errata - unt digital library/67531/metadc871301/...errata page 3.6, last line - should read and...

86

Upload: others

Post on 30-May-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 2: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 3: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

E R R A T A

Page 3 . 6 , l a s t l i n e - s h o u l d r e a d

and p r o p a g a t e outward. A s shown i n F i g u r e 3 . 5 , t h e f u e l c e n t e r

E n g i n e e r i n g Drawing H-3-27688, F u e l P in

Appendix A - Second drawing s h o u l d b e i d e n t i f i e d a s

E n g i n e e r i n g Drawing H-3-29368, I n n e r Capsule

D i s t r - 5 - 1st Column, 1 5 t h Name s h o u l d be

J . C . Gus ta f son - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

D i s t r - 5 - 1st Column, 38 th Name s h o u l d be

D . 0 . Sheppard (10)

Page 4: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

BNWL- 1368

UC-25, Metals, Ceramics

and Materials

H A Z A R D S A N A L Y S I S FOR T H E

B A T T E L L E- N O R T H W E S T

E B R - I I I T R E A T T R A N S I E N T I R R A D I A T I O N T E S T - S E R I E S

G. E. Culley

D. 0. Sheppard

FFTF Fuel Department FFTF Division

June 1970

BATTELLE MEMORIAL INSTITUTE PACIFIC NORTHWEST LABORATORIES RICHLAND, WASHINGTON 99352

Page 5: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Printed in the United States of America Available from

Clearinghouse for Federal Scientific and Technical Information National Bureau of Standards, U.S. Department of Commerce

Springfield, Virginia 22151 Price: Printed Copy $3.00; Microfiche $0.65

Page 6: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

H A Z A R D S A N A L Y S I S FOR T H E

B A T T E L L E- N O R T H W E S T

E B R - I I / T R E A T T R A N S I E N T I R R A D I A T I O N T E S T S E R I E S

G. E. Culley and D. 0 . Sheppard

ABSTRACT

This document describes the experimental equipment used

and contains an analysis of potential hazards involved in the

EBR-II/TREAT series of transient irradiations to be conducted

in support of the Fast Flux Test Facility (FFTF) fuel develop-

ment program. Approximately sixteen transient irradiations in

TREAT will be conducted on prototypic FFTF fuel pins

previously irradiated in EBR-I1 to burnups of 10,000 and

50,000 MWd/MTM. A hazards analysis was conducted on the

maximum burnup fuel pin for both the expected and maximum

accident transient conditions.

iii

Page 7: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

CONTENTS

ABSTRACT . LIST OF FIGURES . . . LIST OF TABLES

1.0 INTRODUCTION . 2.0 DESCRIPTION OF EXPERIMENTAL EQUIPMENT

2.1 Fuel Pin Design . 2.2 Inner Capsule Design

2.3 Treat Capsule Design

2.4 Experiment Instrumentation . 3.0 HAZARDS ANALYSIS .

3.1 Nuclear Effects on Reactor Performance . 3.2 Experiment Response with Expected Transient . 3.3 Maximum Accident Case . 3.4 Handling of Experimental Equipment .

iii

vii

viii

1.1

2.1

2.1

2.4

2.4

2.8

3.1

3.1

3.5

3.16

3.21

3.5 Chemical Reactions . 3.23

3.6 Radiation Hazards . 3.24

3.7 Disposal of Radioactive Materials . 3.33

4.0 CONCLUSIONS . 4.1

APPENDICES

A. Engineering Drawings of Experiment Apparatus

B. Fission Gas Pressure Buildup During Steady-State Irradiation and Pressure Capability of Inner Capsule

C. Calculations for Expected Transient

D. Calculations for Maximum Accident Transient

E. Tables of Photon Production Rates and Fission Gas Concentrations

REFERENCES R-1

Page 8: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

L I S T O F F I G U R E S

2.1 Pre-Irradiated EBR-II/TREAT Test Fuel Pin and Capsule

2.2 EBR-II/TREAT Inner Capsule Assembly

2.3 TREAT Capsule Assembly

3.1 Radial Power Distribution in EBR-II/TREAT Fuel

3.2 Effect of EBR-II/TREAT Experiment Upon Radial Flux Distribution in TREAT

3.3 EBR-II/TREAT Fuel Model for ARGUS

3.4 TREAT Transient Number 926

3.5 EBR-II/TREAT Fuel Pin Temperature Response for TREAT Transient Number 926

3.6 Peak EBR-II/TREAT Fuel Temperatures for Expected Transient

3.7 Fission Gas Release from Mixed Oxide DFR and APO Fuel Pins

3.8 Internal Fuel Pin Pressure for Maximum and Expected Transient

3.9 Cladding Temperature Versus Time for the Maximum and Expected Transient as Calculated by ARGUS

3.10 Maximum Accident Transient for EBR-II/TREAT Tests

3.11 Peak EBR-II/TREAT Capsule Temperatures for Maximum Accident Transient

3.12 TREAT Capsule Shipping Configuration

Page 9: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

LIST OF T A B L E S

FTR Transient Overpower Damage Levels 1.2

PNL 1 and 2 EBR-I1 Fuel Pins for TREAT Experiments 2.3

10,000 MWd/MTM EBR-I1 Exposure Roentgens/hr 3.25

50,000 MWd/MTM EBR-I1 Exposure Roentgenslhr 3.25

Total Activity After Shutdown (Curies) 3.25

10,000 MWd/MTM EBR-I1 Exposure Fission Gas Activity (Curies) After Removal from EBR-I1 3.26

50,000 MWd/MTM EBR-I1 Exposure Fission Gas Activity (Curies) After Removal from EBR-I1 3.28

TREAT Transient Exposure Green Fuel Roentgens/hr 3.30

Total Activity After Shutdown (Curies) 3.30

Fission Gas Activity (Curies) from TREAT Transient Exposure (Green Fuel) 3.31

304 SS Activation (Based on 304 SS Concentrations) 3.34

Page 10: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

H A Z A R D S A N A L Y S I S F O R T H E B A T T E L L E - N O R T H W E S T

E b R - I I / T R E A T T R A N S I E N T I R R A D I A T I O N T E S T S E R I E S

1.0 I N T R O D U C T I O N

A s e r i e s of t r a n s i e n t t e s t s w i l l be conducted on p r o t o -

t y p i c FTR (Fas t Test Reactor) f u e l p i n s i n suppor t of t h e FFTF

d r i v e r f u e l development program, t o e v a l u a t e t h e p in s response

and f a i l u r e t h r e sho lds f o r t h e p o s t u l a t e d acc iden t cond i t i ons

shown i n Table 1.1. The range of t e s t i n g w i l l i nc lude t h e

t h r e sho lds between (a) t h e minor and major acc iden t s and (b)

t he major and d i s r u p t i v e acc iden t s . The t r a n s i e n t t e s t s w i l l

be designed t o produce t h e a p p r o p r i a t e degree of f u e l mel t ing

and c ladd ing temperature . The f u e l p i n response w i l l be e v a l -

ua t ed t o determine i f they meet p l a n t s a f e t y c r i t e r i a . This

e v a l u a t i o n in format ion w i l l be used i n t h e s a f e t y a n a l y s i s

r e p o r t s r equ i r ed f o r c o n s t r u c t i o n and ope ra t i on of t h e FFTF.

The o v e r a l l BNW-FFTF t r a n s i e n t t e s t i n g program inc ludes

both p r e - i r r a d i a t e d and n o n i r r a d i a t e d f u e l p i n s .

P r e - i r r a d i a t e d p i n s w i l l have been i r r a d i a t e d i n e i t h e r GETR

o r E B R - 1 1 . GETR-irradiated p in s c l o s e l y approximate t h e F T R ' s

f u e l l eng th whi le EBR-11- i r radia ted p in s (13-1/2 i n . f u e l

column), more c l o s e l y approximate burnup i n t h e FTR1s neu t ron

f l u x spectrum.

The EBR-II/TREAT t e s t s e r i e s concern only t hose f u e l p in s

p r e - i r r a d i a t e d i n E B R - 1 1 . The i r r a d i a t e d , mixed-oxide f u e l

p i n s w i l l be de - encapsu l a t ed , n o n d e s t r u c t i v e l y examined, and

r e - encapsu l a t ed . The p i n s w i l l t hen be i n s e r t e d i n t o a t e s t -

ing capsu l e , t r a n s i e n t i r r a d i a t e d , and f i n a l l y nondes t ruc t i ve ly

and d e s t r u c t i v e l y examined.

The hazards a n a l y s i s p r e sen t ed f o r t h e EBR-II/TREAT

s e r i e s cons ide r s t h e t e s t f u e l p i n and t e s t cond i t i ons t h a t

w i l l produce t h e most s e v e r e r e s u l t s .

Page 11: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

a, d

o

0 td

-4 o

m

o

m

ma

6

16

M

O

Or

l

do4 3

cd h

ad

F

:F:o

E 22 o

cd

o

a k

-4

o .rc

wa

cd

a o

o.d

rl

a,w

k

cd c

o.4

n

m a, a

UM

Uk

cd

rla

,Oc

dp

4

00

cd

@a

0

E'+

arb

Z

d O

OU

go k a,

n

o 2

z n

md

a,

0

4

k-d

a, a,

am

Et'a

o m

0 F

:L

a

+ rn

a, 3F4

riw

p:

GO

O

MC

, .d

M C

.A

F:.d

S?

$

.dm

d

(d

a

cd

mo

a,

a a,

cd

Z4

c

dr

lu

a,

4 a,

p: u

p:

Page 12: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

2.0 DESCRIPTION OF EXPERIMENTAL EQUIPMENT

2.1 FUEL PIN DESIGN

The fuel pins to be transient irradiated in TREAT have

been pre-irradiated in EBR-I1 in subassemblies X031 (PNL-1)

and X032 (PNL-2). Figure 2.1 shows the fuel pin and its

sodium-bonded capsule used in EBR-11. The engineering drawing

of the fuel pin (H-3-27688) is shown in Appendix A. After the

EBR-I1 irradiation, the sodium-bonded capsule is removed, and

the fuel pin is cleaned, gamma scanned, and profilometered.

It is then re-encapsulated in an inner capsule called the

EBR-II/TREAT capsule (discussed in Section 2.2) . The fuel material is a mixed oxide composed of 25 wt%

Pu02 and 75 wt% U02 containing 93% enriched uranium. The

fuel is in the form of pressed and sintered solid and annular

pellets, 0.25 in. long, 0.212 in. in diameter, at 93% of theo-

retical density. Nominal weight of the fuel is 80 grams in a

column 13.5 in. long. Several of the fuel columns contain

axial fuel motion restrictors which are 118-in. thick

Type 304 SS wafers 0.215 in. in diameter with axial grooves on

the periphery. Fuel cladding material is Type 304 SS 0.250 in. diameter with a 0.016 in. wall thickness. Nominal fuel-to-

cladding cold diametral gap is 0.006 in. to yield a planar

smeared density of approximately 88% TD. The as-fabricated

smeared densities were somewhat less. Located directly above

the fuel column is a spring-loaded extensometer. The cladding

end closures were made by TIG welding Type 304 SS end caps in

place. The internal fuel pin atmosphere is helium plus fis-

sion gases released during steady-state irradiation. (1)

Table 2.1 shows the as-fabricated fuel parameters and steady-

state irradiation conditions for EBR-II/TREAT test fuel pins.

Page 13: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

FIGURE 2.1. Pre-Irradiated EBR-II/TREAT Test Fuel Pin and Capsule

i

Page 14: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 2.1. PNL 1 and 2 EBR-I1 Fuel Pins for TREAT Experiments

PNL Capsule #

1-1 1-2 1-4 1-5 1-7 1-8 1-1 0 1-11

Fuel P e l l e t Densi ty, % TD

IN ALL CASES:

Fuel Smeared Density, % TD

Fuel Weight, g

78.90 80.53 77.84 78.11 76.80 77.30 72.18 72.00

Pel l e t Hole Dia., i n (Nominal )

-- -- -- --

0.054 0.054 0.054 0.054

Ax ia l Motion R e s t r i c t o r

No No Yes Yes No N 0 Yes Yes

No N 0 Yes Yes No No Yes Yes

Peak Steady Sta te Power, kW/ft

Peak Burnup MWd/MTM

8,200 7,850 8,520 8,200 8,850 8,520 8,850 9,200

Fuel Column Length, i n . 13.5 Fuel P e l l e t O.D., i n . 0.212 Fuel Cladding Dia. Gap, i n . 0.006 C l addi ng Diameter , i n . 0.250 Cladding Thickness , i n . 0.016

Page 15: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

2 . 2 I N N E R C A P S U L E D E S I G N

The f u e l p i n i s t o be con ta ined i n a NaK-bonded, i n s t r u -

mented capsu le a s shown i n Figure 2 . 2 . The eng ineer ing

drawing of t h i s capsu le (H-3-29368) appears i n Appendix A.

