erl compton scheme for clic

28
ERL Compton scheme for CLIC L. Rinolfi (CERN) and T. Omori (KEK) many thanks to all Posipol collaboraters CLIC WS 15-Oct-2009 CERN

Upload: venus

Post on 07-Jan-2016

34 views

Category:

Documents


0 download

DESCRIPTION

ERL Compton scheme for CLIC. L. Rinolfi (CERN) and T. Omori (KEK) many thanks to all Posipol collaboraters CLIC WS 15-Oct-2009 CERN. World-wide PosiPol Collaboration. Collaborating Institutes: BINP, CERN, DESY, Hiroshima, IHEP, IPN, KEK, Kyoto, LAL, CELIA/Bordeaux, NIRS, NSC-KIPT, - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: ERL Compton scheme for CLIC

ERL Compton scheme for CLIC

L. Rinolfi (CERN) and T. Omori (KEK)many thanks to all Posipol collaboraters

CLIC WS 15-Oct-2009 CERN

Page 2: ERL Compton scheme for CLIC

Collaborating Institutes:BINP, CERN, DESY, Hiroshima, IHEP, IPN, KEK, Kyoto, LAL, CELIA/Bordeaux, NIRS, NSC-KIPT,

SHI, Waseda, BNL, JAEA and ANL Sakae Araki, Yasuo Higashi, Yousuke Honda, Masao Kuriki, Toshiyuki Okugi, Tsunehiko Omori, Takashi Taniguchi, Nobuhiro Terunuma, Junji Urakawa, Yoshimasa Kurihara, Kazuyuki Sakaue,

Masafumu Fukuda, Takuya Kamitani, X. Artru, M. Chevallier, V. Strakhovenko, Eugene Bulyak, Peter Gladkikh, Klaus Meonig, Robert Chehab, Alessandro Variola, Fabian Zomer,

Alessandro Vivoli, Richard Cizeron, Viktor Soskov, Didier Jehanno, M. Jacquet, R. Chiche, Yasmina Federa, Eric Cormier, Louis Rinolfi, Frank Zimmermann, Kazuyuki

Sakaue, Tachishige Hirose, Masakazu Washio, Noboru Sasao, Hirokazu Yokoyama, Masafumi Fukuda, Koichiro

Hirano, Mikio Takano, Tohru Takahashi, Hirotaka Shimizu, Shuhei Miyoshi, Yasuaki Ushio, Tomoya Akagi,

Akira Tsunemi, Ryoichi Hajima, Li XaioPing, Pei Guoxi, Jie Gao, V. Yakinenko, Igo Pogorelsky, Wai Gai, and

Wanming Liu

World-wide PosiPol Collaboration

POSIPOL 2006CERN Geneve26-27 Aprilhttp://posipol2006.web.cern.ch/Posipol2006/

POSIPOL 2007LAL Orsay23-25 May

http://events.lal.in2p3.fr/conferences/Posipol07/

POSIPOL 2008Hiroshima16-18 June

http://home.hiroshima-u.ac.jp/posipol/

POSIPOL 2009Lyon23-26 Junehttp://indico.cern.ch/internalPage.py?pageId=1&confId=53079

POSIPOL 2010Tsukuba

Page 3: ERL Compton scheme for CLIC

Two ways to get pol. e+(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 200 m

Page 4: ERL Compton scheme for CLIC

Two ways to get pol. e+(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 200 m

Our Proposal

Page 5: ERL Compton scheme for CLIC

Why Laser-Compton ?ii) Independence Undulator-base e+ : use e- main linac Problem on design, construction, commissioning, maintenance, Laser-base e+ : independent Easier construction, operation, commissioning, maintenance

v) Low energy operation (exsmpl: Ecm = 230 GeV) Undulator-base e+ : not suitable Laser-base e+ : no problem

i) Positron Polarization.

iii) Polarization flip @ 50 Hziv) High polarization

Page 6: ERL Compton scheme for CLIC

Three of Compton schemes

for CLIC and ILC1. Ring-based Compton.

