCell Cell pmSumPsStr128Ps8RabEstablish Secondary Scanner Secondary Scanner UtranCell Cell pmSumPsStr64Ps8RabEstablish No UtranCell Cell pmSumRabFach National_RNC_P5MD Dimensioning UtranCell Cell pmSumRrcOnlyEstablish National_RNC_P5MD Troubleshooting UtranCell Cell pmSumUesWith1Rls1RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith1Rls2RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith1Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith2Rls2RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith2Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith2Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith3Rls3RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith3Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUesWith4Rls4RlInActSet National_RNC_P5MD Dimensioning UtranCell Cell pmSumUlRssi National_RNC_P5MD Troubleshooting UtranCell Cell pmTotalTimeDlCellCong Primary Scanner Primary Scanner UtranCell Cell pmTotalTimeUlCellCong Primary Scanner Primary Scanner UtranCell Cell pmTotNoRrcConnectAttIratCcOrder National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoRrcConnectAttIratCellResel National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoRrcConnectFailCongIratCcOrder No UtranCell Cell pmTotNoRrcConnectFailCongIratCellResel National_RNC_P5MD Dimensioning UtranCell Cell pmTotNoRrcConnectReq Primary Scanner Primary Scanner - Dimensioning UtranCell Cell pmTotNoRrcConnectReqCs Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmTotNoRrcConnectReqCsSucc Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmTotNoRrcConnectReqPs Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmTotNoRrcConnectReqPsSucc Primary Scanner Primary Scanner - Level 1 and 3 Scorecard UtranCell Cell pmTotNoRrcConnectReqSms National_RNC_P5MD Dimensioning

UtranCell Cell pmTotNoRrcConnectReqSuccess Primary Scanner Primary Scanner - Level 3 Scorecard and Dimensioning

UtranCell Cell pmTotNoRrcConnectSuccessIratCcOrder National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoRrcConnectSuccessIratCellResel National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoTermRrcConnectReq National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoTermRrcConnectReqCs National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoTermRrcConnectReqCsSucc National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoTermRrcConnectReqPs National_RNC_P5MD Troubleshooting

Page 141: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 141 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranCell Cell pmTotNoTermRrcConnectReqPsSucc National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoTermRrcConnectReqSucc National_RNC_P5MD Troubleshooting UtranCell Cell pmTotNoUtranRejRrcConnReq Secondary Scanner Secondary Scanner UtranCell Cell pmTransportBlocksBcUl National_RNC_P5MD Troubleshooting UtranCell Cell pmUlRlcUserPacketThp Secondary Scanner Secondary Scanner UtranCell Cell pmUlTrafficVolumeAmr4750 No Add when Multirate AMR is GA UtranCell Cell pmUlTrafficVolumeAmr5900 No Add when Multirate AMR is GA UtranCell Cell pmUlTrafficVolumeAmr7950 No Add when Multirate AMR is GA UtranCell Cell pmUlTrafficVolumeCs12 National_RNC_P5MD Dimensioning UtranCell Cell pmUlTrafficVolumeCs57 No UtranCell Cell pmUlTrafficVolumeCs64 No UtranCell Cell pmUlTrafficVolumePs128 National_RNC_P5MD Dimensioning UtranCell Cell pmUlTrafficVolumePs384 National_RNC_P5MD Dimensioning UtranCell Cell pmUlTrafficVolumePs64 National_RNC_P5MD Dimensioning UtranCell Cell pmUlTrafficVolumePs8 No UtranCell Cell pmUlTrafficVolumePsCommon National_RNC_P5MD Dimensioning UtranCell Cell pmUlTrafficVolumePsStr128 No Add when Streaming QoS is GA UtranCell Cell pmUlTrafficVolumePsStr16 No Add when Streaming QoS is GA UtranCell Cell pmUlUpswitchAttemptEul National_RNC_P5MD Troubleshooting UtranCell Cell pmUlUpswitchAttemptHigh Secondary Scanner Secondary Scanner UtranCell Cell pmUlUpswitchAttemptLow Secondary Scanner Secondary Scanner UtranCell Cell pmUlUpswitchAttemptMedium Secondary Scanner Secondary Scanner UtranCell Cell pmUlUpswitchSuccessEul National_RNC_P5MD Troubleshooting UtranCell Cell pmUlUpswitchSuccessHigh Secondary Scanner Secondary Scanner UtranCell Cell pmUlUpswitchSuccessLow Secondary Scanner Secondary Scanner UtranCell Cell pmUlUpswitchSuccessMedium Secondary Scanner Secondary Scanner UtranCell Cell pmUpswitchFachHsAttempt Secondary Scanner Secondary Scanner UtranCell Cell pmUpswitchFachHsSuccess Secondary Scanner Secondary Scanner UtranRelation Inter-Freq pmAttNonBlindInterFreqHoCsConversational No UtranRelation Inter-Freq pmAttNonBlindInterFreqHoCsSpeech12 No UtranRelation Inter-Freq pmAttNonBlindInterFreqHoPsInteractiveGreater64 No UtranRelation Inter-Freq pmAttNonBlindInterFreqHoPsInteractiveLess64 No UtranRelation Inter-Freq pmAttNonBlindInterFreqHoStreamingOther No Add when Streaming QoS is GA UtranRelation Inter-Freq pmFailNonBlindInterFreqHoFailRevertCsConversational No

Page 142: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 142 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason UtranRelation Inter-Freq pmFailNonBlindInterFreqHoFailRevertCsSpeech12 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoFailRevertPsInteractiveGreater64 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoFailRevertPsInteractiveLess64 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoFailRevertStreamingOther No Add when Streaming QoS is GA UtranRelation Inter-Freq pmFailNonBlindInterFreqHoRevertCsConversational No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoRevertCsSpeech12 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoRevertPsInteractiveGreater64 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoRevertPsInteractiveLess64 No UtranRelation Inter-Freq pmFailNonBlindInterFreqHoRevertStreamingOther No Add when Streaming QoS is GA UtranRelation CNHHO pmNoAttOutCnhhoCsNonSpeech No Add when CNHHO is GA UtranRelation CNHHO pmNoAttOutCnhhoPsConnRelease No Add when CNHHO is GA UtranRelation CNHHO pmNoAttOutCnhhoSpeech No Add when CNHHO is GA UtranRelation CNHHO pmNoSuccOutCnhhoCsNonSpeech No Add when CNHHO is GA UtranRelation CNHHO pmNoSuccOutCnhhoSpeech No Add when CNHHO is GA UtranRelation Intra-Freq pmRlAddAttemptsBestCellCsConvers National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddAttemptsBestCellPacketHigh National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddAttemptsBestCellPacketLow National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddAttemptsBestCellSpeech National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddAttemptsBestCellStandAlone National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddAttemptsBestCellStream No Add when Streaming QoS is GA UtranRelation Intra-Freq pmRlAddSuccessBestCellCsConvers National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddSuccessBestCellPacketHigh National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddSuccessBestCellPacketLow National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddSuccessBestCellSpeech National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddSuccessBestCellStandAlone National_URel_P5MD Troubleshooting UtranRelation Intra-Freq pmRlAddSuccessBestCellStream No Add when Streaming QoS is GA UtranRelation Inter-Freq pmSuccNonBlindInterFreqHoCsConversational No UtranRelation Inter-Freq pmSuccNonBlindInterFreqHoCsSpeech12 No UtranRelation Inter-Freq pmSuccNonBlindInterFreqHoPsInteractiveGreater64 No UtranRelation Inter-Freq pmSuccNonBlindInterFreqHoPsInteractiveLess64 No UtranRelation Inter-Freq pmSuccNonBlindInterFreqHoStreamingOther No Add when Streaming QoS is GA Vc12Ttp Transport pmVcBbe No Vc12Ttp Transport pmVcEs No Vc12Ttp Transport pmVcSes No

Page 143: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 143 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

MO Class Resolution Counter Active within scanner Reason Vc12Ttp Transport pmVcUas No Vc4Ttp Transport pmVcBbe No Vc4Ttp Transport pmVcEs No Vc4Ttp Transport pmVcSes No Vc4Ttp Transport pmVcUas No VclTp Transport - RNC pmReceivedAtmCells National_RNC_P5MD Dimensioning VclTp Transport - RNC pmTransmittedAtmCells National_RNC_P5MD Dimensioning VpcTp Transport - RNC pmBwErrBlocks No VpcTp Transport - RNC pmBwLostCells No VpcTp Transport - RNC pmBwMissinsCells No VpcTp Transport - RNC pmFwErrBlocks No VpcTp Transport - RNC pmFwLostCells National_RNC_P5MD Troubleshooting VpcTp Transport - RNC pmFwMissinsCells No VpcTp Transport - RNC pmLostBrCells National_RNC_P5MD Troubleshooting VpcTp Transport - RNC pmLostFpmCells National_RNC_P5MD Troubleshooting VplTp Transport - RNC pmReceivedAtmCells National_RNC_P5MD Dimensioning VplTp Transport - RNC pmTransmittedAtmCells National_RNC_P5MD Dimensioning Vt15Ttp Transport pmEs No Vt15Ttp Transport pmSes No Vt15Ttp Transport pmUas No UtranCell Cell pmNoRabEstBlockTnSpeechBest National_RNC_P5MD Dimensioning UtranCell Cell pmNoRabEstBlockTnPsIntNonHsBest National_RNC_P5MD Dimensioning

.