The capsu le was designed t o :

Provide an ins t rumented v e h i c l e f o r t h e p r e - i r r a d i a t e d

f u e l p i n .

Permit remote i n s e r t i o n of t h e f u e l p i n wi th subsequent

NaK f i l l i n g .

Be compatible wi th t h e e x i s t i n g BNW-TREAT capsu l e s .

The i nne r capsu l e des ign concept i s based on t h a t de s ign

proved i n t h e G.E.-PA-10 program Task C t r a n s i e n t t e s t s . (293)

The capsu l e i s cons t ruc t ed of Type 304 SS tub ing wi th a

1 - 1 /8 i n . OD and a 0.049 i n . w a l l . I t con t a in s an annula r

n i c k e l thermal dam bonded t o t h e f u e l p i n wi th e u t e c t i c NaK

a l l o y . The capsu l e i s ins t rumented w i th s i x Chromel-Alumel

thermocouples s p a t i a l l y ar ranged a s shown i n Figure 2 . 2 .

Three thermocouple h o t j unc t ions a r e l o c a t e d i n t h e NaK

annulus between t h e f u e l p i n and n i c k e l thermal dam, and t h e

o t h e r t h r e e a r e l o c a t e d i n t h e NaK annulus between t h e thermal

dam and t h e capsu le w a l l . The f u e l p i n w i l l be a t t a c h e d a t

t h e bottom, have 10 i n . of a x i a l c l ea rance and 0.090 i n . of

d i ame t r a l c l e a r a n c e i n t h e thermal dam. The o v e r a l l capsu le

l e n g t h i s 63-7/8 i n . w i t h a maximum diameter of 1 - 3 /4 i n . a t

t h e i n s t rumen ta t i on connector .

2 .3 T R E A T C A P S U L E D E S I G N

Cutaway drawing of t h e BNW-TREAT capsu l e is shown i n

Figure 2.3. This capsu le was des igned t o r e p l a c e t h e c e n t r a l

f u e l element i n TREAT and t o p rov ide an i n t e r f a c e between t h e

i n n e r capsu le and t h e TREAT r e a c t o r f o r t r a n s i e n t i r r a d i a t i o n

of mixed oxide f u e l p i n s . The capsu le c o n s i s t s o f a c y l i n -

d r i c a l p r e s s u r e v e s s e l equipped w i t h a TREAT g r ipp ing f i x t u r e

Page 16: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 17: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 18: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

a t i t s upper end and a f u e l element guide p i n f i t t i n g a t i t s

lower end. The e x t e r i o r of t h e capsu le has t h e same dimensions

a s a TREAT d r i v e r element except t h a t t h e c e n t r a l p o r t i o n i s

round i n c ros s s e c t i o n r a t h e r t han square . The eng ineer ing

drawing of t h i s capsu le (H-3-27729) i s shown i n Appendix A.

The primary des ign c r i t e r i a f o r t h i s capsu le is t h a t a s a

t h i r d and f i n a l containment b a r r i e r i t must r e s t r a i n t h e con-

sequences of a g r o s s f a i l u r e of both t h e f u e l p i n and t h e

i n n e r capsu l e . The capsu l e i s cons t ruc t ed of 3 i n . OD by

0.250 i n . w a l l , h e a t - t r e a t e d 4130 s t e e l tube wi th welded and

h e a t - t r e a t e d 4130 s t e e l end f i t t i n g s . The welds were s u b j e c t e d

t o X-radiography and dye p e n e t r a n t t e s t i n g and t h e completed

capsu le h y d r o s t a t i c a l l y t e s t e d t o 15,000 p s i i n t e r n a l p r e s s u r e .

The i n s i d e of t h e capsu le i s l i n e d wi th g r a p h i t e t o p reven t

molten m a t e r i a l s from c o n t a c t i n g t h e p r e s s u r e v e s s e l i n t h e

case of v i o l e n t f a i l u r e of both t h e f u e l p i n and i n n e r cap-

s u l e . An e l e c t r i c h e a t i n g element thermal ly i n s u l a t e d from

t h e p r e s s u r e v e s s e l i s used t o provide t h e d e s i r e d p r e t r a n -

s i e n t temperature i n t h e t e s t capsu le . S i x thermocouples a r e .

incorpora ted i n t h e h e a t e r can t o monitor temperatures dur ing

t h e p rehea t pe r iod . A connector i s provided t o mate wi th t h e

connector on t h e i n n e r capsu l e , and e l e c t r i c a l l e ads from both

t h e h e a t e r can and inne r capsu le pass through a bulkhead s e a l e d

wi th epoxy r e s i n . The capsu le c l o s u r e c o n s i s t s of a b o l t e d

f l a n g e wi th a p r e s s u r e - a s s i s t e d , p l a t e d , metal 0 r i n g s e a l .

Operat ing exper ience w i th capsu les o f s i m i l a r de s ign has

been ob ta ined under t h e Task C t r a n s i e n t i r r a d i a t i o n s of t h e

G.E.-conducted PA-10 program which shows t h e des ign t o be

adequate f o r t h e t r a n s i e n t t e s t i n g of mixed oxide f u e l p i n s . (3)

Page 19: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

2 . 4 E X P E R I M E N T I N S T R U M E N T A T I O N

The instrumentation incorporated in these experiments is

provided to:

Measure and control the pre-transient temperature.

Provide a history of inner capsule temperatures during

the transient.

Measure the post- transient equilibrium temperature of the

inner capsule.

The failure of any instrumentation will not affect the test

performance or safety features; however, such a failure could

result in loss of useful information for test evaluation. The

instrumentation consists of twelve stainless steel-sheathed

Chromel-Alumel thermocouples. Six thermocouples are located

within the inner capsule and six in the heater can in such a

way that they rest against the outer surface of the inner

capsule.

Page 20: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

3 .0 H A Z A R D S A N A L Y S I S

N U C L E A R E F F E C T S ON R E A C T O R P E R F O R M A N C E

The nuc l ea r E f f e c t s of performing EBR-II/TREAT e x p e r i -

ments i n t h e TREAT r e a c t o r were eva lua t ed u s ing t h e computer

codes HRG, ( 4 ) BATTELLE-REVISED-THERMOS , and DTF- IV. (6)

Because t h e capsu l e des ign i s s i m i l a r t o t h e capsu les used i n

t h e G.E.-PA-10 t r a n s i e n t t e s t i n g program ( S e r i e s I 1 and I11

i n p a r t i c u l a r ( 2 , 3 ) ) , t h e i r e f f e c t upon r e a c t o r performance i s

expected t o be s i m i l a r . The knowledge ob ta ined from t h e G.E .

t e s t s can be d i r e c t l y app l i ed t o t h e E B R - I I / T R E A T s e r i e s of

t e s t s wi th a h igh degree of conf idence.

Two neu t ron energy groups were used i n t h e a n a l y s i s s i n c e

a s i g n i f i c a n t p o r t i o n of t h e power genera ted i n t h e h i g h l y

enr iched t e s t p i n i s due t o nonthermal, neutron- induced f i s -

s i o n s , a s shown i n Figure 3.1. This f i g u r e i l l u s t r a t e s t h e

r a d i a l power p r o f i l e w i t h i n t h e t e s t f u e l and shows t h a t t h e

nonthermal c o n t r i b u t i o n accounts f o r approximately 7 0 % of t h e

power generated i n t h e c e n t e r o f t h e p in .

Figure 3.2 shows the r a d i a l neu t ron f l u x p e r t u r b a t i o n i n

t h e TREAT core a t t h e a x i a l midplane caused by t h e presence of

t h e EBR-II/TREAT capsu l e . The worth of t h e i nne r c o n t r o l rods

l o c a t e d a t a r a d i u s o f 44-1/2 cm i s decreased by on ly 5 % . The

o u t e r c o n t r o l rods a r e n o t s i g n i f i c a n t l y a f f e c t e d . The worth

of t h e E B R - I I / T R E A T capsu le a s compared t o a s t anda rd d r i v e r

element was c a l c u l a t e d t o be - 2 . 7 % A K / K .

A c a l i b r a t i o n experiment u t i l i z i n g t h e EBR-II/TREAT cap-

s u l e geometry was performed i n TREAT t o determine t h e r e l a -

t i o n s h i p between t h e t e s t p i n power and t h e r e a c t o r power.

The r e s u l t s showed t h a t t h i s r a t i o i s 1.00 x W pe r cm3

of t e s t f u e l pe r wa t t of r e a c t o r power f o r n o n i r r a d i a t e d f u e l .

For t e s t p i n s i r r a d i a t e d t o 50,000 MWd/MTM i t was c a l c u l a t e d

t h a t t h i s r a t i o would be reduced by 3 % . The f u e l p i n con ta in s

Page 21: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

R A D I U S , c m

FIGURE 3.1. Radial Power Distribution in EBR-II/TREAT Fuel

Page 22: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

ac,

x 3

w a

Page 23: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

approximately 8 cm3 of f u e l and t h e r e f o r e produces only 0 . 0 8 %

of t h e t o t a l power generated by t h e r e a c t o r . Since t h e e x p e r i -

ment produces such a smal l p o r t i o n of t he t o t a l power and t h e

m a j o r i t y of t h e t e s t capsu le m a t e r i a l s w i l l no t undergo a

l a r g e temperature change dur ing t h e t r a n s i e n t , t h e r e i s n o t

expected t o be a s i g n i f i c a n t e f f e c t upon the temperature

c o e f f i c i e n t of r e a c t i v i t y . The e f f e c t w i l l be s i m i l a r t o t h a t

produced by t h e G . E . experiments p r ev ious ly performed over a

wide range of r e a c t o r powers.

The n a t u r e of t r a n s i e n t t e s t i n g i n t roduces t h e p o s s i b i l i t y

of t h e f u e l be ing rea r ranged w i t h i n t h e t e s t c apsu l e . (See

paragraph 3 . 3 ) . Gross mel t ing and movement of t h e f u e l under

t h e f o r c e s of g r a v i t y and f i s s i o n gas p r e s s u r e t o t h e bottom of t h e i n n e r capsu le no t only l o c a t e s t h e f u e l i n a lower worth

p o s i t i o n i n t h e r e a c t o r , bu t due t o t h e s e l f - s h i e l d i n g e f f e c t

produces a f u e l c o n f i g u r a t i o n t h a t i s worth l e s s than t h e p i n

form. I f t h i s type of f u e l movement were t o occur dur ing t h e

t r a n s i e n t i t would n o t p r e s e n t any n e u t r o n i c hazard t o t h e

r e a c t o r . The o t h e r extreme would be t h e i d e a l i z e d c o n d i t i o n

i n which a l l t h e m a t e r i a l s , and p a r t i c u l a r l y t h e f u e l , become

homogenized w i t h i n t h e i nne r capsu le w a l l from t h e me l t i ng of

a l l i n t e r n a l components. The a n a l y s i s of t h i s c o n d i t i o n

i n d i c a t e s t h a t t h e experiment worth would i n c r e a s e by 0 . 4 %

A K / K upon homogenization. The i n c r e a s e i s caused by t h e

dec rease i n f u e l d e n s i t y and a s s o c i a t e d r educ t ion i n t h e s e l f -

s h i e l d i n g e f f e c t .