3. Linac-based Compton.

2. ERL-based Compton.

Page 7: ERL Compton scheme for CLIC

Three of Compton schemes

for CLIC and ILC1. Ring-based Compton.

3. Linac-based Compton.

2. ERL-based Compton.

My talktoday

Page 8: ERL Compton scheme for CLIC

ERL

laser pulse stacking cavities

positron stacking in main

DRRe-use Concept

to main linac

ERL Compton

efficient photon beam

efficient electron beam

e-Linac or E-gun

Page 9: ERL Compton scheme for CLIC

31 MHz

325 MHz

Optical Cavity for Pulse Laser Beam

Stacking

Cavity Enhancement Factor = 1000 - 105

Laser-electronsmall crossing angle

Laser bunches

Lcav = n Lcav = m Llaser

Reuse high powerlaser pulse

by optical cavity

collision is not head-on

Page 10: ERL Compton scheme for CLIC

injection 10 MeV RF-Gun

1.8 GeV 10 MeVdump 10 MeV

laser-pulse stacking cavity1.8 GeV 1.8 GeV -

E_loss

accelerating electron bunches(take energy from acc. cavities)decelerating electron bunches(give energy to acc. cavities)

gamma rays

ERL based Compton source

1.8 GeV - E_loss

10 MeV1.8 GeV

superconducting electron linac

E_loss : beam energy loss cased by Compton scatterings

Page 11: ERL Compton scheme for CLIC

Points of ERL: 1Re use: Energy of electron beamThrow away: electron beam.

Page 12: ERL Compton scheme for CLIC

Points of ERL: 1Re use: Energy of electron beamThrow away: electron beam.Points of

ERL: 2Fresh, high quality beam Small spot size (10 micron) at CP.

Page 13: ERL Compton scheme for CLIC

Points of ERL: 1 Re use: Energy of electron beamThrow away: electron beam.Points of ERL:

2 Fresh, high quality beam

Beam compression (3 ps to < 1 ps)

Points of ERL: 3

Small spot size (10 micron) at CP.Short bunch (< 1 ps) at CP. (non head-on)

Page 14: ERL Compton scheme for CLIC

injection 10 MeV RF-Gun

1.8 GeV 10 MeVdump 10 MeV

laser-pulse stacking cavity1.8 GeV 1.8 GeV -

E_loss

accelerating electron bunches(take energy from acc. cavities)decelerating electron bunches(give energy to acc. cavities)

gamma rays

ERL based Compton source

1.8 GeV - E_loss

10 MeV1.8 GeV

superconducting electron linac

E_loss : beam energy loss cased by Compton scatterings

decompressioncompression

Page 15: ERL Compton scheme for CLIC

Points of ERL: 1 Re use: Energy of electron beamThrow away: electron beam.Points of ERL:

2 Fresh, high quality beam

Beam compression (3 ps to < 1 ps) Points of ERL:

4 Need steady exchange of energy: Accel-Bunches, Decel-Bunches, Klystrons Need CW operation

Points of ERL: 3

Small spot size (10 micron) at CP.Short bunch (< 1 ps) at CP.

Page 16: ERL Compton scheme for CLIC

CLIC e+ source parameters

• 4.2 x 109 e+/bunch (exit of Pre Damping

Ring:PDR)

• E (PDR and DR) = 2.86 GeV• Tb-to-b = 0.5 ns

• CDR = CPDR ~ 400 m

• Nbunch = 312 / trian

• Frep = 50 Hz (Ntrain = 50/sec)

Page 17: ERL Compton scheme for CLIC

ERL : CW device

CLIC : short pulse 150 ns & high

rep. 50 Hz

(312 bunches w/ 0.5 ns

spacing)

Compare ERL and CLIC

How to adapt ERL to CLIC?