Page 144: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 144 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

7.2 Recording Activation

As needed, WCDMA Measurement Result Recordings (WMRR) will be specified in this section. Only one RES recording can be run on a given RNC at a time. As well, this recording occupies the maximum number of measurements configurable in an RES recording.

7.2.1 Activation of RES Recording to support Scorecard Data

This recording specifies activation of a Radio Environment Statistics (RES) recording that will cause the RNS to command UEs to send periodic Speech BLER measurements. The Tektronix Probes will collect these measurements for use in the Scorecard.

Activation of this recording will cause a command to be sent to 50% of the Speech calls established in each RNC. These UEs will then report UL and DL Speech BLER for Speech Only, R99 MultiRAB and HS MultiRAB calls.

• Recording Name: RES test for Tek Probes 50% of UEs

• Start date 2007-01-17 (today’s date)

• Repeat: Daily – 365 times

• Hours 03:20 - 23:35

• Cell Set: Click “Select Cells…”, click the target RNC, then click “Copy RNCs…”

• Measurements:

• Service 1 = Speech DL BLER

• Service 2 = Speech UL BLER

• Service 3 = Speech + Interactive DL BLER

• Service 4 = Speech + Interactive UL BLER

• Service 5 = Speech + InteractiveHS DL BLER

• Service 6 = Speech + InteractiveHS UL BLER

• Click “Sample and Fraction Settings”

• Select 2 seconds for “All Speech Dependent Services

• For the “UE Fraction” select “1/2”. Click OK

Page 145: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 145 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

8. Reference Documents

The following documents are related to this document:

1. ALEX Documentation located at http://manchild.wireless.attws.com/cgi-bin/alex

a. WCDMA RAN P5 (CXS 101 06/5 R6A)

b. WCDMA RNC 3810 P5

c. Operations Support System (OSS) RC R4, AOM 901 017/4, R1M/4 (C3)

d. WCDMA RBS 3106 P5 (CXP 901 1612/2 R3B)

e. WCDMA RBS 3206 P5 (CXP 901 1612/2 R3B)

f. WCDMA RBS 3303 P5 (CXP 901 1612/2 R3B; CXP 901 1612/1 R3B)

2. 3GPP Specification http://www.3gpp.org

a. R6 TS 25.101 Clause 5 – Frequency Bands and channel arrangement

b. R6 TS 25.101 Clause 6.2.1 – UE maximum output power

c. R6 TS 25.101 Clause 7 – UE Receiver Characteristics

d. R6 TS 25.104 Clause 7 – Node B Receiver Characteristics

e. R6 TS 25.214 Annex C – Cell Search Procedure

Page 146: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 146 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

9. Parameter Reference

The following tables provide parameter ranges and default values involved in getting the UE into Idle Mode, Establishing a Call and Maintaining Mobility and Connectivity. They are listed in the same order they were presented. The Level column indicates the network element that owns the parameter. The class column indicates if the parameter is set based on Policy (must be set this way), Rule (must be set this way with exceptions), Fixed (recommended to be set this way) and Variable (set at your discretion).

Table 20: Configurable Parameter Lookup Table

Parameter Range Ericsson Default AT&T Recommended Level Class Unit Basic Design Requirements uarfcnDl See section 4.1.2 N/A N/A Cell Variable Integer uarfcnUl See section 4.1.2 N/A N/A Cell Variable Integer supportOf16qam 0=FALSE, 1=TRUE 0=FALSE 1=TRUE Cell Fixed Integer primaryScramblingCode 0 to 511 N/A 0 to 511 Cell Variable Integer primaryCpichPower -100 to +500 300 300 Cell Fixed 0.1dBm

Idle Mode primarySchPower -350 to +150 -18 -18 Cell Fixed 0.1dB secondarySchPower -350 to +150 -35 -35 Cell Fixed 0.1dB bchPower -350 to +150 -31 -31 Cell Fixed 0.1dB noOfMibValueTagRetrans 0 to 10 0 0 RNC Fixed Retransmissions sib1PLMNScopeValueTag 0 to 31 N/A 0 to 31 Cell Variable Integer mcc 0 to 999 1 310 RNC Fixed Integer mnc 0 to 999 N/A 410 RNC Fixed Integer sib1StartPos 0 to 4094 4 4 RNC Fixed Frames sib1RepPeriod 4, 8, 16 to 4096 32 32 RNC Fixed Frames sib3StartPos 0 to 4094 2 2 RNC Fixed Frames sib3RepPeriod 4, 8, 16 to 4096 16 16 RNC Fixed Frames sib5StartPos 0 to 4094 6 6 RNC Fixed Frames sib5RepPeriod 4, 8, 16 to 4096 32 32 RNC Fixed Frames sib7StartPos 0 to 4094 2 2 RNC Fixed Frames sib7RepPeriod 4, 8, 16 to 4096 16 16 RNC Fixed Frames sib7expirationTimeFactor 1, 2, 4, 8 to 256 1 1 RNC Fixed Factor sib11StartPos 0 to 4094 20 20 RNC Fixed Frames sib11RepPeriod 4, 8, 16 to 4096 128 128 RNC Fixed Frames

Page 147: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 147 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit sib12StartPos 0 to 4094 14 14 RNC Fixed Frames sib12RepPeriod 4, 8, 16 to 4096 32 32 RNC Fixed Frames nmo Mode 1 or 2 2 2 RA Fixed Integer cellReserved RESERVED or NOT_RESERVED NOT_RESERVED NOT_RESERVED Cell Variable String accessClassNbarred 0 to 65535 0 0 Cell Fixed Integer qRxLevMin -115 to -25 -115 -115 Cell Fixed dBm maxTxPowerUl -50 to +33 24 24 Cell Fixed dBm qQualMin -24 to 0 -18 -19 Cell Fixed dB att 0=FALSE, 1=TRUE 1=TRUE 1=TRUE LA Fixed Integer aichPower -22 to +5 -6 -6 Cell Fixed dB ConstantValueCprach -35 to -10 -27 -27 Cell Fixed dB powerOffsetP0 1 to 8 3 2 Cell Fixed dB preambleRetransMax 1 to 64 8 15 Cell Fixed Preambles maxPreambleCycle 1 to 32 4 3 Cell Fixed Cycles powerOffsetPpm -5 to +10 -4 0 Cell Fixed dB dlInitSirTarget -82 to 173 41 41 RNC Fixed 0.1dB cBackOff -60 to +60 0 0 RNC Fixed 0.25dB ecNoPcpichDefault -20 to -10 -16 -16 RNC Fixed dB pO2 0 to 24 12 12 RNC Fixed 0.25dB pcpichPowerDefault 0 to 50 33 33 RNC Fixed dBm ulInitSirTargetSrb -82 to 173 57 57 RNC Fixed 0.1dB ulInitSirTargetLow -82 to 173 49 49 RNC Fixed 0.1dB ulInitSirTargetHigh -82 to 173 82 82 RNC Fixed 0.1dB ulInitSirTargetExtraHigh -82 to 173 92 92 RNC Fixed 0.1dB cPO -30 to 30 0 0 RNC Fixed 0.1dB lAC 1 to 65533, 65535 N/A N/A LA Variable Integer rAC 0 to 255 N/A N/A RNC Variable Integer t3212 0 to 255 10 10 LA Fixed 6minutes multiRabSp0Available 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary multiRabUdi8Available 0=FALSE, 1=TRUE 0=FALSE 0=FALSE RNC Fixed Binary psStreaming128 0=FALSE, 1=TRUE 0=FALSE 0=FALSE RNC Fixed Binary allow384HsRab 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary state128_128Supported 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary pichPower -10 to +5 -7 -7 Cell Fixed dB