Assuming a p e s s i m i s t i c mechanism whereby molten f u e l

r e l e a s e d from t h e f u e l p i n complete ly mel t s and mixes w i th t h e

n i c k e l thermal dam, a s t e p i n c r e a s e i n e f f e c t i v e r e a c t i v i t y

would occur . I f t h e homogenization were t o t ake p l a c e b e f o r e

t h e nega t ive temperature c o e f f i c i e n t could f eed back t o t h e

r e a c t o r , t h e maximum r e a c t i v i t y a v a i l a b l e would be t h e i n i t i a l

Page 24: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

r e a c t o r r e a c t i v i t y (1 .5% A K / K f o r t h e maximum acc iden t c a s e ( 8 ) )

p l u s t he r e a c t i v i t y upon homogenization (0 .4% AK/K) o r

1 .9% A K / K . A r e a c t i v i t y a d d i t i o n of t h i s magnitude i s w e l l

w i t h i n t h e capac i ty o f t h e TREAT r e a c t o r from the s t a n d p o i n t

of maximum co re t empera ture , peak r e a c t o r power, and i n t e -

g r a t ed power. (9)

The l i k e l i h o o d of t h e homogenization process occu r r ing i s

remote a s was demonstrated i n t h e C 2 C t r a n s i e n t t e s t i n t h e

G.E.-PA-10 program S e r i e s I1 t r a n s i e n t . When molten f u e l came

i n con tac t w i th t h e aluminum thermal dam (lower mel t ing p o i n t

and h e a t capac i ty than n i c k e l ) t h e r e was very l i t t l e mixing

of t h e f u e l and aluminum even though t h e thermal dam was p a r -

t i a l l y mel ted. (') There was some slumping and r e l o c a t i o n of

t h e molten f u e l , b u t a review of t h e r e a c t o r power ve r sus time

d a t a d i d no t r e v e a l any s i g n i f i c a n t e f f e c t s upon t h e r e a c t o r

performance.

I t i s concluded t h a t t h e n u c l e a r performance of t h e TREAT

r e a c t o r con ta in ing t h e EBR-II/TREAT capsu le w i l l no t be

adverse ly changed dur ing e i t h e r t h e expected t r a n s i e n t o r one

i n which gross f u e l r e l o c a t i o n occurs .

EXPERIMENT RESPONSE WITH EXPECTED TRANSIENT

Seve ra l t r a n s i e n t experiments a r e planned wi th va r ious

degrees of f u e l mel t ing f o r p i n s of two l e v e l s of s t e a d y s t a t e

burnups. However, t h i s d i s c u s s i o n i s concerned wi th t h e

h i g h e s t exposure p i n and t h e maximum amount of f u e l mel t ing

which w i l l produce t h e most damaging c o n d i t i o n s . The f u e l p i n

d a t a used f o r t h e c a l c u l a t i o n s a r e from p i n number PNL-2-8

which opera ted a t 9 . 8 5 kW/ft peak power and achieved

44,250 MWd/MT exposure. The p r e - i r r a d i a t i o n phys i ca l charac-

t e r i s t i c s of t h i s p i n a r e l i s t e d i n Table 2 . 1 . The p o s t -

i r r a d i a t i o n c h a r a c t e r i s t i c s were assumed from t h e d e s t r u c t i v e

Page 25: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

a n a l y s i s of PNL-1 f u e l p i n s i r r a d i a t e d a t t h e same c o n d i t i o n s .

The i r r a d i a t e d f u e l ( o r i g i n a l l y s o l i d p e l l e t ) was c h a r a c t e r i z e d

a s having 0 .015- in . d iamete r c e n t r a l v o i d , an 0 .080 - in . diam-

e t e r columnar g r a i n r e g i o n of 98% T D , w i t h t h e remainder o f

t h e f u e l be ing 9 3 % TD and i n c o n t a c t w i t h t h e c l a d d i n g . ( lo)

The t r a n s i e n t h e a t t r a n s f e r program ARGUS (11) developed

and modi f i ed(12) a t ANL was used t o s e l e c t a t r a n s i e n t which

would s u b j e c t t h e f u e l p i n t o t h e p o s t u l a t e d FTR t r a n s i e n t

overpower c a s e c h a r a c t e r i z e d by 50 a r e a l % f u e l me l t i ng ( i n a

p l ane normal t o t h e a x i s o f t h e f u e l p i n ) and a peak c l a d d i n g

t empera tu re of 1480 O F . This i s t h e de f i ned t h r e s h o l d between

a "major a c c i d e n t " and a " d i s r u p t i v e acc iden t" shown i n

Table 1.1. The TREAT t r a n s i e n t t hus determined was used a s t h e

"expected t r a n s i e n t " f o r t h e hazards a n a l y s i s .

I n a d d i t i o n t o t h e f u e l p i n c h a r a c t e r i s t i c s , t h e ARGUS

i n p u t used a c o n s t a n t f u e l - t o - c l a d d i n g gap c o e f f i c i e n t of

2,000 ~ t u / h r - f t ~ - ~ ~ and a p r e h e a t t empera tu re of 300 OF. The

m a t e r i a l p r o p e r t i e s i n t h e t e s t p i n and capsu l e va ry a s a

f u n c t i o n o f t empera tu re . The nodal l ayou t and m a t e r i a l r e g i o n s

used t o d e s c r i b e t h e t e s t geometry a r e shown i n F igu re 3 . 3 .

TREAT t r a n s i e n t No. 9 2 6 was found t o produce t h e d e s i r e d

r e s u l t s on t e s t p i n PNL-2-8. T r a n s i e n t No. 9 2 6 had a peak

power o f 124 MW w i t h an i n t e g r a t e d power o f 160.5 MW/sec a s

shown i n F igu re 3 . 4 .

The tempera tu re response of t h e f u e l p i n when s u b j e c t e d

t o TREAT t r a n s i e n t No. 926, a s p r e d i c t e d by ARGUS, i s shown i n

F igu re 3 .5 . The r a d i a l power p r o f i l e of t h e p i n (F igu re 3 .1)

c ause s t h e maximum f u e l t empera tu re t o f i r s t occur a t a r a d i u s

where r /ro e q u a l s approximate ly 0 .5 and p ropaga t e s inward.

I d e a l l y , t h e power p r o f i l e would be f l a t t o s i m u l a t e a f a s t

f l u x power p r o f i l e , and me l t i ng would o r i g i n a t e a t t h e c e n t e r

and p ropaga te outward. As shown i n F igure 3 . 2 , t h e f u e l c e n t e r

Page 26: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. o f Node R e g i o n R a d i u s , f t D i a m e t e r , i n . Nodes Number

1 6 .250 x 0 . 0 1 5 2 1 - 2

BNWL-1368

Q 1 2 3 4 5 6 7 8

FIGURE 3.3. EBR-II/TREAT Fuel Model for ARGUS

N i H E A T

S I N K U O C D

I 93% T .D . F U E L 98% T.D.FUEL N a K 304 S S

C A P S U L E

W A L L

C L A D

3 0 4 S S

N a K

Page 27: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

T I M E , s e c

FIGURE 3 . 4 . TREAT T r a n s i e n t Number 9 2 6

Page 28: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 29: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

t e m p e r a t u r e l a g s beh ind t h e peak f u e l t e m p e r a t u r e by s l i g h t l y

more t h a n 0 . 5 s e c . The f u e l c e n t e r remains a t t h e phase

change t e m p e r a t u r e 4900 O F f o r 7 s e c and i s assumed t o be

m e l t e d . F i g u r e 3 . 6 shows t h e maximum f u e l t e m p e r a t u r e of

5 1 7 0 O F o c c u r r i n g a t a r a d i u s of 0 .06 i n . from c e n t e r l i n e . The

ARGUS program de te rmined t h a t s l i g h t l y more t h a n 50 a r e a l %

mel t ing . can be o b t a i n e d from t h e e x p e c t e d t r a n s i e n t w i t h a

maximum c l a d d i n g t e m p e r a t u r e of 1480 O F . I t i s a n t i c i p a t e d

t h a t t h e EBR-II/TREAT t e s t w i t h t h e expec ted t r a n s i e n t w i l l

p roduce i n c i p i e n t f u e l p i n f a i l u r e , a s d e s c r i b e d i n T a b l e 1.1.

TREAT t r a n s i e n t No. 9 2 6 was o r i g i n a l l y used on t h e G . E .

t e s t C3E i n v o l v i n g a mixed o x i d e f u e l p i n i r r a d i a t e d t o

65,000 MWd/MTM w i t h t h e p r i n c i p a l d i f f e r e n c e from t h e

EBR-II/TREAT f u e l p i n s b e i n g t h a t t h e G . E . p i n had 80% n a t u r a l

U 0 2 i n s t e a d of 75% f u l l y e n r i c h e d U 0 2 i n t h e mixed o x i d e f u e l .

The t r a n s i e n t produced a 1300 O F maximum c l a d d i n g t e m p e r a t u r e ,

a 4900 O F maximum f u e l t e m p e r a t u r e and a 30 volume p e r c e n t

m e l t i n g . The c o n c l u s i o n s from t h e p o s t - t r a n s i e n t d e s t r u c t i v e

examina t ion a r e t h a t no r a d i a l d e f o r m a t i o n o r c r a c k i n g o f t h e

c l a d d i n g o c c u r r e d , a l t h o u g h t h e r e was some a x i a l movement of

t h e f u e l . (3) I n compar ison , t h e EBR-II/TREAT t e s t t o b e p e r -

formed w i t h t r a n s i e n t 9 2 6 i s e x p e c t e d t o d e v e l o p h i g h e r power

and t e m p e r a t u r e s due t o t h e h i g h e r en r i chmen t .

Because t h e t e s t c o n d i t i o n s may produce f u e l p i n f a i l u r e ,

t h i s a s p e c t was s t u d i e d a s a p a r t o f t h e h a z a r d s e v a l u a t i o n

u s i n g t h e computer code PECT-1. ( I 3 ) The code i n p u t u t i l i z e d

t h e c l a d d i n g i n t e r n a l p r e s s u r e and t e m p e r a t u r e h i s t o r y a l o n g

w i t h an assumed mode o f f a i l u r e t o p r e d i c t t h e t ime o f f u e l

p i n f a i l u r e . The i n t e r n a l f u e l p i n p r e s s u r e d u r i n g t h e t r a n -

s i e n t was de te rmined from t h e amount o f f i s s i o n gas r e l e a s e d

by t h e f u e l d u r i n g m e l t i n g and by t h e volume of t h e i n t e r n a l

v o i d . During s t e a d y - s t a t e o p e r a t i o n i t was assumed t h a t t h e

Page 30: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

E B R - I I I T R E A T T R A N S I E N T

F U E L M A X I M U M T E N P E R A T U R E

FIGURE 3.6. Peak EBR-II/TREAT Fuel Temperatures for Expected Transient

550C

5000-

4500-

4000- LL 0 - 3 5 0 0- W CZ 2

2 3 0 0 0- cx U n z

2 5 0 0- I-

2 0 0 0

1 5 0 0

1 0 0 0

5 0 0

0

5 5 % M E L T-

-

- F U E L C L A D D I N G -

-

I I I I I h

0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0 0 . 1 2

R A D I U S , i n .

Page 31: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

PNL-2-8 f u e l r e l e a s e d 80% o f t h e g e n e r a t e d f i s s i o n gas t o t h e

plenum, based on d a t a c o n t a i n e d i n F i g u r e 3 . 7 . The r emain ing

f i s s i o n gas e n t r a p p e d i n t h e f u e l was assumed t o be r e l e a s e d

when t h e f u e l t e m p e r a t u r e r e a c h e d t h e m e l t i n g p o i n t d u r i n g t h e

t r a n s i e n t . The f u e l vapor p r e s s u r e was i g n o r e d s i n c e t h e f u e l

r e a c h e s a maximum t e m p e r a t u r e of o n l y 5170 OF, and t h e G.E

S e r i e s I1 t e s t s de te rmined t h a t f u e l vapor p r e s s u r e h a s a n

i n s i g n i f i c a n t c o n t r i b u t i o n t o p i n f a i l u r e . ( 2 ) The gas

r e l e a s e d d u r i n g t h e t r a n s i e n t was n o t a l lowed t o expand i n t o

t h e plenum b u t was c o n t a i n e d i n t h e v o i d w i t h i n t h e f u e l .