Page 18: ERL Compton scheme for CLIC

SolutionPut 2 stacking rings (SRs) between ERL and PDRto separate stacking and damping functions.ERL

C = 48mSR1

123

321

PDR

123312

47 m

C = 400

m

C = 48mSR2

123

321

Kill 321 - 312 = 9 bunches

Page 19: ERL Compton scheme for CLIC

Configuration

Page 20: ERL Compton scheme for CLIC

• C = 48.15 m• 0.156 s / turn• 321 bunches in a ring 321 x 0.5 ns x 0.3 m/ns = 48.15 m• stack in the same bucket every 64th turn

(injected beam: Tb-to-b = 32 ns -->

explain later )• N of stacking in the same bucket = 2003 64 x 2003 = 128 192 turns = 1.2 x 105 turns

0.156 s x 1.2 x 105 = 19.9979 ms 20 ms• "Stacking = 20 ms" + "Damping in SR = 20 ms" --> total 40 ms /cycle (25 Hz)

Stacking Ring (SR)

match

SR makes stacking and pre2 damping

Page 21: ERL Compton scheme for CLIC

Stacking in a SR : part 1We give labels "1" to "321" to the buckets

in the SR. 123

64

SR

321

193

320

C = 48 m

25765

129

Page 22: ERL Compton scheme for CLIC

• 1st turn 1 65 129 193 257

• 2nd turn 321 64 128 192 256

• 3rd turn 320 63 127 191 255••• 64th turn 2 66 130 194 258

• 65th turn 1 65 129 193 257

• 66th turn 321 64 128 192 256

Stacking in a SR : part 2

Page 23: ERL Compton scheme for CLIC

ERL(CW)

Timing Chart

SR1(25Hz)

SR2(25Hz)

PDR(50Hz)

DR(50Hz)

stackdamp stackdamp stackdamp stack

stack

damp stack

damp stack

damp

0 20 40 60 80 100 120 140Time [ ms ]

to SR1 to

SR2

to SR1 to

SR2

to SR1 to

SR2

to SR1

to PDR to PDR to PDR

to PDR to PDR to PDR

from SR1from SR2

from SR1from SR2

from SR1from SR2

Page 24: ERL Compton scheme for CLIC

• e- beam (ERL)

3 x 109 e-/bunch E = 1.8 GeV

• Laser 600 mJ / cavity 1 cavity in ERL

• 5 x 108 -rays/bunch

• 2.5 x 106 e+/bunch

• 5 x 109 e+/bunch (CLIC requires 4.2 x 109 )

Number of -rays/ e+s

collisio

n

thin conversion target: yield 0.5 %

2003 stacking in the same bucket

Page 25: ERL Compton scheme for CLIC

• 3 x 109 e-/bunch

• E = 1.8 GeV• Tb-to-b = 32 ns

• Fref = 31.25 MHz

• FRF = 1 GHz (for example)

ERL

Accelerating bunchesDecelerating bunches

1 nsec (1 GHz)

Tb-to-b = 32 nsec

Tb-to-b = 32 nsec

Page 26: ERL Compton scheme for CLIC

Summary

• Stacking ring with 48 m circumference and 1 GeV is also a challenge.

• A solution where stacking and damping are decoupled seems possible to fulfill CLIC requirements with an ERL scheme • Challenge remains to be demonstrated in order to make 2000 stacking in a same bucket. There was a simulation for ILC-ERL-Compton by F. Zimmerman. The result was encouraging.

• The cost increase with 2 storage rings is not an issue compared to the rest of the complex.

• ERL scheme can provide small spot size and short pulse at the laser-electron collision point. Especially short pulse (< 1ps) is big advantage.

Page 27: ERL Compton scheme for CLIC

Backup slides

Page 28: ERL Compton scheme for CLIC

Status of Compton Source

We still need many R/Ds and simulations.

We have 3 schemes. Choice 1 : How to provide e- beam Storage Ring, ERL, Linac Choice 2 : How to provide laser beam Wave length (=1m or =10m ) staking cavity or non stacking cavity Choice 3 : e+ stacking in DR or Not

Proof-of-Principle demonstration was done.ATF-Compton Collaboration

Polarized e+ generation: T. Omori et al., PRL 96 (2006) 114801

Polarized -ray generation: M. Fukuda et al., PRL 91(2003)164801