Page 148: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 148 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit pchPower -350 to 150 -4 -4 RNC Fixed 0.1dB cnDrxCycleLengthCs 6 to 9 6=640 7=1280 RNC Fixed coeff cnDrxCycleLengthPs 6 to 9 7=1280 7=1280 RNC Fixed coeff utranDrxCycleLength 3 to 9 5=320 5=320 RNC Fixed coeff noOfPagingRecordTransm 1 to 5 2 2 RNC Fixed Integer noOfMaxDrxCycles 1 to 10 1 1 RNC Fixed DRX cycles

Admission Control hsdpaUsersAdm 0 to 1000 10 10 Cell Var. Users maxNumHsdpaUsers 1 to 32 16 16 Cell Var. Users compModeAdm 0 to 128 15 15 Cell Var. Radio Links eulServingCellUsersAdm 0 to 100 32 4 Cell Fixed E-DCH users eulNonServingCellUsersAdm 0 to 100 100 10 Cell Fixed E-DCH users dlCodeAdm 0 to 100 80 70 Cell Var. % beMarginDlCode 0 to 20 1 1 Cell Var. 5% sf8Adm 0 to 8 8 8 Cell Fixed Radio Links sf16Adm 0 to 16 16 16 Cell Var. Radio Links sf32Adm 0 to 32 32 32 Cell Var. Radio Links sf16gAdm 0 to 16 16 16 Cell Var. Radio Links sf16AdmUl 0 to 50 16 50 Cell Var. Radio Links sf8AdmUl 0 to 50 8 8 Cell Var. Radio Links sf4AdmUl 0 to 1000 0 6 Cell Var. Radio Links pwrAdm 0 to 100 75 75 Cell Var. % maximumTransmissionPower 0 to 500 400 400 Cell Var. 0.1dBm beMarginDlPwr 0 to 100 10 10 Cell Var. % pwrAdmOffset 0 to 100 10 10 Cell Var. % aseUlAdm 0 to 500 160 500 Cell Var. ASE beMarginAseUl 0 to 500 20 0 Cell Var. ASE aseUlAdmOffset 0 to 500 40 40 Cell Var. ASE aseDlAdm 0 to 500 240 500 Cell Var. ASE beMarginAseDl 0 to 500 100 0 Cell Var. ASE ulHwAdm 0 to 100 100 80 Site Var. % beMarginUlHw 0 to 100 0 0 Site Var. % dlHwAdm 0 to 100 100 100 Site Var. % beMarginDlHw 0 to 100 0 0 Site Var. %

Page 149: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 149 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit Call Establishment Related

emergencyCallRedirect 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary ulPathlossCheckEnabled TRUE or FALSE FALSE FALSE Cell Var. String sf4UlPathlossThreshold 15 to 170 170 170 Cell Var. dB loadSharingDirRetryEnabled 0=FALSE, 1=TRUE 0=FALSE 0=FALSE RNC Fixed Binary loadSharingGsmThreshold 0 to 100 75 100 Cell Fixed % loadSharingGsmFraction 0 to 100 100 100 Cell Fixed % directedRetryTarget 2G Neighbor N/A N/A Cell Var. N/A loadSharingRrcEnabled 0=FALSE, 1=TRUE 0=FALSE 0=FALSE RNC Fixed Binary loadSharingMargin 0 to 100 0 0 Cell Fixed % loadSharingCandidate 3G Neighbor N/A N/A Nabr Var. N/A hsOnlyBestCell 0=FALSE, 1=TRUE 1=TRUE 1=TRUE RNC Fixed Binary packetEstMode 0, 1 or 2 1 1 RNC Fixed Integer activeQueueMgmt 0=OFF, 1=ON 0=OFF 0=OFF RNC Fixed Binary

Cell Reselection sIntraSearch 0=Continually, 1 to 27 0 22=10 Cell Fixed dB sInterSearch 0=Continually, 1 to 27 0 0 Cell Fixed dB sRatSearch -32 to 20 4 4 Cell Fixed dB sHcsRat -105 to 91 -105 -105 Cell Fixed dB interFreqFddMeasIndicator 0=FALSE, 1=TRUE 0=FALSE 0=FALSE Cell Fixed Binary fachMeasOccaCycLenCoeff 0 to 12 0 4 Cell Fixed Integer qualMeasQuantity 1=CPICH_RSCP or 2=CPICH_EC_NO 2=CPICH_EC_NO 2=CPICH_EC_NO Cell Fixed String qHyst1 0 to 40 4 2 Cell Fixed dB qHyst2 0 to 40 4 2 Cell Fixed dB qOffset1sn(UtranRelation) -50 to 50 0 0 Nabr Fixed dB qOffset1sn(GsmRelation) -50 to 50 7 7 Nabr Fixed dB qOffset2sn -50 to 50 0 0 Nabr Fixed dB treSelection 0 to 31 2 1 Cell Fixed seconds

Intra-Frequency Handover reportingRange1a 0 to 29 6 6 RNC Fixed 0.5dB hysteresis1a 0 to 15 0 0 RNC Fixed 0.5dB timeToTrigger1a 0 to 15 11=320 11=320 RNC Fixed ms maxActiveSet 2 to 4 3 3 RNC Fixed Radio Links releaseConnOffset -30 to 120 120 120 RNC Fixed 0.1dB

Page 150: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 150 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit reportingInterval1a 0 to 16 3=1 3=1 RNC Fixed seconds measQuantity1 1=CPICH_RSCP or 2=CPICH_EC_NO 2=CPICH_EC_NO 2=CPICH_EC_NO Cell Fixed String reportingRange1b 0 to 29 10 10 RNC Fixed 0.5dB hysteresis1b 0 to 15 0 0 RNC Fixed 0.5dB timeToTrigger1b 0 to 15 12=640 12=640 RNC Fixed ms hysteresis1c 0 to 15 2 2 RNC Fixed 0.5dB timeToTrigger1c 0 to 15 11=320 11=320 RNC Fixed ms reportingInterval1c 0 to 16 3=1 3=1 RNC Fixed seconds hysteresis1d 0 to 15 15 15 RNC Fixed 0.5dB timeToTrigger1d 0 to 15 14=2560 14=2560 RNC Fixed ms filterCoefficient1 0. to 9, 11, 13, 15, 17, 19 2 2 RNC Fixed coeff individualOffset(UtranCell) -10 to 10 0 0 Cell Fixed 0.5dB w1a 0 to 20 0 0 RNC Fixed 0.1unit w1b 0 to 20 0 0 RNC Fixed 0.1unit

Inter-Frequency and Inter-RAT Handover usedFreqThresh2dEcno(hho) -24 to 0 -12 -12 Cell Fixed dB hysteresis2d 0 to 29 0 4 RNC Fixed 0.5 dB timeToTrigger2dEcno Various 320 320 RNC Fixed ms usedFreqThresh2dRscp(hho) -115 to -25 -97 -106 ±4 Cell Fixed dBm timeToTrigger2dRscp Various 320 320 RNC Fixed ms usedFreqThresh2dEcno(sho) -24 to 0 -12 -15 Cell Fixed dB

usedFreqThresh2dRscp(sho) -115 to -25 -97 -112 Cell Fixed dBm

usedFreqThresh2dEcnoDrnc -24 to 0 -12 -12 RNC Fixed dB

usedFreqThresh2dRscpDrnc -115 to -25 -97 -106 RNC Fixed dBm usedFreqRelThresh2fEcno 0 to 20 1 2 RNC Fixed dB hysteresis2f 0 to 29 0 2 RNC Fixed 0.5dB timeToTrigger2fEcno Various 1280 640 RNC Fixed ms usedFreqRelThresh2fRscp 0 to 20 3 6 RNC Fixed dB txPowerConnQualMonEnabled 0=FALSE, 1=TRUE 1=TRUE 0=FALSE RNC Fixed Binary timeToTrigger6d Various 320 320 RNC Fixed ms ueTxPowerThresh6b -50 to 33 18 21 RNC Fixed dB timeTrigg6b Various 1280 1280 RNC Fixed ms filterCoefficient2 0. to 9, 11, 13, 15, 17, 19 2 2 RNC Fixed coeff filterCoeff6 0. to 9, 11, 13, 15, 17, 19 19 3 RNC Fixed coeff

Page 151: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 151 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit usedFreqW2d 0 to 20 0 10 RNC Fixed 0.1unit usedFreqW2f 0 to 20 0 10 RNC Fixed 0.1unit FddIfHoSupp 0=FALSE, 1=TRUE 0=FALSE 0=FALSE RNC Fixed Binary