T h i s volume was based on t h e p l a n a r smeared d e n s i t y o f t h e

f u e l p i n , t h e d i f f e r e n t i a l t he rma l expans ion between t h e f u e l

and t h e c l a d d i n g , and t h e volume i n c r e a s e upon m e l t i n g . (See

Appendix C f o r d e t a i l e d c a l c u l a t i o n s . )

The i n t e r n a l f u e l p i n p r e s s u r e - t i m e r e l a t i o n s h i p i s

shown i n F i g u r e 3 . 8 , and t h e c l a d d i n g t e m p e r a t u r e r e s p o n s e i s

shown i n F i g u r e 3 .9 f o r t h e e x p e c t e d t r a n s i e n t . Cladding

f a i l u r e was assumed t o o c c u r when t h e c r o s s s e c t i o n o f t h e

c l a d d i n g a t t h e a x i a l peak power p o i n t on t h e f u e l p i n becomes

p l a s t i c t h r o u g h o u t . The PECT-1 a n a l y s i s p r e d i c t e d f u e l p i n

f a i l u r e a t 3 .50 s e c i n t o t h e t r a n s i e n t . The e f f e c t i v e

p l a s t i c d i a m e t r a l s t r a i n a t f a i l u r e was c a l c u l a t e d t o b e 0 . 2 %

a t t h e o u t e r s u r f a c e . T h i s compares w i t h b u r s t t e s t d a t a o f

c l a d d i n g s e c t i o n s from s i b l i n g PNL-1 f u e l p i n s which e x h i b i t e d

f a i l u r e s t r a i n s between 0 .2 and 1 8 . 4 % . ( 1 4 )

Assuming f a i l u r e o c c u r s a t t h a t p o i n t , 7 7 % o f t h e t r a n -

s i e n t w i l l have been comple ted , and t h e r ema in ing 23% w i l l

g e n e r a t e 29 Btu i n t h e f u e l a f t e r t h e p i n h a s f a i l e d .

Assuming t h a t a l l t h e h e a t g i v e n up by t h e f u e l i s i n s t a n t l y

used t o v a p o r i z e NaK i n t h e i n n e r c a p s u l e , a maximum p r e s s u r e

o f 3210 p s i w i l l be g e n e r a t e d w i t h i n t h e i n n e r c a p s u l e . T h i s

i s l e s s t h a n t h e c a l c u l a t e d 5500 p s i con ta inmen t c a p a b i l i t y

Page 32: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 33: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

T I V E , s e c

-

FIGURE 3.8. Internal Fuel Pin Pressure for Maximum and Expected Transient

-

-

-

P I N F A I L U R E - A S P R E DI C T E D -1 BY P E C T - 1

-

- MAX I MUM

T R A N S 1 E N T

P I N F A I L U R E

T R A N S I E N T

I I

Page 34: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 35: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

of t h e i n n e r c a p s u l e . Assumptions and c a l c u l a t i o n s a r e shown

i n Appendix C . B u r s t t e s t s conducted on i n n e r c a p s u l e s p e c i -

mens ( i n c l u d i n g weld j o i n t s ) have n o t been f o r m a l l y documented

b u t have demons t ra t ed i n t e r n a l p r e s s u r e c a p a b i l i t i e s g r e a t e r

t h a n 6 0 0 0 p s i a t room t e m p e r a t u r e . (15)

I t i s concluded t h a t by u s i n g p e s s i m i s t i c v a l u e s f o r t h e

f u e l p i n v o i d volume and e x p e c t e d s t r a i n t o f a i l u r e , t h e f u e l

p i n w i l l f a i l d u r i n g t h e expec ted t r a n s i e n t and t h e i n n e r

c a p s u l e w i l l c o n t a i n t h e consequences of t h e p i n f a i l u r e .

3 . 3 M A X I M U M A C C I D E N T C A S E

A s p r e v i o u s l y n o t e d , normal conduct o f t h e exper imen t may

induce f a i l u r e o f t h e f u e l p i n c l a d d i n g b u t s h o u l d n o t c a u s e

f a i l u r e o f t h e i n n e r c a p s u l e . I n o r d e r t o b e t t e r e v a l u a t e t h e

t e s t assembly c a p a b i l i t i e s , more ext reme c o n d i t i o n s were pos -

t u l a t e d and a n a l y z e d . A maximum a c c i d e n t t r a n s i e n t r e s u l t i n g

from a r e a c t i v i t y i n s e r t i o n 0 .3% A K / K g r e a t e r t h a n i n t e n d e d

was p r o v i d e d by TREAT p e r s o n n e l . (8 )

T h i s maximum t r a n s i e n t , shown i n F i g u r e 3 . 1 0 , h a s a peak

power o f 510 MW w i t h a n i n t e g r a t e d power o f 345 MW/sec. The

t e s t p i n r e s p o n s e t o t h i s t r a n s i e n t was e v a l u a t e d w i t h t h e

ARGUS computer code , u s i n g t h e same f u e l model and h e a t t r a n s -

f e r a s sumpt ions a s was used i n S e c t i o n 3 .2 f o r t h e e x p e c t e d

t r a n s i e n t . F i g u r e 3 . 1 1 shows t h e maximum t e m p e r a t u r e s c a l c u -

l a t e d i n t h e c a p s u l e , assuming t h a t f u e l p i n i n t e g r i t y i s main-

t a i n e d . Conclus ions were t h a t t h e f u e l p i n c l a d d i n g w i l l

f a i l from e x c e s s i v e i n t e r n a l p r e s s u r e b e f o r e it c o u l d m e l t ,

and PECT-1 was used t o de te rmine when t h e f a i l u r e would t a k e

p l a c e .

The i n t e r n a l p r e s s u r e h i s t o r y f o r t h e f u e l p i n d u r i n g t h e

maximum t r a n s i e n t was c a l c u l a t e d u s i n g t h e same assumpt ions a s

i n S e c t i o n 3 . 2 . F i g u r e 3 . 8 shows t h e i n c r e a s e i n i n t e r n a l

Page 36: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 37: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

0 0.1 0 . 2 0 . 3 0 . 4 0 . 5

C A P S U L E R A D I U S , in.

FIGURE 3.11. Peak EBR-II/TREAT Capsule Temperatures for Maximum Accident Transient

Page 38: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

p r e s s u r e w i t h t i m e , and F i g u r e 3.9 shows t h e a s s o c i a t e d c l a d -

d i n g t e m p e r a t u r e h i s t o r y . Sample c a l c u l a t i o n s a r e c o n t a i n e d

i n Appendix D .

PECT-1 p r e d i c t e d f a i l u r e of t h e c l a d d i n g a t 0 . 2 % s t r a i n

2.15 s e c a f t e r i n i t i a t i o n o f t h e t r a n s i e n t , which l e a v e s 7 0 %

of t h e t r a n s i e n t power y e t t o b e g e n e r a t e d . C a l c u l a t i o n s of

t h e amount o f ene rgy r e l e a s e d by t h e f u e l (328 Btu) a f t e r

c l a d d i n g f a i l u r e a r e c o n t a i n e d i n Appendix D . Two approaches

were t a k e n t o d e s c r i b e what happens f o l l o w i n g f u e l p i n f a i l u r e .

The f i r s t approach assumes t h a t m o l t e n f u e l a t 8500 O F

i s e x p e l l e d t o t h e bot tom of t h e i n n e r c a p s u l e and v a p o r i z e s

a l l o f t h e NaK c o n t a i n e d i n t h e i n n e r c a p s u l e . V a p o r i z a t i o n

of t h e NaK r e q u i r e s 285 Btu and would cause t h e i n n e r c a p s u l e

p r e s s u r e t o i n c r e a s e t o 20,200 p s i i f i t d i d n o t f a i l . Ca l -

c u l a t i o n s and a s sumpt ions a r e d e s c r i b e d i n Appendix D . A s

e x p l a i n e d i n S e c t i o n 3 . 2 , t h e p r e s s u r e con ta inmen t c a p a b i l i t y

of t h e i n n e r c a p s u l e a t 600 OF ( w a l l t e m p e r a t u r e ) i s 5575 p s i , and v a p o r i z a t i o n o f a l l t h e NaK c o n t a i n e d w i t h i n

w i l l c a u s e r u p t u r e . I n t h i s e v e n t , a m i x t u r e of mol t en f u e l

and NaK would b e e x p e l l e d i n t o t h e TREAT c a p s u l e , c a u s i n g t h e

p r e s s u r e i n t h e c a p s u l e t o i n c r e a s e t o a maximum of 6500 p s i .

The TREAT c a p s u l e i s c a p a b l e o f c o n t a i n i n g 15 ,000 p s i and h a s

a g r a p h i t e l i n e r t o p r o t e c t t h e c a p s u l e w a l l from c o n t a c t

w i t h m o l t e n m a t e r i a l s . The con ta inmen t c a p a b i l i t i e s of t h e

TREAT c a p s u l e from t h e s t a n d p o i n t o f m i s s i l e p e n e t r a t i o n and

dynamic shock p r e s s u r e l o a d i n g were n o t a n a l y z e d h e r e s i n c e

t h e c a p s u l e and c o n d i t i o n s a r e s i m i l a r t o t h o s e used i n t h e

G . E . t e s t s . G . E . per formed t h e s e a n a l y s e s i n t h e i r S e r i e s 2 ,

3 and 5 h a z a r d s e v a l u a t i o n s ( l 6 , 1 7 ) and found t h a t t h e m i s s i l e

problem i s i n s i g n i f i c a n t and t h a t t h e dynamic shock p r e s s u r e

was w i t h i n t h e con ta inmen t c a p a b i l i t i e s o f t h e TREAT c a p s u l e .

Page 39: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

The second approach i s based upon a more r e a l i s t i c e v a l u -

a t i o n o f t h e p o s t - f a i l u r e p r o c e s s . T h i s approach assumes t h a t

mol t en f u e l i s d i s c h a r g e d from t h e a x i a l c e n t e r o f t h e f u e l

p i n a t t h e h o t t e s t p o i n t . A f t e r v a p o r i z i n g a l l o f t h e NaK

c o n t a i n e d i n t h e annu lus between t h e f u e l p i n and t h e t h e r m a l

dam, t h e f u e l f r e e z e s i n t h e a n n u l u s . The n i c k e l t h e r m a l dam

can conduct h e a t away from t h e f u e l - n i c k e l i n t e r f a c e f a s t e r

t h a n i t can g e t t h rough t h e f u e l . I t has been shown e x p e r i -

m e n t a l l y ( 1 8 ) t h a t when mol t en f u e l ( s t i l l p r o d u c i n g power)

comes i n c o n t a c t w i t h n i c k e l , i t s o l i d i f i e s b e f o r e a s i g n i f i -

c a n t p o r t i o n o f t h e n i c k e l m e l t s . V a p o r i z a t i o n o f a l l t h e NaK

i n t h e annu lus r e q u i r e s o n l y 15 Btu , c a u s i n g t h e i n n e r c a p s u l e

p r e s s u r e t o i n c r e a s e t o 1330 p s i , which i s w i t h i n i t s c o n t a i n -

ment c a p a b i l i t y . Assuming t h e remainder of t h e ene rgy i s

t r a n s f e r r e d t o t h e n i c k e l t h e r m a l dam, i t s t e m p e r a t u r e would

i n c r e a s e from 330 OF t o 1480 OF, w e l l below t h e 2300 OF m e l t i n g

p o i n t of n i c k e l .

There i s e x p e r i m e n t a l e v i d e n c e t o i n d i c a t e t h a t t h e

mol t en f u e l - l i q u i d m e t a l i n t e r a c t i o n does n o t r e s u l t i n t h e

ex t reme p r e s s u r e s assumed i n t h e f i r s t approach . Work p e r -

formed by I v i n s ( l 9 ) h a s shown t h a t o x i d e f u e l p i n s which under

s e v e r e t r a n s i e n t i r r a d i a t i o n e x p e l mol t en f u e l i n t o t h e l i q u i d

m e t a l bond (sodium i n t h i s c a s e ) do n o t produce ext reme p r e s -

s u r e s w i t h i n t h e c a p s u l e . The c a p s u l e s were i n s t r u m e n t e d t o

d e t e c t p r e s s u r e changes , and t h e maximum p r e s s u r e p u l s e

d e t e c t e d w h i l e pe r fo rming f i v e t e s t s was 1800 p s i . The G . E .

t e s t s a l s o showed t h a t p r e s s u r e s g e n e r a t e d f o l l o w i n g f u e l p i n

f a i l u r e a r e w i t h i n t h e con ta inmen t c a p a b i l i t i e s of t h e i n n e r

c a p s u l e . I n t h e C3C e x p e r i m e n t , where t h e f u e l t e m p e r a t u r e s

approached 6000 OF, mol t en f u e l e x p e l l e d from t h e bot tom of

t h e f u e l p i n and c o l l e c t e d i n t h e bot tom of t h e i n n e r c a p s u l e

( s i m i l a r t o t h e f i r s t approach a s s u m p t i o n ) . No ext reme

p r e s s u r e p u l s e s were measured , and t h e i n n e r c a p s u l e c o n t a i n e d

t h e consequences o f t h e f u e l p i n f a i l u r e . (3)

Page 40: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

I t i s concluded t h a t i n t h e c a s e o f t h e maximum a c c i d e n t

t r a n s i e n t , f u e l p i n f a i l u r e w i l l o c c u r e a r l y i n t h e t r a n s i e n t ,

and t h e i n n e r c a p s u l e w i l l r emain i n t a c t . I n t h e u n l i k e l y

e v e n t t h a t t h e i n n e r c a p s u l e were t o f a i l , t h e TREAT c a p s u l e

would be more t h a n adequa te t o c o n t a i n t h e consequences .

3 . 4 H A N D L I N G OF E X P E R I M E N T A L E O U I P M E N T

The TREAT c a p s u l e c o n t a i n i n g t h e r a d i o a c t i v e t e s t p i n

w i l l be s h i p p e d t o and from t h e TREAT f a c i l i t y i n t h e T-2

s h i p p i n g c a s k . I n o r d e r t o f a c i l i t a t e h o r i z o n t a l l o a d i n g o f

t h e c a p s u l e i n t o t h e c a s k a t BNW, a c a s k l i n e r and c a p s u l e

a l ignment clamp w i l l be used a s shown i n F i g u r e 3 .12 . T h i s

c o n f i g u r a t i o n w i l l p e r m i t b o t h h o r i z o n t a l l o a d i n g a t BNW and

v e r t i c a l h a n d l i n g a t TREAT. The a l ignment clamp remains on

t h e c a p s u l e and w i l l n o t i n t e r f e r e w i t h t h e l o a d i n g i n t o t h e

r e a c t o r . ( 8 )

While h a n d l i n g t h e c a p s u l e , c a r e s h o u l d b e t a k e n t o n o t

d r o p , bump, o r o t h e r w i s e j a r t h e a s sembly , p a r t i c u l a r l y i n t h e

l o n g i t u d i n a l d i r e c t i o n . Such m i s h a n d l i n g c o u l d c a u s e t h e

i n n e r c a p s u l e e l e c t r i c a l c o n n e c t o r t o become d i s c o n n e c t e d .

The c a p s u l e s h o u l d remain i n e i t h e r t h e h o r i z o n t a l o r v e r t i c a l

p o s i t i o n ( g r i p p i n g f i x t u r e up) and must n o t b e i n v e r t e d . The

v e r t i c a l p o s i t i o n i s recommended f o r s t o r a g e .

The chances o f damage from h a n d l i n g c a u s i n g a r a d i o a c t i v e

h a z a r d a r e remote s i n c e t h e f u e l has t r i p l e c o n t a i n m e n t .

However, damage such a s f u e l r e l o c a t i o n p r i o r t o t h e t e s t may

produce e r r a n t r e s p o n s e t o t h e t r a n s i e n t . T h e r e f o r e , b e f o r e

t h e y a r e i n s e r t e d i n t o t h e TREAT r e a c t o r , t h e c a p s u l e s w i l l be

n e u t r o n r a d i o g r a p h e d t o a s s e s s t h e c o n d i t i o n of t h e i n t e r n a l *

components.

Page 41: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TREAT C a s k

A1 i g n m e n t C l a m p

TREAT C a p s u l e

C a s k L i n e r

FIGURE 3.12. TREAT Capsule Shipping Configuration

3 . 2 2

Page 42: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

3 . 5 C H E M I C A L R E A C T I O N S

The p o s s i b i l i t y o f d e l e t e r i o u s chemica l r e a c t i o n s between

t h e m a t e r i a l s p r e s e n t i s remote. The m a t e r i a l s t o be used i n

t h e expe r imen t do n o t r e a c t e x p l o s i v e l y , and s p e c i a l c a r e w i l l

be e x e r c i s e d t o a s s u r e t h e e l i m i n a t i o n of a i r and w a t e r vapor

which might r e a c t w i t h t h e sodium-potass ium (NaK) a l l o y .

N e i t h e r n i c k e l no r any major c o n s t i t u e n t s of s t a i n l e s s s t e e l

r e a c t t o form a l l o y s w i t h NaK. There i s no i n d i c a t i o n t h a t

t h e thermocouple i n s u l a t o r (MgO) o r t h e Thermoflex i n s u l a t i o n

w i l l be reduced by NaK.

The p o s s i b i l i t y o f v i o l e n t chemica l r e a c t i o n s between t h e

f u e l , NaK and o t h e r c a p s u l e components i s a l s o q u i t e remote .

Chemical r e a c t i o n s between U02 and sodium were found t o o c c u r

i n a s e a l e d c o n t a i n e r h e a t e d t o 850 " C w i t h an e x c e s s o f

oxygen (O/U r a t i o g r e a t e r t h a n 2) . ( 2 0 ) A s t a b l e compound,

Na3U04 was found i n c o n c e n t r a t i o n s o f o n l y 1 0 0 t o 2 0 0 ppm

i n d i c a t i n g a v e r y l i m i t e d r e a c t i o n .

U02 and Pu02 can be reduced by a l k a l i m e t a l s b u t t h e

r e a c t i o n i s n o t s i g n i f i c a n t u n l e s s t h e a l k a l i me ta l o x i d e

p r o d u c t i s removed from t h e r e a c t i o n . S i n c e t h e c a p s u l e con-

s t i t u t e s a c l o s e d sys tem w i t h no mechanism f o r removing

sodium o r p o t a s s i u m o x i d e s , t h e r e d u c t i o n p r o c e s s i s n o t con-

s i d e r e d p r o b a b l e .

Exper imen ta l ev idence t h a t no haza rdous chemica l r e a c -

t i o n s w i l l o c c u r was found i n t h e p o s t i r r a d i a t i o n examina t ion

o f t h e G . E . C 2 C e x p e r i m e n t . ('1 Molten f u e l was e x p e l l e d from

t h e f u e l p i n i n t o t h e NaK annu lus w i t h no d e t e c t a b l e chemica l r e a c t i o n s . The aluminum t h e r m a l dam was m e l t e d and a p o r t i o n

of i t found i n s i d e t h e f u e l p i n . M e t a l l o g r a p h i c examina t ion

of t h e a luminum-conta in ing s e c t i o n r e v e a l e d a d e n d r i t i c

Page 43: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

s t r u c t u r e i n t h e aluminum t y p i c a l of once-mol ten a l l o y mate-

r i a l s . The a s s o c i a t e d a u t o r a d i o g r a p h y d i d n o t r e v e a l any

p lu ton ium o r uranium i n t h e aluminum c o r e .

The TREAT c a p s u l e w i l l be a . r g o n - f i l l e d d u r i n g assembly t o

a p r e s s u r e o f 1 atm ( a b s o l u t e ) i n o r d e r t o minimize t h e p o s s i -

b i l i t y o f a NaK r e a c t i o n w i t h a i r i n t h e u n l i k e l y e v e n t o f

f a i l u r e o r l e a k a g e o f t h e i n n e r c a p s u l e .

3.6 R A D I A T I O N H A Z A R D S

The computer code R I B D ( ~ ~ ) was used t o c a l c u l a t e f i s s i o n

and decay p r o d u c t s , and I S O S H L D ( ~ ~ ) was used t o c a l c u l a t e

pho ton p r o d u c t i o n and dose r a t e s . C a l c u l a t i o n s were made on

t h e b a s i s o f f i r s t p r e - i r r a d i a t i n g t e s t p i n s t o exposures o f

10 ,000 and 50,000 MWd/MTM i n EBR-I1 and t h e n , a f t e r a s u b s t a n -

t i a l c o o l i n g t i m e , s u b j e c t i n g them t o a TREAT t r a n s i e n t o f

345 MW/sec.

T a b l e s 3 . 1 and 3 .2 p r e s e n t c a l c u l a t e d dose r a t e s v e r s u s

t ime a f t e r t h e EBR-I1 i r r a d i a t i o n w i t h t h e f u e l s h i e l d e d by

b o t h t h e i n n e r and TREAT c a p s u l e s . Tab le 3 . 3 shows t o t a l

c u r i e s a s a f u n c t i o n o f c o o l i n g t i m e s . Because o f t h e remote

p o s s i b i l i t y o f c a p s u l e r u p t u r e d u r i n g s h i p m e n t , f i s s i o n gas

a c t i v i t y i s p r e s e n t e d a s a f u n c t i o n of c o o l i n g t i m e f o r b o t h

e x p o s u r e s i n T a b l e s 3 .4 and 3 . 5 . F i s s i o n gas a c t i v i t y d r o p s

o f f r a p i d l y , and by t h e t ime t h e f u e l p i n i s r e - e n c a p s u l a t e d ,

most o f t h e r a d i o a c t i v e f i s s i o n gas i s o t o p e s have decayed

away.

T a b l e s 3.6 th rough 3 . 8 show t h e dose r a t e and c u r i e con-

t e n t d a t a r e s u l t i n g from a 345 MW/sec TREAT t r a n s i e n t on g r e e n

( n o n p r e - i r r a d i a t e d ) f u e l . The dose r a t e o f a p r e - i r r a d i a t e d

t r a n s i e n t t e s t c a p s u l e i s t h e n de te rmined by add ing t h e a p p r o -

p r i a t e d o s e r a t e s f o r p r e - i r r a d i a t e d and g r e e n f u e l . The

same p r o c e d u r e i s u s e d f o r t h e c u r i e c o n t e n t . The h i g h e s t

Page 44: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.1. 1 0 , 0 0 0 MWd/MTM EBR-I1 E x p o s u r e R o e n t g e n s / h r

D i s t a n c e f r o m C e n t e r l i n e C o o l i n g ( T r e a t C a p s u l e

T i m e s ( D a y s ) S u r f a c e ) 1 . 5 i n . 6 i n . 5 f t

0 1 . 7 1 5 x l o 6 1 . 7 3 1 x l o 5 3 . 6 7 7 x l o 3

30 5 . 1 1 4 x l o 4 4 . 9 2 0 x l o 3 1 . 1 0 2 x 1 0 '

7 5 2 . 4 6 5 x l o 4 2 . 3 4 8 x l o 3 5 . 2 9 7 x l o 1

TABLE 3 . 2 . 5 0 , 0 0 0 MWd/MTM EBR-I1 E x p o s u r e R o e n t g e n s / h r

D i s t a n c e f r o m C e n t e r l i n e C o o l i n g ( T r e a t C a p s u l e

T i m e s ( D a y s ) S u r f a c e ) 1 . 5 i n . 6 i n . 5 f t

0 1 . 7 4 6 x 1 0 6 1 . 7 6 0 x 1 0 ' 3 . 7 4 3 x l o 3

TABLE 3.3. T o t a l A c t i v i t y A f t e r S h u t d o w n ( C u r i e s )

T i m e s ( ~ a ~ s ) 1 0 , 0 0 0 MWd/MTM 5 0 , 0 0 0 MWd/MTM

0 2 . 7 2 6 x l o 4 2 . 8 2 3 x l o 4

Page 45: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.4. 10,000 MWd/MTM EBR-I1 Exposure Fission Gas Activity (Curies) After Removal from EBR-I1

I so tope & H a l f- l i f e

B r 8 2

35.5 h

B r 8 3 2.3 h

B r 84m

6 m

B r 8 4 32 m

B r 8 5 3 m

B r 86

54 s

B r 87 56 s

B r 8 8

16 s

B r 89 4.5 s

B r 90 1.6 s

To ta l

K r 8 3m

K r 8 5m

K r 8 5

Kr 8 7

K r 88

K r 89

K r 90

K r 9 1

K r 9 2

K r 9 3

K r 94

K r 95

T o t a l

1.86 h

4.6 h

10.1 y

7 5 m

2.79 h

3.1 m

34 s

9.9 s

3 s

2 s

1.4 s

s h o r t

30 days

1.767 x

75 days

1.065 x 10-l7

180 days

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0 .0

0.0

2.005 x 10-I

0.0

0.0

0.0

0 .o

0.0

0.0

0.0

0.0

0.0

2.005 x lo-'

Page 46: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.4. (contd)