FddGsmHoSupp 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary

hoType 0=IFHO, 1=GSM, 2=NONE 1 1=GSM_PREFERRED Cell Fixed String defaultHoType 0=IFHO, 1=GSM, 2=NONE 1 1=GSM_PREFERRED Cell Fixed String utranRelThresh3aEcno -10 to 10 -1 2 RNC Fixed dB hysteresis3a 0 to 15 0 4 RNC Fixed 0.5dB gsmThresh3a -115 to 0 -102 -98 RNC Fixed dBm timeToTrigger3a 0 to 15 6=100 6=100 RNC Fixed ms utranRelThresh3aRscp -20 to 20 -3 7 RNC Fixed dB gsmFilterCoefficient3 0. to 9, 11, 13, 15, 17, 19 1 1 RNC Fixed coeff utranFilterCoefficient3 0. to 9, 11, 13, 15, 17, 19 2 2 RNC Fixed coeff utranW3a 0 to 20 0 10 RNC Fixed 0.1unit utranRelThreshRscp 0 to 40 5 5 RNC Fixed dB usedFreqRelThresh4_2bEcno -10 to 10 -1 -1 RNC Fixed dB hyst4_2b 0 to 75 10 10 RNC Fixed 0.1dB nonUsedFreqThresh4_2bEcno -24 to 0 -11 -13 RNC Fixed dB nonUsedFreqThresh4_2bRscp -115 to 25 -94 -105 RNC Fixed dBm

timeTrigg4_2b 0, 10, 20,40, 60, 80, 100, 120, 160, 200, 240, 320, 640, 1280, 2560, 5000 100 100 RNC Fixed ms

UsedFreqRelThresh4_2bRscp -20 to 20 -3 -3 RNC Fixed dB timeToTrigger2fRscp Various 1280 640 RNC Fixed ms filterCoeff4_2b 0. to 9, 11, 13, 15, 17, 19 2 2 RNC Fixed coeff usedFreqW4_2b 0. to 9, 11, 13, 15, 17, 19 0 0 RNC Fixed coeff nonUsedFreqW4_2b 0. to 9, 11, 13, 15, 17, 19 0 0 RNC Fixed coeff

HS Cell Change hsQualityEstimate 0=CPICH_EC_NO, 1=CPICH_RSCP 1=RSCP 1=RSCP RNC Fixed Binary hsHysteresis1d 0 to 75 10 10 RNC Fixed 0.1dB hsTimeToTrigger1d Various 640 640 RNC Fixed ms hsCellChangeAllowed 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary hsToDchTrigger(changeOfBestCellIntraRnc) 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary hsToDchTrigger(servHsChangeIntraRnc) 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary hsToDchTrigger(servHsChangeInterRnc) 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary

Page 152: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 152 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit hsToDchTrigger(poorQualityDetected) 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary Channel Switching downswitchThreshold 0 to 32 0 0 RNC Fixed 1kbit/s downswitchTimer 0 to 1000 10 100 RNC Fixed 100ms downswitchTimerThreshold 0 to 64 0 0 RNC Fixed 1kbit/s hsdschInactivityTimer 1 to 255 2 10 RNC Fixed seconds ulRlcBufUpswitch Various 256 256 RNC Fixed bytes dlRlcBufUpswitch 0 to 2000 500 500 RNC Fixed bytes inactivityTimer 1 to 1440 120 10 RNC Fixed seconds inactivityTimerPch 1 to 240 30 30 RNC Fixed minutes dlDownswitchBandwidthMargin 0 to 100 0 80 RNC Fixed % dlThroughputDownswitchTimer 0 to 2000 20 20 RNC Fixed 100ms ulDownswitchBandwidthMargin 0 to 100 0 80 RNC Fixed % ulThroughputDownswitchTimer 0 to 2000 20 20 RNC Fixed 100ms bandwidthMargin 0 to 100 90 90 RNC Fixed % upswitchTimer 0 to 100 5 5 RNC Fixed 100ms dlThroughputAllowUpswitchThreshold 0 to 100 0 0 RNC Fixed % downswitchPwrMargin 0 to 20 2 2 RNC Fixed 0.5dB coverageTimer 0 to 100 10 10 RNC Fixed 100ms upswitchPwrMargin 0 to 20 6 6 RNC Fixed 0.5dB bandwidthMarginUl 0 to 100 0 90 RNC Fixed % upswitchTimerUl 0 to 100 5 1 RNC Fixed 100ms ulThroughputAllowUpswitchThreshold 0 to 100 0 90 RNC Fixed % reportHysteresis 0 to 20 6 6 RNC Fixed 0.5dB downswitchTimerSp 0 to 180 2 2 RNC Fixed 0.5seconds ulRlcBufUpswitchMrab Various 8 8 RNC Fixed bytes dlRlcBufUpswitchMrab 0 to 20 0 8 RNC Fixed 100bytes inactivityTimeMultiPsInteractive 0 to 10000 50 50 RNC Fixed 100ms queueSelectAlgorithm 1 to 6 1 3 Cell Fixed Integer

airRateTypeSelector 0=ACKNOLEDGED or 1=TRANSMITTED 1=TRANSMITTED 1=TRANSMITTED Cell Fixed Integer

HSDPA Scheduling eulTargetRate 0 to 6016 128 128 Cell Fixed 1kbit/s eulNoReschUsers 0 to 32 5 5 Cell Fixed E-DCH users eulMaxNoSchEdch 0 to 100 100 16 Cell Fixed E-DCH users

Page 153: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 153 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit eulNoErgchGroups 1. to 4 4 4 Cell Fixed E-RGCH groups eulMaxShoRate 0 to 1472 128 1472 Cell Fixed 1kbit/s eulReservedHwBandwidthSchedDataNonServCell 1 to 1472 128 128 Cell Fixed 1kbit/s eulThermalLevelPrior -1150 to -600 -1040 -1040 Cell Fixed 0.1dBm eulSlidingWindowTime 10 to 864000 1800 1800 Cell Fixed seconds eulMinMarginCoverage 0 to 1.0 10 10 Cell Fixed - eulNoiseFloorLock 0=FALSE, 1=TRUE 0=FALSE 0=FALSE Cell Fixed - eulOptimalNoisefloorEstimate -1150 to -600 or -1 -1040 -1040 Cell Fixed 0.1dBm eulMaxRotCoverage 0 to 550 100 100 Cell Fixed 0.1dB eulMaxOwnUuLoad 0 to 550 30 80 Cell Fixed 0.1dB harqTransmUlTti10Max 1 to 8 4 4 Cell Fixed attempts Congestion Detection and Resolution pwrOffset 0 to 100 5 5 Cell Fixed % pwrHyst 0 to 60000 300 300 Cell Fixed ms iFCong 0 to 621 621 621 Cell Fixed 0.1dBm iFOffset 0 to 621 0 0 Cell Fixed 0.1dB iFHyst 0 to 6000 6000 6000 Cell Fixed 10ms releaseAseDlNg 0 to 500 3 3 Cell Fixed ASE tmInitialGhs 10 to 100000 500 500 Cell Fixed ms tmInitialG 10 to 100000 3000 3000 Cell Fixed ms tmCongActionNg 500 to 100000 800 800 Cell Fixed ms releaseAseDlGhs 0 to 5000 0 0 Cell Fixed 0.ASE tmCongActionGhs 10 to 100000 300 300 Cell Fixed ms releaseAseDl 0 to 500 1 1 Cell Fixed ASE tmCongAction 300 to 100000 2000 2000 Cell Fixed ms

Radio Connection Supervision cchWaitCuT 0 to 200 9 9 RNC Fixed 5minutes t305 0 to 7 3=30 3=30 RNC Fixed minutes nOutSyncInd 1 to 256 10 10 Cell Fixed frames rlFailureT 0 to 255 10 10 Cell Fixed 0.1seconds nInSyncInd 1 to 256 3 3 Cell Fixed frames dchRcLostT 0 to 100 50 50 RNC Fixed 0.1seconds hsDschRcLostT 0 to 600 100 100 RNC Fixed 0.1seconds