I s o t o p e & H a l f - l i f e 0 30 days 75 days 180 d a y s

T o t a l 1 .931 x 1 0 1 . 6 1 ~ 1 0 3.244 x 10-I 3.932 x

Xe 131m 11.9 d 1 . 1 8 1 4.584 x 10-I 4 .271 x l o e 2 9 .791 x

Xe 133m 2.26 d 7.767 1 . 4 8 1 ~ 1.897 x l o - ' 3.455

Xe 1 4 1

2 . 3 s 5 .243 x 1 0 0.0 0 . 0 0 .0 1

Xe 142

1 . 5 s 2.254 x 1 0 0 .0 0.0 0 .0 1

Xe 143

1 . 0 s 7.227 0.0 0.0 0 .0

Xe 144 1 .0 s 4.791 x lo-' 0 .0 0.0 0 . 0

T o t a l 1.714 x 10 7.942 6.345 x 9.793 x

Grand T o t a l 5.457 x 10 2.425 x 1 0 5 . 9 2 2 ~ 1 0 - I 2 . 0 0 5 x 1 0 - ~

Page 47: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.5. 50,000 MWd/MTM EBR-I1 Exposure Fission Gas Activity (Curies) After Removal from EBR-I1

I so tope & H a l f- l i f e

B r 82

35.5 h

B r 83 2.3 h

B r 84m 6 m

B r 34 32 m

B r 85 3 m

B r 8 6 54 s

B r 87 56 s

B r 8 8 16 s

B r 89 4.5 s

B r 90 1 .6 s

To ta l

T o t a l

1.86 h

4.6 h

1 0 . 1 y

75 m

2.79 h

3 . 1 m

34 s

9.9 s

3 s

2 s

1 .4 s

s h o r t

30 days 75 days 180 days

1.084 x lo-17 0.0

Page 48: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.5. (contd)

I so tope & H a l f- l i f e 0 30 days 75 days 180 days

1138 5.9 s 8.438 x 10 0.0 0.0 0.0

1

1139 2.3 s 3.543 x 10 0.0 0.0 0.0 1

T o t a l 1.931 x 10 1 . 6 1 1 ~ 1 0 3.246 x 10-I 4.261 x

T o t a l 1 . 7 1 4 ~ 1 0 ~ 7.945 6.359 x 9.821 x

Grand T o t a l 5.458 x 10 2 . 5 0 5 ~ 1 0 1.376 9.677 x 10-I

Page 49: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3 .6 . TREAT T r a n s i e n t Exposure Green Fue l Roentgens/hr

0

1 hour

1 day

Cooling t imes (days)

TABLE 3.7. T o t a l A c t i v i t y A f t e r Shutdown ( C u r i e s )

Dis tance from C e n t e r l i n e -

10 days

Cooling Times A c t i v i t y

2.365 x 10 1

1 hour

5 f e e t (Treat Capsule

1.510 x 10 0

1 day 7.271 x 10-I

Sur face) - 1.5 in .

10 days 4.99 x lo-" 30 days 1.496 x

6 i n .

2.323 x 10-I 3.359

Page 50: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.8. Fission Gas Activity (Curies) from TREAT Transient Exposure (Green ~ u e l )

I s o t o p e and Ha l f- L i f e 0 1 h o u r 1 day 1 0 d a y s

B r 8 2

B r 8 3

B r 8 4m

B r 8 4

B r 8 5

B r 86

B r 8 7

B r 88

B r 89

B r 9 0

T o t a l

K r 8 3m

K r 8 5m

K r 8 5

K r 87

K r 8 8

K r 89

K r 90

K r 9 1

K r 9 2

K r 9 3

K r 94

K r 95

K r 9 7

T o t a l

1.86 h

4.6 h

1 0 . 1 y

75 m

2.79 h

3 . 1 m

34 s

9.9 s

3 s

2 s

1.4 s

s h o r t

1 . 0 s

30 days

7 .723 x 10-l~

0 .0

0.0

0 .0

0 .0

0 .0

0 .0

0 .0

0 .0

Page 51: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3 . 8 . (contd)

0 1 hour

3.112 3.286 x

1 . 1 9 3 x 1 0 - ~ 5 . 9 9 2 x 1 0 - ~

8.121 x 8.056 x

3.073 x 10-I 1.413 x 10 0

1.690 x lo-' 3.416 x 10-I

4.934 x 10 1 4.325 x 10-l2

2.938 x 10 2 0.0

8.129 x 10 2 0.0

1.139 x 10 3 0.0

1 day 10 days 30 days I so tope and H a l f - L e

1131 8 .1 d 1132 2.3 h 1133 20.5 h 1134 52.5 m 1135 6.7 h 1136 84 s 1137 23 s 1138 5.9 s 1139 2.3 s

T o t a l

X e 131m 11.9 d

X e 133m 2.26 d

X e 133 5.3 d

X e 135m 15.6 m

X e 135 9.16 h

X e 13 7 3.8 m

X e 138 17 m

X e 139 42 s

X e 140 1 6 s

X e 141 2.3 s

X e 14 2 1 . 5 s

X e 14 3 1 .0 s

X e 144 1.0 s

T o t a l

Grand t o t a l

Page 52: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

l e v e l s t h a t cou ld be e n c o u n t e r e d d u r i n g t h i s s e r i e s o f t e s t s

would be f o r a PNL-2 (50,000 MWd/MTM) f u e l p i n s u b j e c t e d t o a

TREAT t r a n s i e n t 7 5 days a f t e r removal from EBR-11. PNL-2 was

removed from EBR-I1 on August 31 , 1969 and PNL-1 on

June 1 4 , 1968. The c u r i e c o n t e n t immedia te ly a f t e r t h e t r a n - 4 s i e n t would be 6 .2 x 10 c u r i e s ( i n c l u d i n g f i s s i o n g a s ) and

t h e dose r a t e a t t h e s u r f a c e o f t h e c a p s u l e would b e

1 . 2 x l o 5 R/hr .

S p e c i f i c c a l c u l a t i o n s were n o t made o f s t a i n l e s s s t e e l

a c t i v a t i o n i n E B R - 1 1 , b u t a c t i v i t y p e r cm3 o f 304 SS s t e e l was

c a l c u l a t e d f o r t h e FTR. (23 ) Using t h e s e , t o t a l a c t i v a t i o n i s

found t o be o n l y 6 6 c u r i e s f o r t h e amount o f s t a i n l e s s s t e e l

i n t h e EBR-I1 t e s t p i n c l a d d i n g , assuming s a t u r a t e d concen-

t r a t i o n o f a l l n u c l i d e s a t 0 .025 MW ( s e e Tab le 3 . 9 ) . T h i s i s

n e g l i g i b l e when compared t o t h e f i s s i o n p r o d u c t a c t i v i t y even

a t 180 days c o o l i n g t i m e . The 6 0 ~ o , however , may c o n t r i b u t e a

s i g n i f i c a n t p a r t o f t h e a c t i v i t y a t much l o n g e r t i m e s because

o f i t s l o n g h a l f - l i f e . The spec t rum o f EBR-I1 and FTR do n o t

d i f f e r enough t o change t h i s r e s u l t a p p r e c i a b l y . A l s o , t h e

FTR spec t rum i n t e n s i t y on which t h e r e s u l t s a r e based i s

about doub le t h a t o f EBR-I1 , t h u s l e n d i n g even more c o n s e r v a -

t i s m t o t h i s r e s u l t .

Appendix E c o n t a i n s s e v e r a l t a b l e s showing photon p r o -

d u c t i o n r a t e s and f i s s i o n gas c o n c e n t r a t i o n s f o r t h e

10,000 MWd/MTM, 50,000 MWd/MTM, and t h e TREAT t r a n s i e n t c a s e s .

3 . 7 D I S P O S A L O F R A D I O A C T I V E M A T E R I A L S

A l l r a d i o a c t i v e m a t e r i a l s g e n e r a t e d d u r i n g t h e s e t e s t s

w i l l be c o n t a i n e d w i t h i n t h e TREAT c a p s u l e which w i l l be

r e t u r n e d t o BNW i n t h e T-2 s h i p p i n g c a s k .

Page 53: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE 3.9. 304 SS Activation (Based on 304 SS Concentrations)

Nucl ide

C 0 6 0

C r 5 1

Fe 59

5 8 5 8 ~ i ( n , p ) co 5 4

5 4 ~ e ( n , p ) Mn

5 6 5 6 Fe(n ,p ) Mn

5 2 5 2 Cr (n ,p ) V

28 2 8 ~ i ( n , p ) AI

5 4 ~ e ( n , a ) 5 1 ~ r 287 d 4.9 x 10 9

6 0 ~ i ( n , p ) 6 0 ~ o 5 .2 y 1 .2 x 1 0 9

TOTAL 96.66 x l o l o dis/cm3-sec

f o r 304 SS i n E B R - I 1 ,-) 66.356 Cur ies .

Page 54: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

BNWL - 136 8

4 . 0 C O N C L U S I O N S

This document d i s c u s s e s t h e p o s s i b l e hazards a s s o c i a t e d

w i t h t h e expected t r a n s i e n t and maximum a c c i d e n t t r a n s i e n t f o r

a maximum exposure f u e l p i n ( 4 4 , 2 5 0 MWd/MTM). I t i s concluded

t h a t even w i t h t h e most s e v e r e response c r e d i b l e , t h e e x p e r i -

ment w i l l be con t a ined w i t h i n t h e TREAT c a p s u l e and w i l l impose

no undue hazards t o t h e t e s t i n g f a c i l i t i e s o r pe r sonne l . Th i s

document w i l l be r e f e r e n c e d a s t h e hazards a n a l y s i s f o r t h e

complete EBR-II/TREAT t r a n s i e n t t e s t s e r i e s which i n c l u d e s

f u e l p i n s and t r a n s i e n t s o f equa l o r l e s s i r r a d i a t i o n exposure .

Page 55: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X A

E N G I N E E R I N G D R A W I N G S OF E X P E R I M E N T A P P A R A T U S

Page 56: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 57: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 58: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

i.2 1

i I

! . 4

1

,

br

1 ,

- I

I

: 1. J

; 1

I

I 1 ~ .

-

I.

.

' ru

I , 11

\1

rm

I 11

.

j 1

I ;' 1

1.

, .

12 1.. i I

:I

!,',

I" -.

11 '

i. !

I

' rU

,

"J

'

I .

.

, . I+

'.

;rU

,

,,'O

,

!.

1 I

1

Page 59: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,
Page 60: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X B

F I S S I O N GAS P R E S S U R E B U I L D U P

D U R I N G S T E A D Y - S T A T E I R R A D I A T I O N A N D

P R E S S U R E C A P A B I L I T Y O F I N N E R C A P S U L E

Page 61: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X B

F I S S I O N G A S P R E S S U R E I N P N L 2 - 8 B E F O R E T R E A T

I R R A D I A T I O N

7 6 . 5 7 g f u e l i n PNL 2 - 8

g o f meta l = 7 6 . 5 7 ( 2 3 9 ) = 6 7 . 5 g - 271 = 6 . 7 5 x MTM

P e a k B u r n u p = 4 . 4 2 5 x l o 4 MWd/MTM A x i a l P e a k / A v e = 1 . 1 2 5

4 . 4 2 5 x 1 0 4 MWd . 6 . 7 5 x MTM = 2 . 6 5 MWd 1.125

- MTM

2 . 6 5 MWd ( 3 . 1 x l o l o f i s s i o n s ) ( l o 6 w a t t ) ( 2 4 h r ) ( 3 6 0 0 s e c ) MW

- Watt-sec d a y hr

= 7 . 1 x l o Z 1 f i s s i o n s

A s s u m i n g 2 7 % o f f i s s i o n s f o r m gas i n f a s t f l u x

7 . 1 x 1 0 2 1 f i s s i o n s ( 0 ~ 2 7 g a s a t o m s ) = 1 . 9 2 x l o 2 ' a t o m s f l s s l o n

Vo lu me = ( 1 . 9 2 x l o Z 1 a t o m s ) ( 2 . 2 4 x l o 4 cm3 /mo le )

(STP) 6 . 0 2 x l o z 3 a t o m s / m o l e

= 7 1 . 3 cm3 f i s s i o n g a s g e n e r a t e d (STP)

O n l y 8 0 % o f t h e g a s i s a c t u a l l y r e l e a s e d t h e r e f o r e

V STP = 0 . 8 0 ( 7 1 . 3 ) c m 3

= 5 7 . 0 cm3

Volume o f He a t STP = 7 . 1 cm3

C o m b i n e d v o l u m e = 5 7 . 0 + 7 . 1 = 6 4 . 1 c m 3 (STP) Assume p r e - t r a n s i e n t t e m p e r a t u r e o f 3 0 0 OF

P 2 = '1 '1 T2 = ( 1 a t m ) ( 6 4 . 1 c m 3 ) ( 4 6 0 + 3 0 0 ) OR T1 v2 60 + 3 2 ) " R (7 . lcm3)

= 1 3 . 9 atm

= 2 0 4 p s i % I n i t i a l f u e l p i n p r e s s u r e

Page 62: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

P R E S S U R E C A P A B I L I T Y O F I N N E R C A P S U L E

E s t i m a t e s o f t h e i n t e r n a l p r e s s u r e c a p a b i l i t y o f t h e

i n n e r c a p s u l e a r e based on hoop s t r e s s e q u a t i o n .