Page 154: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 154 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit Power and Code Control

maxFach1Power -350 to 150 18 18 Cell Fixed 0.1dB maxFach2Power -350 to 150 15 15 Cell Fixed 0.1dB pOffset1Fach 0 to 24 0 0 Cell Fixed 0.1dB pOffset3Fach 0 to 24 0 0 Cell Fixed 0.1dB pO1 0 to 24 0 0 RNC Fixed 0.25dB pO3 0 to 24 12 12 RNC Fixed 0.25dB minPwrRl -350 to 150 -150 -150 Cell Fixed 0.1dB minimumRate 0 to 1600000 1590 1590 Cell Fixed 10bps minPwrMax -350 to 150 0 0 Cell Fixed 0.1dB interRate 0 to 1600000 7760 7760 Cell Fixed 10bps interPwrMax -350 to 150 38 38 Cell Fixed 0.1dB maxRate 0 to 1600000 40690 40690 Cell Fixed 10bps maxPwrMax -350 to 150 48 48 Cell Fixed 0.1dB initShoPowerParam -20 to 20 -2 -2 RNC Fixed 1dB cNbifho -50 to 150 10 10 RNC Fixed 0.1dB dlPcMethod 1 to 4 3=BALANCING 3=BALANCING RNC Fixed Integer fixedPowerDl 1 to 101 65 65 RNC Fixed 0.5dB fixedRefPower 1 to 101 65 65 RNC Fixed 0.5dB numHsScchCodes 1 to 4 1 3 Cell Fixed codes flexibleSchedulerOn 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary hsScchMaxCodePower -35 to 15 -20 -20 Cell Fixed 0.5dB hsScchMinCodePower -35 to 15 -150 -150 Cell Fixed 0.5dB qualityCheckPower -2to 6 0 0 Cell Fixed 0.5dB hsPowerMargin 0 to 200 2 2 Cell Fixed 0.5dB numHsPdschCodes 1 to 15 5 4 Cell Fixed codes dynamicHsPdschCodeAdditionOn 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary maxNumHsPdschCodes 5 to 15 5 10 Cell Fixed codes ulOuterLoopRegulator 0 or 1 1=JUMP 1=JUMP RNC Fixed Integer ulSirStep 0 to 50 10 10 RNC Fixed 0.1dB blerQualityTargetDl(1,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(2,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER)

Page 155: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 155 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit blerQualityTargetDl(2,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(2,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(2,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(5,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(5,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(6,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(6,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(18,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(18,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(7,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(7,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(9,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(9,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(9,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(9,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(9,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(10,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(10,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(10,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(10,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(10,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(11,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(12,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(12,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(12,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(12,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(15,1) -63 to 0 -30 -30 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(15,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(16,1) -63 to 0 -30 -30 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(16,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(19,1) -63 to 0 -30 -30 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(19,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER)

Page 156: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 156 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit blerQualityTargetDl(19,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(19,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(19,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(20,1) -63 to 0 -30 -30 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(20,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(20,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(20,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetDl(20,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(1,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(2,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(2,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(2,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(2,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(5,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(5,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(6,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(6,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(18,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(18,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(7,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(7,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(9,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(9,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(9,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(9,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(9,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(10,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(10,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(10,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(10,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(10,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(11,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(12,1) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(12,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER)

Page 157: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 157 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit blerQualityTargetUl(12,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(12,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(15,1) -63 to 0 -30 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(15,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(16,1) -63 to 0 -30 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(16,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(19,1) -63 to 0 -30 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(19,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(19,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(19,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(19,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(20,1) -63 to 0 -30 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(20,2) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(20,3) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(20,4) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) blerQualityTargetUl(20,5) -63 to 0 -20 -20 RNC Fixed 10 Log10(BLER) sirMax -82 to 173 100 120 RNC Fixed 0.1dB sirMin -82 to 173 -82 -82 RNC Fixed 0.1dB deltaAck1 0 to 8 4 5 Cell Fixed - deltaAck2 0 to 8 8 7 Cell Fixed - deltaNack1 0 to 8 4 5 Cell Fixed - deltaNack2 0 to 8 8 7 Cell Fixed - deltaCqi1 0 to 8 4 4 Cell Fixed - deltaCqi2 0 to 8 8 6 Cell Fixed - initialCqiRepetitionFactor 1 to 4 1 1 Cell Fixed - initialAcknackRepetitionFactor 1 to 4 1 1 Cell Fixed - hsMeasurementPowerOffset -30 to 160 80 80 Cell Fixed 0.1dB codeThresholdPdu656 0 to 15 6 6 Cell Fixed codes cqiFeedbackCycle 0 to 160 8 8 Cell Fixed ms cqiErrors 0 to 100 10 10 Cell Fixed - cqiErrorsAbsent 0 to 100 10 10 Cell Fixed - cqiAdjustmentOn 0=FALSE, 1=TRUE 0=FALSE 1=TRUE RNC Fixed Binary hardIfhoCorr -5 to +15 3 3 Cell Fixed dB maxUserEhichErgchPowerDl -35 to 15 3 3 RNC Fixed dB

Page 158: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 158 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Parameter Range Ericsson Default AT&T Recommended Level Class Unit maxEagchPowerDl -35 to 15 3 3 RNC Fixed dB transmissionTargetError 1 to 50 3 3 RNC Fixed % ulInitSirTargetEdch -82 to 173 3 3 RNC Fixed 0.1dB

Page 159: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 159 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

10. Consulted List

The following individuals have participated in the creation of this document through their participation in the National Ericsson UTRAN (NEU) Forum. The name of each participant is provided along with the group (region in parentheses) each participant represents.

Area Name in Exchange GAL Austin (C) Lewis, Robert S Quinonez, Rick Bendele, Shelia Barrientos, Joseph Richard, Hill Wheat, Mike Hernandez, Hugo Munoz, Domingo Birch, Elizabeth (Lavallee) Chicago (C) Bledsoe, Ronald W Olsen, Scott Berner, William Burt, Shannon M Ciszkowski, Jaroslaw Compton, James Kanya Jr, Walter Mahalik Jr, Daniel H Melchior, Christopher Morrisey, Bernadette Sayeed, Adil Stearns, Todd D Vega, Jorge (Eng-Chi) Pasillas, Juan Scharosch, Greg Dallas (C) Parkoff, Seth Wang, Jimmy Coleman, Phillip Shelton, David Chan, Rosa Wells, Bobby Steward, H. Jim Smith, J. Mike (NTX) Houston (C) Jackowski, Frank Wheat, Mike Centeno, Edgardo Suarez-rivero, Alberto Gibson, Adrienne Boston (NE) Wysocki, Tim Lowery, Rich Leary, Jeff Negi, Lokeshi (LCC) Robinson, John (BOSTON) Melanson, Steve Dunakin, Jeffrey Vieira, Mark Mariano, Jobet Sebastian, Arvin Heath, Tony Doiron, Mike Pinto, Victor Williamson, Andrew Bianco, Paul San Diego (W) Bossom, Michael Noet, Mark Olah, Otto Salas, Tony

Page 160: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 160 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Taylor, Chris K Banchongsirichareon, Soontorn Chan, Christopher Patel, Chetan San Francisco / San Jose (W) Caniglia, Michael Albrecht, Frank Parra, Darwin Arefin, S Suh, Young Abdul, Majdi Atlanta (SE) Murdock, Monty Pitzini, Marcel Neuman, Rick Lavender, Tyann Corbett, Jason Henderson, Tom Won Jr, Toussant Jabbary, Ali Perry, Ben Sieber, John Indianapolis (C) Bledsoe, Ronald W Gary (C) Salyer, David San Antonio (C) Tadlock, Jimmie Bongiorno, Matt Cisneros, Ivan LaLonde, Michael Pilgrim, Pam Smedley, Dale Oklahoma City (C) Benson, Brent Bickle, Jerry Brunnert, David Raleigh LaCava, Dave Jacob, Taylor Orsak, Joseph Althaf, Mohammed Citrus / Tampa / Lakeland (SE) Birkey, Jeff McKenney, Scott Self, Roger Hussain, Umer Daytona / Orlando / Cape Canavera / Boca Raton (SE) aka S. FL Combs, Tom Raymundo, Fellou Ziers, Kirk Li, Sandy Hoshyar, Zana Ramos, Wilson Chiodo, Russ Boca Raton (SE) (S. FL) Gomez, Marcel Vencl, Lu Pinto, Avelino Chang, Marty Mills, Peter Flores, Laura V FL Douglas, Handel Graham, Joseph Guidry, Aaron Fanning, Thomas Dinges, Chris Habib, Jamal Joyce, Sharon Araujo, Noemi Bravo, Felix Gainesville / Tallahassee / Jacksonville (SE) aka N. FL Ward, Joseph Reilly, Joe Austin, Ken

Page 161: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 161 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Keys, Kraig Bush, Patricia Charlotte (SE) Sewell, David Kunakorn, Jay Dennis, Michael Brown, Steven C Vallejo (W) Albrecht, Frank Fresno, Sacramento, Stockton (W) Albrecht, Frank Appert, Douglas Riar, Paul Mirano, Edmund Patel, Neville Little Rock (C) Pack, Mark Tulsa (C) Howell, Bill Miami / West Palm Beach (SE) Pittman, Donald DiMaso, Filippo Milwaukee (C) Kommer, James Birmingham (SE) Bowling, Garry Thomas, Randy Warr, Amanda Workman, Owen George, Monty Knoxville, TN (SE) Cookson, Ken Webb, David Albright, Anthony Warwick, Robert Hood, Edwan Harris, James M. Lee, Bryon Mitchell, Terri A Helle, Erika Helle, Steve Cook, John Z Pittsburgh (C) Thomas, Matthew Dugan, Shawn Bridgeport / Hartford / New Haven, CT (NE) Klein, Robert S. Saddig Jr., Walter C. Providence (NE) Crawford, Ken Negi, Lokeshi (LCC) Biernat, S. Irek San Juan (SE) Ownbey, Jason Ezquerra, Guillermo Smith, Todd R Velez, Wilfredo Ortiz, Leslie L. Casillas, Roberto Diaz, William Turlington, David Deets, Bernie Baton Rouge / New Orleans (SE) George, Monty Jones, Robert Stephens, Mike Andre, Tracy Louisville / Memphis / Nashville (SE) Salvo, Mike Kiefer, Ron Green, Tracey Matthews, Brian McNear, Jerome Torrence, Tina Corbett, Brian Horn, Byron Schutts, Will Lewis, Mike Dunn, Jerry

Page 162: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 162 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Plantz, William Bale, Jeff Sigmon, Edward Batson, Wynn Taylor, Lyle Gillian, Tara Bennett, Danny Horton, Jarrod Antonaccio, Lenny Nance, John Eskew, Steve Campbell, Tim Rohdy, John Krug, Donald Reeves, Larry Williams, John S Fontela, Gonzalo Evansville (SE) Kerchief, Brian Wahnsiedler, John Clarksville (SE) Knepler, Andrew Wilbanks, Richard Duncan, Trudy Chattanooga (SE) Martin, Brent Hedges, David Greensboro (SE) Bodford, Paul Columbia (SE) Shahoud, Joe Alfakir, Sam Los Angeles / Bakersfield / Oxnard (W) Hollister, Jim Wan, Wang Hussain, Zahid Singh, Bhupender Nguyen, Tom Jin, Min Polard, Essie Banuelos, Monica Noet, Mark Heeney-Fouts, Kathleen Monroe, Richard Diaz, Jimmy Wan, Wang Noonan, Robert Hernandez, Carlos C Abdullah, Haris Moreno, Orlando Nguyen, Tuong Masada, Gary Santos, Christian Rubin, Robert Melton, Sean Qazi, Adil Barnett, Marlion Papadopoulos, Dimitris Usmani, Ehtesham Chow, Gary Kilic, Semsettin Ahad, Adil Hilario, Marissa Taylor, Chris K Cram, Steve Sharma, Amitabh Shimizu, Nelson Fayaz, Mohammad Lopez, Trin Hurst, Fred

Page 163: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 163 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Jones, Harold M Mohammed, Aleemuddin Siddiqui, Zafar Emina, Henry Fahs, Najib Madregallejo, Daniel Petelo, Paul Islam, Md Khan, Salman Ghazali, Noman Assan, Emmanuel Osztermann, Gabriel Dixon, Edward Slowinski, Marek Olah, Otto Qureshi, Jamal Celik, Yilmaz Yoeu, Abdul Z New Bedford, CT (NE) Klein, Robert S. McAllen (C) Tadlock, Jimmie Honolulu (W) Oshiro, Henry El Paso (C) Rocha, S. Adrian Newport News, Norfolk (NE) Mughal, Naeem Khalaf, Emile (Tony) Richmond (NE) Mughal, Naeem Patel, Vipul Tolbert, Michael Hill, Tommy Mobile (SE) Draper, Trent Greenville (SE) Petree, Howard Tyson, Roger Charleston / Cabarrus (SE) Virginia / West Virginia (SE) Abedin, Tariq Western Region Costanzo, Ross Young, James Caine, Richard Ulanday, Daniel Clark, Robert I. Solis, Bobie Eter, Elias Azam, Shehzad (OSS) Delany, Clive Venkatesalu, Ramkumar Akkaya, Sinan Puttabuddi, Kiran (OSS) Hawkes, Peter Shen, Chun Central Region Palmer, Craig Aguon, Paul (OSS) Thompson, Nicholas R Baltazar, Alona Ye, Weihua Gupta, Sandeep Ion, Florian Ryan, William P Cai, Nancy Garcia, Oscar Zahan, Eusebiu Robinson, William Northeast Region Apollonio, Laura May, Christopher (OSS) Khuu, Khoa Davis, Richard J

Page 164: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 164 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Elliott, John J. (OSS) Rai, Paritosh Gray, Randal (Randy) McCarthy, Brian Chopra, Namita Hetrick, Kevin Langley, Brett South Fix, Jeremy Salmon, Michael Grabau, Mike Ballard, Troy Powell, Lamont Ask Lamont (OSS) Murray, Arthur Ramos, Wilson Tayyebi, Sean Robertson, Stuart Strategic Planning (CTO) Vallath, Sree Sam, Anthony Choi-Grogan, Shirley Orloff, David Portzer, Bruce Unny, Pradeep Gopalan, Rajasekhar (Raja) Huber, Kurt D. Bigler, Laurie A Bakhtiari, Farideh (OSS) Clendenen, Dave (OSS) Kelly, Thomas HQ (OSS) Brisebois, Art National Field Support Heubel, Michael Tong, Hendry Smith, Juan (Derrick) Carrillo, Joe Scheihing, Terry Davis, Charles Mascarenhas, Patrick Thompson, Edmund (Eddie) Patini, Joe Hristov, Hristo Razdan, Somesh National Quality and Performance (national scorecard) Barnes, Karen Jaidi, Khalil Kim, Agnes Holmberg, Erik Elf, Mats Wiese, Bill Hurst, Fred Heeney-Fouts, Kathleen Kim, Yon Villapando, Vladimir Schiefelbein, Lee Broderick, John Ellis, Steve Schiefelbein, Lee Phillips, Larry Bell, Wayne Jann, Petr National Services Operations James, Dan Network Support Lee, Bo Salazar, Gil Subscriber Product Engineering Delmendo, Eddie Hlavaty-Laposa, Michael National RF Engineering Herndon, Al

Page 165: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 165 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

Area Name in Exchange GAL Narang, Ashish Swanson, Kurt R Kapoulas, Spyridon Gohel, Kaushik National PMO Connell, Donna Subscriber Services Pratt, Jim Ericsson Abad, Younes (UTRAN) Inge, Johnsson (OSS) Dirocco, Andrea (UTRAN) Mao, Tom (UTRAN) Zabka, Craig (West Region) Statnikov, Mark (Central Region) Wallen, Mats (SouthEast Region) Magnus, Hedenlund (NorthEast Region) Celedon, Rafael Mir, Nabeel Hatipoglu, Can Jianli Wang J (PL/EUS) Award Solutions Collins, Kerwin Qualcomm Tripathi, Manish National OSS Group Dodge, Chris (OSS) Glunt, Robb (OSS) Padowski, Dan (OSS) Riley, Tyrus (OSS) Shows, Darren (OSS) Zurbriggen, Mark (OSS) May, Christopher (OSS)

Page 166: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 166 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

11. Index

A

accessClassNbarred ................................27, 147 activeQueueMgmt ....................................51, 149 aichPower...........................................25, 29, 147 airRateTypeSelector ................................86, 152 allow384HsRab ............................36, 42, 50, 147 aseDlAdm.................................................46, 148 aseUlAdm.................................................45, 148 aseUlAdmOffset .......................................45, 148 att ...................................................9, 24, 28, 147