Y i e l d p r e s s u r e

2 o u t - B u r s t p r e s s u r e Pb - ---h

where O Y

= y i e l d s t r e n g t h

a, = u l t i m a t e s t r e n g t h

t = 0 . 0 4 9 ' i n . d = 1 .125 i n .

Temperature o f t h e w a l l ( i n n e r s u r f a c e , wax) a t (ARGUS)

5 s e c 600 O F

10 s e c 1000 O F

a t , 600 O F ay = 23,000 p s i : (17,000-27,000)

au = 64,000 p s i : (60 ,000-67,000)

a t 1000 OF a = 23,000 p s i : (17 ,000-28,000) (BNW 891) Y

a, = 58,000 p s i : (54,000-62,000)

600 O F Py = 2004 p s i

Pb = 5 5 7 5 p s i

1 0 0 0 OF Py = 2004 p s i

Pb = 5052 p s i

Page 63: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X C

C A L C U L A T I O N S F O R E X P E C T E D T R A N S I E N T

Page 64: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X C

I N T E R N A L F U E L P I N P R E S S U R E DUE T O F U E L M E L T I N G A N D R E T A I N E D

F I S S I O N GAS R E L E A S E D U R I N G E X P E C T E D T R A N S I E N T

B A S I S :

1. N e g l i g i b l e f i s s i o n gas i s produced du r ing t r a n s i e n t

i r r a d i a t i o n .

2 . F i s s i o n gas r e t e n t i o n du r ing s t e a d y s t a t e i s assumed

a s f o l l o w s : columnar g r a i n r e g i o n 0.080 i n . diam has

5% gas r e t e n t i o n , remainder has 90% of r e t e n t i o n .

3. The f i s s i o n gas r e l e a s e d du r ing s t e a d y s t a t e i s

al lowed t o e q u i l i b r a t e w i t h t h e plenum a t a l l t imes .

4 . 100% f i s s i o n gas r e t a i n e d i n t h e f u e l du r ing s t e a d y

s t a t e i s r e l e a s e d when t h e f u e l me l t s and occup ies t h e

vo id r e g i o n a s determined by t h e smeared d e n s i t y . The

t r a n s i e n t r e l e a s e d gas does n o t e q u i l i b r a t e w i t h t h e

plenum.

5 . The f u e l i s assumed mel ted when it reaches 4900 O F .

6 . A s t h e f u e l m e l t s , i t expands and reduces t h e vo id

a v a i l a b l e f o r t r a n s i e n t r e l e a s e d f i s s i o n ga se s .

Time After Nodes Melted Transient (see Figure 3.4)

3.1 None

3.2 17-19

3.3 15-19

3.4 13-19

3.5 11-19

3.6 8-19

3.7 6-19

3.8 3-19

Sample calculations for this

* 1 0 % r e l e a s e d d u r i n g m e l t

Volume of Fuel Melted (in. 3)

None

0.0575

0.0512

0.0449

0.0391

0.0323

0.0369

0.0285

table follow

Cumulative Volume of Fuel Melted (in. 3)

None

0.0575

0.1086

0.1536

0.1926

0.2249

0.2618

0.2903

Vo 1 ume of gas Released (cm3) None

7.32

6.51

5.72

4.98

4.10

0.52"

0.40*

Size of Void Available (cm3) * *

* * Assumes t h e m e l t e d f u e l volume i n c r e a s e s 1 0 % . The o t h e r f u e l e x p a n s i o n up t o 4 9 0 0 O F i s compensated f o r b y c l a d d i n g e x p a n s i o n .

Page 65: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

The o r i g i n a l t o t a l volume o f f u e l

V = T ~ ~ L

= 1 ~ ( 0 . 1 0 9 ) 2 ( 1 3 . 5 ) = 0.504 i n . 3

Volume o f f i s s i o n gas g e n e r a t e d i n me l t ed f u e l a t 3.2 s e c

r 0 ' 0 5 7 5 in L71.3 crn3] = 8 . 1 3 cm3

Vf = 10.504 i n . 3 I 90% i s r e l e a s e d

S i z e of v o i d a v a i l a b l e a t 3 . 1 smeared d e n s i t y = 76.57%

3 = (0.118 i n 3 ) (16 .4 a ) = 1 . 9 3 cm 3

i n . 3

S i z e o f v o i d a v a i l a b l e a t 3 .2

= 0.0575 i n . 3 = 0.943 cm 3 'melt Volume i n c r e a s e = (0.943) (0 .1 ) = 0.094 cm3

Void d e c r e a s e = 1.93-0 .094 = 1 .84 cm 3

Sample c a l c u l a t i o n o f p r e s s u r e due t o t e m p e r a t u r e i n c r e a s e o f

s t e a d y - s t a t e r e l e a s e d f i s s i o n gas a t 3 . 1 s e c

Model

1 P , V , N , ~ Plenum Phase 1: h e a t v o i d r e g i o n t o t e m p e r a t u r e

I P , V , N , T ~ Void Phase 2 : Open v a l v e between r e g i o n s and

e q u i l i b r a t e p r e s s u r e s

a d i a b a t i c a l l y

I n i t i a l t e m p e r a t u r e ( p r e - t r a n s i e n t ) o f b o t h r e g i o n s 3 0 0 O F

T o t a l i n i t i a l f i s s i o n gas volume a t STP (bo th r e g i o n s )

6 4 . 1 cm3 (Appendix B)

Page 66: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Constant values

v = 5.17 cm3 R = 670.5 psia ~ m ~ / ~ - m o l e OR

Cp = 0.00274 Btu/g O F MWaVe = 25.34 g/g-mole

= 0.0694 Btu/g-mole OF

at Time 0 pressure P = 204 psi (Appendix B)

at Time 3.1:

Grams of gas in each region at 300 OF before heat up

25.23 g-mole (64'1 cm3) g-moleg 22,400 cm

3 = 0.072 g

37% in void 63% in plenum

Phase 1: TI = 4400 OF (bulk fuel temp, ARGUS)

= [(0.045g) (300 OF) + (0.027g) (4400 OF)]O.O0274B s OF = 0.363 Btu

nlT'v Phase 2: nT = v r -

0.0694B q = 0.363 Btu = [11,786 OF n' + 4400 OF nl]g-mole OF

1 0.363 Btu g-mole OF = 0.0003*3 g-mole n = 0.0694 Btu 16,186 OF - n'TIR - (0.000324 g-mole) (4860 OR) (670.5) psi cm 5

p = , r - 1.93 cm3 g-mole OR

= 547.4 psi

at Time 3.2: 11.3% fuel melts-void size reduces

T' = 4500 OF

Phase 1:

q = [(0.00285) 1340 + 0.000324(4500)]0.0694

= 0.366 Btu

Page 67: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Phase 2 : nT = n l T 1 v - - [4500] [ 5 . 1 7 cm3]

v ' 1 .84 cm3

= 555 p s i

To t h i s must be added t h e p r e s s u r e due t o e n t r a p p e d f i s s i o n

gas r e l e a s e d u r i n g m e l t

'STP ' S T P ~ - (14 .7 p s i ) (7.32 cm3) (4900 + 460) O R

P = - v T ~ ~ ~ (1.84 cm3) (460 + 32) O R

= 637 p s i

T o t a l p r e s s u r e a t 3 .2 s e c 637 + 555 = 1192 p s i

Tab le o f P r e s s u r e C a l c u l a t e d a s Above

Time

P r e s s u r e Due t o Ent rapped F i s s i o n

Gas Re lease

P r e s s u r e Due t o P r e - t r a n s i e n t Released

Gas Heatup

T o t a l a s Shown i n

F i g u r e 3 . 7

Page 68: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

BNWL - 1 .-i. 3

P O W E R T O B E G E N E R A T E D I N F U E L A F T E R C L A D

F A I L U R E D U R I N G E X P E C T E D T R A N S I E N T

Time of f a i l u r e 3.50 s e c a f t e r i n i t i a t i o n of t r a n s i e n t .

77% o f t r a n s i e n t has passed l e a v i n g 23% o r 37 bIW-sec.

Power f a c t o r = 1.004 x w a t t s f u e l power/cm3 f u e l

p e r w a t t o f r e a c t o r power

Volume of f u e l a t f a i l u r e = 8 .23 cm5

1 .004 w a t t s f u e l power 8 .23 cm3 f u e l 37 W-sec x l o 6 x l o m 4 Q = cm3 f u e l w a t t s r e a c t o r power

Q = 3.06 x l o 4 W-sec x 948 x Btu/W-sec

= 29 Btu g e n e r a t e d i n f u e l a f t e r f a i l u r e

Heat r e l e a s e d from c o o l i n g t h e f u e l t o 4900 O F ( f r e e z i n g

p o i n t )

Q = MCpAT C~ = 0.15 B/ lbm O F

= 5 .05 Btu

T o t a l h e a t a v a i l a b l e 29 + 5 = 34 Btu

P R E S S U R E W I T H I N I N N E R C A P S U L E F R O M V A P O R I Z I N G N a K

Weight o f NaK v a p o r i z e d by 34 Btu

Heat o f v a p o r i z a t i o n

Na = 1811 B t u / l b m

K = 872 B t u / l b m

N a K compos i t ion 78% K 2 2 % Na

Weight NaK = ( 0 . 7 g ) (34 Btu) + (0 .22) (34 Btu)

872 B t u / l b m 1811 B t u / l b m

Page 69: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Volume of NaK vapor at STP

Available void for vapor exp&sion 267 cm3

Pressure after expansion with final temperature 1450 O F

(vaporization temperature)

= 3,210 psi

Page 70: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X D

C A L C U L A T I O N S F O R M A X I M U M

A C C I D E N T T R A N S I E N T

Page 71: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X D

I N T E R N A L F U E L P I N PRESSURE DUE TO F U E L M E L T I N G

AND F I S S I O N GAS R E L E A S E D U R I N G MAXIMUM

A C C I D E N T T R A N S I E N T

The b a s i s f o r t h e s e c a l c u l a t i o n s a r e t h e same a s those i n

Appendix C f o r t h e expected t r a n s i e n t , and t h e c a l c u l a t i o n s

a r e t h e same.

Time After Nodes Melted Transient (see Figure 3.4)

2.10 None

2.15 19-21

2.20 14 - 24

2.25 10 - 24

2.30 5- 25

2.35 3-35 (Au)

Volume of Fuel Melted (in. 3)

None

0.065

0.239

0.078

0.104

0.018

Cumulative Volume of Fuel Melted (in. 3)

None

0.065

0.304

Volume of Fission Gas Released

(cm31

None

8.28

Size of Void

Available (cm3) * *

* 10% r e l e a s e d d u r i n g m e l t

*Qssumes t h e m e l t e d f u e l volume i n c r e a s e s 10%. The o t h e r f u e l e x p a n s i o n up t o 4 9 0 0 OF i s compensated f o r b y c l a d d i n g e x p a n s i o n .