B

bandwidthMargin......................................80, 152 bandwidthMarginUl ..................................82, 152 bchPower .................................................23, 146 beMarginAseDl.........................................46, 148 beMarginAseUl.........................................45, 148 beMarginDlCode ......................................41, 148 beMarginDlHw..........................................48, 148 beMarginDlPwr.........................................43, 148 beMarginUlHw..........................................47, 148 blerQualityTargetDl(1,1).................................154 blerQualityTargetDl(10,1)...............................155 blerQualityTargetDl(10,2)...............................155 blerQualityTargetDl(10,3)...............................155 blerQualityTargetDl(10,4)...............................155 blerQualityTargetDl(10,5)...............................155 blerQualityTargetDl(11,1)...............................155 blerQualityTargetDl(12,1)...............................155 blerQualityTargetDl(12,2)...............................155 blerQualityTargetDl(12,3)...............................155 blerQualityTargetDl(12,4)...............................155 blerQualityTargetDl(15,1)...............................155 blerQualityTargetDl(15,2)...............................155 blerQualityTargetDl(16,1)...............................155 blerQualityTargetDl(16,2)...............................155 blerQualityTargetDl(18,1)...............................155 blerQualityTargetDl(18,2)...............................155 blerQualityTargetDl(19,1)...............................155 blerQualityTargetDl(19,2)...............................155 blerQualityTargetDl(19,3)...............................156 blerQualityTargetDl(19,4)...............................156 blerQualityTargetDl(19,5)...............................156 blerQualityTargetDl(2,1).................................154 blerQualityTargetDl(2,2).................................155 blerQualityTargetDl(2,3).................................155 blerQualityTargetDl(2,4).................................155 blerQualityTargetDl(20,1)...............................156 blerQualityTargetDl(20,2)...............................156 blerQualityTargetDl(20,3)...............................156

blerQualityTargetDl(20,4) ..............................156 blerQualityTargetDl(20,5) ..............................156 blerQualityTargetDl(5,1) ................................155 blerQualityTargetDl(5,2) ................................155 blerQualityTargetDl(6,1) ................................155 blerQualityTargetDl(6,2) ................................155 blerQualityTargetDl(7,1) ................................155 blerQualityTargetDl(7,2) ................................155 blerQualityTargetDl(9,1) ................................155 blerQualityTargetDl(9,2) ................................155 blerQualityTargetDl(9,3) ................................155 blerQualityTargetDl(9,4) ................................155 blerQualityTargetDl(9,5) ................................155 blerQualityTargetUl(1,1) ................................156 blerQualityTargetUl(10,1) ..............................156 blerQualityTargetUl(10,2) ..............................156 blerQualityTargetUl(10,3) ..............................156 blerQualityTargetUl(10,4) ..............................156 blerQualityTargetUl(10,5) ..............................156 blerQualityTargetUl(11,1) ..............................156 blerQualityTargetUl(12,1) ..............................156 blerQualityTargetUl(12,2) ..............................156 blerQualityTargetUl(12,3) ..............................157 blerQualityTargetUl(12,4) ..............................157 blerQualityTargetUl(15,1) ..............................157 blerQualityTargetUl(15,2) ..............................157 blerQualityTargetUl(16,1) ..............................157 blerQualityTargetUl(16,2) ..............................157 blerQualityTargetUl(18,1) ..............................156 blerQualityTargetUl(18,2) ..............................156 blerQualityTargetUl(19,1) ..............................157 blerQualityTargetUl(19,2) ..............................157 blerQualityTargetUl(19,3) ..............................157 blerQualityTargetUl(19,4) ..............................157 blerQualityTargetUl(19,5) ..............................157 blerQualityTargetUl(2,1) ................................156 blerQualityTargetUl(2,2) ................................156 blerQualityTargetUl(2,3) ................................156 blerQualityTargetUl(2,4) ................................156 blerQualityTargetUl(20,1) ..............................157 blerQualityTargetUl(20,2) ..............................157 blerQualityTargetUl(20,3) ..............................157 blerQualityTargetUl(20,4) ..............................157 blerQualityTargetUl(20,5) ..............................157 blerQualityTargetUl(5,1) ................................156 blerQualityTargetUl(5,2) ................................156 blerQualityTargetUl(6,1) ................................156 blerQualityTargetUl(6,2) ................................156 blerQualityTargetUl(7,1) ................................156 blerQualityTargetUl(7,2) ................................156 blerQualityTargetUl(9,1) ................................156 blerQualityTargetUl(9,2) ................................156 blerQualityTargetUl(9,3) ................................156

Page 167: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 167 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

blerQualityTargetUl(9,4).................................156 blerQualityTargetUl(9,5).................................156

C

cBackOff...................................................31, 147 cchWaitCuT..............................................91, 153 cellReserved ......................................25, 27, 147 cNbifho .....................................................93, 154 cnDrxCycleLengthCs .........................25, 38, 148 cnDrxCycleLengthPs..........................25, 38, 148 codeThresholdPdu656...................................157 compModeAdm........................................39, 148 ConstantValueCprach........................25, 29, 147 coverageTimer .........................................83, 152 cPO ....................................................32, 33, 147 cqiAdjustmentOn............................................157 cqiErrors.........................................................157 cqiErrorsAbsent..............................................157 cqiFeedbackCycle..........................................157

D

dchRcLostT ..............................................91, 153 defaultHoType................................2, 11, 63, 151 deltaAck1........................................................157 deltaAck2........................................................157 deltaCqi1 ........................................................157 deltaCqi2 ........................................................157 deltaNack1 .....................................................157 deltaNack2 .....................................................157 directedRetryTarget .................................50, 149 dlCodeAdm ..............................................41, 148 dlDownswitchBandwidthMargin ...............78, 152 dlHwAdm..................................................48, 148 dlInitSirTarget...............................31, 92, 93, 147 dlPcMethod ..............................................93, 154 dlRlcBufUpswitch .....................................75, 152 dlRlcBufUpswitchMrab.............................85, 152 dlThroughputAllowUpswitchThreshold.....80, 152 dlThroughputDownswitchTimer ...............78, 152 downswitchPwrMargin .......................80, 83, 152 downswitchThreshold.........................71, 73, 152 downswitchTimer ...............................71, 73, 152 downswitchTimerSp .................................84, 152 downswitchTimerThreshold .....................73, 152 dynamicHsPdschCodeAdditionOn...........94, 154

E

ecNoPcpichDefault.............................31, 93, 147 emergencyCallRedirect............................49, 149 eulMaxNoSchEdch...................................87, 152 eulMaxOwnUuLoad..................................88, 153 eulMaxRotCoverage ................................87, 153

eulMaxShoRate .......................................87, 153 eulMinMarginCoverage............................87, 153 eulNoErgchGroups ..................................87, 153 eulNoiseFloorLock ...................................87, 153 eulNonServingCellUsersAdm ..................39, 148 eulNoReschUsers....................................87, 152 eulOptimalNoisefloorEstimate .......................153 eulReservedHwBandwidthSchedDataNonServC

ell................................................................153 eulServingCellUsersAdm.........................39, 148 eulSlidingWindowTime ............................87, 153 eulTargetRate ..........................................87, 152 eulThermalLevelPrior...............................87, 153

F

fachMeasOccaCycLenCoeff ....................52, 149 FddGsmHoSupp ......................................63, 151 FddIfHoSupp............................................63, 151 filterCoeff4_2b..........................................69, 151 filterCoeff6................................................62, 150 filterCoefficient1 .......................................57, 150 filterCoefficient2 .......................................62, 150 fixedPowerDl............................................93, 154 fixedRefPower..........................................94, 154 flexibleSchedulerOn.................................94, 154

G

gsmFilterCoefficient3 ...............................66, 151 gsmThresh3a...............................64, 65, 66, 151

H

hardIfhoCorr...................................................157 harqTransmUlTti10Max ...........................88, 153 hoType .....................................................63, 151 hsCellChangeAllowed..............................70, 151 hsdpaUsersAdm ......................................39, 148 hsdschInactivityTimer ..............................74, 152 hsDschRcLostT........................................91, 153 hsHysteresis1d ........................................70, 151 hsMeasurementPowerOffset .........................157 hsOnlyBestCell ........................................50, 149 hsPowerMargin ........................................94, 154 hsQualityEstimate....................................70, 151 hsScchMaxCodePower ...........................94, 154 hsScchMinCodePower ............................94, 154 hsTimeToTrigger1d..................................70, 151 hsToDchTrigger(changeOfBestCellIntraRnc).70,

151 hsToDchTrigger(poorQualityDetected).....58, 71,

152 hsToDchTrigger(servHsChangeInterRnc)70, 151 hsToDchTrigger(servHsChangeIntraRnc)70, 151

Page 168: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 168 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

hyst4_2b.......................................67, 68, 69, 151 hysteresis1a .......................................26, 54, 149 hysteresis1b .......................................26, 55, 150 hysteresis1c .......................................26, 56, 150 hysteresis1d .......................................26, 57, 150 hysteresis2d .......................................58, 59, 150 hysteresis2f ..............................................60, 150 hysteresis3a .................................64, 65, 66, 151

I

iFCong......................................................90, 153 iFHyst .......................................................90, 153 iFOffset.....................................................90, 153 inactivityTimeMultiPsInteractive...............86, 152 inactivityTimer ..........................................76, 152 inactivityTimerPch ....................................77, 152 individualOffset(UtranCell) .... 57, 63, 66, 69, 150 initialAcknackRepetitionFactor.......................157 initialCqiRepetitionFactor ...............................157 initShoPowerParam .................................93, 154 interFreqFddMeasIndicator ......................52, 149 interPwrMax .............................................92, 154 interRate...................................................92, 154

L

lAC......................................................24, 34, 147 loadSharingCandidate..............................50, 149 loadSharingDirRetryEnabled ...................50, 149 loadSharingGsmFraction .........................50, 149 loadSharingGsmThreshold ......................50, 149 loadSharingMargin ...................................50, 149 loadSharingRrcEnabled ...........................50, 149

M

maxActiveSet .....................................54, 56, 149 maxEagchPowerDl...................................97, 158 maxFach1Power ......................................91, 154 maxFach2Power ......................................91, 154 maximumTransmissionPower 11, 43, 80, 83, 88,

94, 148 maxNumHsdpaUsers ...............................39, 148 maxNumHsPdschCodes..........................94, 154 maxPreambleCycle ..................................29, 147 maxPwrMax .............................................92, 154 maxRate...................................................92, 154 maxTxPowerUl...................................25, 28, 147 maxUserEhichErgchPowerDl...................97, 157 mcc...........................................................24, 146 measQuantity1 ...................................55, 56, 150 minimumRate ...........................................92, 154 minPwrMax...............................................92, 154 minPwrRl ..................................................92, 154

mnc ..........................................................24, 146 multiRabSp0Available..............................36, 147 multiRabUdi8Available.............................36, 147

N

nInSyncInd ...............................................91, 153 nmo ..........................................................25, 147 nonUsedFreqThresh4_2bEcno..........67, 68, 151 nonUsedFreqThresh4_2bRscp....67, 68, 69, 151 nonUsedFreqW4_2b................................69, 151 noOfMaxDrxCycles..................................38, 148 noOfMibValueTagRetrans .......................23, 146 noOfPagingRecordTransm......................38, 148 nOutSyncInd ............................................91, 153 numHsPdschCodes .................................94, 154 numHsScchCodes ...................................94, 154

P

packetEstMode ........................................51, 149 pchPower .................................................38, 148 pcpichPowerDefault .................................33, 147 pichPower ..........................................25, 37, 147 pO1 ..............................................31, 32, 92, 154 pO2 ....................................................31, 32, 147 pO3 ..............................................31, 32, 92, 154 pOffset1Fach ...........................................92, 154 pOffset3Fach ...........................................92, 154 powerOffsetP0 ...................................26, 29, 147 powerOffsetPpm ......................................30, 147 preambleRetransMax ........................26, 29, 147 primaryCpichPower.....19, 25, 29, 31, 32, 33, 92,

93, 97, 146 primarySchPower.....................................22, 146 primaryScramblingCode ..............18, 19, 23, 146 psStreaming128.......................................36, 147 pwrAdm........................................43, 50, 88, 148 pwrAdmOffset ....................................43, 88, 148 pwrHyst ....................................................88, 153 pwrOffset..................................................88, 153

Q

qHyst1......................................................53, 149 qHyst2................................................25, 53, 149 qOffset1sn(GsmRelation) ....................9, 53, 149 qOffset1sn(UtranRelation) ...................9, 53, 149 qOffset2sn................................................53, 149 qQualMin......................................25, 28, 52, 147 qRxLevMin .............................25, 27, 28, 52, 147 qualityCheckPower ..................................94, 154 qualMeasQuantity ..............................25, 53, 149 queueSelectAlgorithm..............................86, 152

Page 169: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 169 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

R

rAC .....................................................25, 34, 147 releaseAseDl............................................91, 153 releaseAseDlGhs .....................................90, 153 releaseAseDlNg .......................................90, 153 releaseConnOffset .............................54, 56, 149 reportHysteresis .......................................83, 152 reportingInterval1a ...................................54, 150 reportingInterval1c ...................................56, 150 reportingRange1a ..............................26, 54, 149 reportingRange1b ..............................26, 55, 150 rlFailureT ..................................................91, 153

S

secondarySchPower ................................23, 146 sf16Adm ...................................................42, 148 sf16AdmUl................................................42, 148 sf16gAdm .................................................42, 148 sf32Adm ...................................................42, 148 sf4AdmUl..................................................42, 148 sf4UlPathlossThreshold ...........................50, 149 sf8Adm .....................................................42, 148 sf8AdmUl..................................................42, 148 sHcsRat..............................................25, 52, 149 sib11RepPeriod........................................24, 146 sib11StartPos...........................................24, 146 sib12RepPeriod........................................24, 147 sib12StartPos...........................................24, 147 sib1PLMNScopeValueTag.................24, 27, 146 sib1RepPeriod..........................................24, 146 sib1StartPos.............................................24, 146 sib3RepPeriod..........................................24, 146 sib3StartPos.............................................24, 146 sib5RepPeriod..........................................24, 146 sib5StartPos.............................................24, 146 sib7expirationTimeFactor.........................26, 146 sib7RepPeriod....................................24, 26, 146 sib7StartPos.............................................24, 146 sInterSearch.............................................52, 149 sIntraSearch.............................................52, 149 sirMax.............................................................157 sirMin..............................................................157 sRatSearch ........................................25, 52, 149 state128_128Supported...........................37, 147 supportOf16qam ......................................15, 146

T

t305 ..........................................................91, 153 t3212 ..................................................24, 34, 147 timeToTrigger1a.................................26, 54, 149 timeToTrigger1b.................................26, 55, 150 timeToTrigger1c .................................26, 56, 150

timeToTrigger1d.................................26, 57, 150 timeToTrigger2dEcno ........................58, 59, 150 timeToTrigger2dRscp ........................58, 59, 150 timeToTrigger2fEcno ...............................60, 150 timeToTrigger2fRscp ...............................60, 151 timeToTrigger3a...........................64, 65, 66, 151 timeToTrigger6d.................................11, 61, 150 timeTrigg4_2b..............................67, 68, 69, 151 timeTrigg6b..............................................62, 150 tmCongAction ..........................................91, 153 tmCongActionGhs....................................90, 153 tmCongActionNg......................................90, 153 tmInitialG............................................90, 91, 153 tmInitialGhs ..............................................90, 153 transmissionTargetError ..........................97, 158 treSelection ........................................25, 53, 149 txPowerConnQualMonEnabled .........61, 62, 150

U

uarfcnDl........................................11, 13, 63, 146 uarfcnUl....................................................13, 146 ueTxPowerThresh6b ...............................62, 150 ulDownswitchBandwidthMargin ...............79, 152 ulHwAdm..................................................47, 148 ulInitSirTargetEdch ..................................97, 158 ulInitSirTargetExtraHigh...........................33, 147 ulInitSirTargetHigh ...................................33, 147 ulInitSirTargetLow....................................33, 147 ulInitSirTargetSrb.....................................33, 147 ulOuterLoopRegulator .............................94, 154 ulPathlossCheckEnabled.........................50, 149 ulRlcBufUpswitch.....................................75, 152 ulRlcBufUpswitchMrab.............................85, 152 ulSirStep ..................................................94, 154 ulThroughputAllowUpswitchThreshold ....82, 152 ulThroughputDownswitchTimer ...............79, 152 upswitchPwrMargin..................................80, 152 upswitchTimer..........................................80, 152 upswitchTimerUl ......................................82, 152 usedFreqRelThresh2fEcno......................60, 150 usedFreqRelThresh2fRscp......................60, 150 usedFreqRelThresh4_2bEcno.................67, 151 UsedFreqRelThresh4_2bRscp ..........68, 69, 151 usedFreqThresh2dEcno(hho)..................58, 150 usedFreqThresh2dEcno(sho) ..................59, 150 usedFreqThresh2dEcnoDrnc...................59, 150 usedFreqThresh2dRscp(hho)..............9, 58, 150 usedFreqThresh2dRscp(sho) ..................59, 150 usedFreqThresh2dRscpDrnc...................59, 150 usedFreqW2d ..........................................63, 151 usedFreqW2f ...........................................63, 151 usedFreqW4_2b ......................................69, 151 utranDrxCycleLength ...............................38, 148 utranFilterCoefficient3....................................151

Page 170: Ericsson documents.mx ericsson-field-guide-for-utran

Volume II – Ericsson Field Guide for UTRAN P3

ND-00150 AT&T CONFIDENTIAL & PROPRIETARY Page 170 of 170 Rev. 3.0 09/09/2007 Use pursuant to Company instructions © 2007 AT&T

utranRelThresh3aEcno ............................64, 151 utranRelThresh3aRscp ......................65, 66, 151 utranRelThreshRscp ..........................66, 69, 151 utranW3a..................................................67, 151

W

w1a ..........................................................58, 150 w1b ..........................................................58, 150