Table o f P re s su re s Ca lcu l a t ed a s i n Appendix C

P re s su re Due t o P re s su re Due t o To ta l a s Entrapped F i s s i o n P r e t r a n s i e n t Released Shown i n

Time Gas Released Gas Heatup Figure 3 .7

2.10 0 p s i 505 p s i 505 p s i

2.15 729 625 1354

2 . 2 0 4136 7 4 2 4878

Page 72: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

P O W E R T O B E G E N E R A T E D I N F U E L A F T E R C L A D

F A I L U R E D U R I N G M A X I M U M A C C I D E N T T R A N S I E N T

Time of f a i l u r e = 2.15 s e c

Power t o f u e l = 270 MW-sec

Power f a c t o r 1 .004 x w a t t s f u e l power

cm3 f u e l w a t t s r e a c t o r power

Volume o f f u e l a t f a i l u r e = 8 .23 cm3

1 .004 x w a t t s f u e l power 8 .23 cm3 f u e l 270 x l o 6 W-sec Q =

cm3 f u e l w a t t s r e a c t o r power Btu = 2.235 x l o 5 W-sec x 9.48 x fiec

= 2 . 2 Btu

Heat r e l e a s e d from c o o l i n g t h e f u e l t o 4900 O F maximum

b u l k f u e l t e m p e r a t u r e 7600 O F ( f r e e z i n g p o i n t ) (ARGUS)

= 6 8 . 5 Btu

T o t a l h e a t g e n e r a t i o n 2 1 2 + 68 .5 = 280.5 Btu

P R E S S U R E W I T H I N I N N E R C A P S U L E F R O M V A P O R I Z I N G

NaK A F T E R F A I L U R E C A U S E D BY M A X I M U M A C C I D E N T

T R A N S 1 E N T

Weight o f NaK t o b e v a p o r i z e d ( a l l NaK)

' N ~ K = 0.2175 l b m

Volume o f NaK vapor

Void = 267 cm 5

Page 73: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

P r e s s u r e a f t e r expansion

- (14.7 p s i ) (9.45 x l o 4 ;m3)f.:.i0) ' N ~ K - 2 6 7 cm

= 2 0 , 2 0 0 p s i vapo r i z ing a l l NaK

R e s u l t a n t p r e s s u r e when a l l NaK i n annulus between t h e

f u e l p i n and t h e h e a t s i n k i s vapor ized and t h e remaining f u e l

f r e e z e s on t h e h e a t s i n k and r a i s e s t h e h e a t s i n k t empera tu re .

Weight of NaK i n annulus = 0.0143 lbm

Volume NaK vapor

= 1 ,325 p s i

F I N A L B U L K H E A T S I N K T E M P E R A T U R E I F T H E ENERGY

R E M A I N I N G A F T E R V A P O R I Z A T I O N O F T H E N a K I N T H E

A N N U L U S A S A B S O R B E D BY T H E H E A T S I N K .

Energy r e q u i r e d t o vapo r i ze 0.0143 l b NaK

X = 14 .7 Btu t o vapo r i ze t h e NaK

280.5 Btu t o t a l energy a v a i l a b l e l e s s 14 .7 Btu

absorbed i n t h e N i h e a t s i n k .

Page 74: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

265.8 Btu

Volume of Ni heat sink = 8.25 in.3

Initial temperature heat sink = 330 O F

'PN i = 0.103 B/lbm O F e = 0.321 lb/in3

(ARGUS)

= ( 9 7 4 + 330) O F

= 1,304 O F final Ni temperature

melting temperature of Ni = 2250 O F

Page 75: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

A P P E N D I X E

T A B L E S OF P H O T O N P R O D U C T I O N R A T E S

A N D F I S S I O N G A S C O N C E N T R A T I O N S

Page 76: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Group

1

2

3

4

5

6

7

8

9

1 0

11

12

1 3

1 4

1 5

16

TOTAL

TABLE I. 10,000 MWd/MTM EBR-I1 Exposure

Group Average Energy

MeV

Group Production Rate; Photcns

30 days 75 days

3 . 2 7 7 ~ 1 0 ~ ~ 1 .2 46x10

180 days

Page 77: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

Group

1

2

3

4

5

6

7

8

9

10

11

12

1 3

14

15

16

TOTAL

TABLE 11. 5 0 , 0 0 0 MWd/MTM EBR-I1 E x p o s u r e

Group Average Energy

MeV

.15

.25

.35

.475

.65

.825

1.00

1.225

1.475

1.700

1.900

2.100

2.300

2.500

2.700

3.00

Grwp Production Rate ; Photcns

Shutdown 180 days

7.298 x 10 l3 4.167 x 10

Page 78: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

GROUP

TABLE 111. TREAT Transient Exposure of Green Fuel

T o t a l

Group Avg. Energy

MeV Shutdown

9.889 x 10 12

3.939 x 10 12

2.936 x 10 12

6.047 x 10 12

4.190 x 1012

6.810 x 1 0 12

9.909 x lo1' 5.436 x 1012

4.392 x 1012

1.176 x 10 12

8.033 x 1 0 11

3.366 x 10 11

6.324 x 10 11

3.513 x 1 0 11

1.106 x 1012

8.109 x 10 11

4.98 x 10 1 3

Group Produc t ion Ba te : Photons 1 Hour 1 day 1 0 days

Page 79: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

TABLE IV. Fission Gas Concentration (grams)

Exposure

Element 0 30 days 75 days 180 days

B r 6.563 x 6.538 x 6.533 x 6 .533 x l o m 4 K r 8.260 x 8.238 x 8.234 x 8 . 2 2 4 ~ loe3

T o t a l 9.756 x 9.647 x 9.648 x 9.656 x

50 000 I"IwD/MTM EBR-I1

Exposure

Element 0 30 days 75 days 180 days

B r 3.269 x 3.266 x 3.266 x 3.266 x loe3 K r 4.113 x 4.110 x 4.108 x 4.103 x

I 3.354 x 3.187 x 3.187 x 3.202 x

Xe 4.059 x lo-' 4.065 x lo-' 4.066 x 10-I 4.066 x lo-' T o t a l 4.838 x 10-I 4.828 x 10-I 4.829 x loe1 4.829 x 10-I

TABLE V. F i s s i o n Gas C o n c e n t r a t i o n (grams)

TREAT T r a n s i e n t Exposure

(Green F u e l )

Element 0 I hour 1 day 10 days 30 days

T o t a l 16 .095 x 5 .173 x 5.099 x 4 .616 x 4.407 x

Page 80: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

R E F E R E N C E S

J . E.. Hanson. Exper imen t D e s c r i p t i o n and Hazards Eva lu- a t i o n f o r t h e PNL Mixed Oxide I r r a d i a t i o n s i n EBR-11, Task A S u b t a s k I I r r a d i a t i o n s , BNWL-650. -- B a t t e Z Z e - N o r t h w e s t , R i c h l a n d , Wash ing ton , J u l y 1968.

J . E . Hanson, J . H . F i e l d , and S . A . Rob in . E x p e r i m e n t a l S t u d i e s o f T r a n s i e n t E f f e c t s i n F a s t R e a c t o r F u e l s S e r i e s I I - Mixed Oxide ( P u O Z - U O ~ ) I r r a d i a t i o n s , GEAP-4840. Genera l E l e c t r i c Co. , S u n n y v a l e , C a l i f o r n i a , June 1965.

J . E . Hanson and J . H . F i e l d . E x p e r i m e n t a l S t u d i e s o f T r a n s i e n t E f f e c t s i n F a s t R e a c t o r F u e l s S e r i e s 111, P r e - i r r a d i a t e d Mixed Oxide (PuOz-UOz) I r r a d i a t i o n s F i n a l R e p o r t , T r a n s i e n t I r r a d i a t i o n s , G E A P - 4 4 6 9 . Genera2 E Z e c t r i c Co. , S u n n y v a l e , C a Z i f o r n i a , J u l y 1967.

J . L . C a r t e r . "Computer Code A b s t r a c t s , Computer Code-HRG, I f R e a c t o r P h y s i c s Department TechnicaZ A c t i v i t i e s Q u a r t e r l y R e p o r t , J u l y , A u g u s t , Sep t ember 2966, BNWL-340. B a t t e Z Z e - N o r t h w e s t , R ichZand , Wash ing ton , O c t o b e r 1966.

D . R. S k e e n and L . J . Page. THERMOS/BATTELLE: The Ba t t eZZe V e r s i o n o f t h e THERMOS Code, BNWL-516. B a t t e Z Z e - N o r t h w e s t , RiehZand, Wash ing ton , Sep t ember 1967.

K . D . L a t h r o p . DTF-IV, a FORTRAN-IV Proqram f o r S o l v i n g t h e MuZtigroup T r a n s p o r t E q u a t i o n w i t h Anisotropic S c a t - t e r i n g > LA-3373. Los Alamos S c i e n t i f i c L a b o r a t o r y , November 1965.

E . 0 . BaZZard and G . E . Cu lZey . Unpub l i shed Data. Bat teZZe-Nor-bhwest , R iehZand , Wash ing ton . ( P r o p o s a l t o Per fo rm a C a Z i b r a t i o n Exper imen t i n t h e TREAT F a c i Z i t y )

J . F . Bo land . Unpub l i shed Data. Argonne Nat ionaZ Labora- t o r y , Argonne, I Z Z i n o i s , Oc tober 7 , 1 9 6 9 . [ L e t t e r t o G . E . C u l l e y ( B N W ) ] .

D . O k r e n t e t aZ. The R e a c t o r K i n e t i c s o f t h e T r a n s i e n t R e a c t o r T e s t F a c i l i t y (TREAT), ANL-61 7 4 . Argonne Nat ionaZ L a b o r a t o r y , Argonne, I Z Z i n o i s , Sep t ember 1960.

E . R. A s t Z e y . F a s t F l u x T e s t F a c i l i t y Q u a r t e r l y ~ e c h n i c a l R e p o r t June , JuZy , Augus t 1969 , BNWL-1174. B a t t e Z Z e - N o r t h w e s t , R i c h l a n d , Wash ing ton , O c t o b e r 1969.

D . F . SchoeberZe e t aZ . A Method o f C a l c u Z a t i n g T r a n s i e n t Tempera ture s i n a M u Z t i r e q i o n , A x i s y m m e t r i c , CyZindr icaZ C o n f i g u r a t i o n . The Argus Program, 1 0 8 9 / ~ ~ 2 4 8 , W r i t t e n i n F o r t r a n 11, ANL-6654. Argonne N a t i o n a l L a b o r a t o r y , Argonne, I l l i n o i s , November 1963.

Page 81: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

12. J . R e g i s . " M o d i f i e d ARGUS Code" d a t e d May 12 , 1969; A t t a c h m e n t t o l e t t e r from C . E . Dickerman ( A N L ) t o J . E . Hanson ( B N W ) , d a t e d may 1969 .

13 . F . E . Bard , J r . PECT-I: A F o r t r a n I V Computer Program t o Determine t h e - P l a s t i c - E l a s t i c - Creep and - Thermal Deforma-

t i o n i n l ' h i c k - w a l l e d C y l i n d e r s , BNWL-1171. B a t t e Z Z e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n , O c t o b e r 1969 .

K. L . F i s h . U n p u b l i s h e d Data. B a t t e Z l e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n , Augus t 1969. ( P e r s o n a l Communica t ion)

R . M . Crawford . U z p u b l i s h e d Data. B a t t e l l e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n , November 1567. ( P e r s o n a l Commun ica t i on )

J . C . G i l b e r t s o n and J . H . F i e l d . Addendum No. 1 t o t h e Hazard A n a l y g i s and T e s t S p e c i f i c a t i o n s f o r t h e APED T e s t Program i n TREAT ( A u g u s t 1 , 1962 ) S e r i e s 2 and 3 . Genera l E l e c t r i c Company, San J o s e , C a l i f o r n i a , December 17 , 2963.

T . H i k i d o . Genera l E l e c t r i c Co. A p r i l 15 , 1968 . ( L e t t e r , t o J . F . Boland (ANL-TREAT): Hazards A n a l y s i s - S e r i e s 5 E x p e r i m e n t s i n TREAT, R e v i s i o n 2 ) .

A . E . W a l t a r e t aZ. C o n s i d e r a t i o n s on t h e Use o f Fuel Mot ion R e s t r i c t o r s i n t h e FTR Fuel P i n s , BNWL-623. B a t t e l l e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n , November 1967 .

R . B . D u f f i e l d e t a l . ANL R e a c t o r Deve lopment Program P r o g r e s s R e p o r t , ANL-7553. Argonne N a t i o n a l L a b o r a t o r y , Argonne , I Z Z i n o i s , February 1969 .

R. T . P e p p e r , J . R. S t u b b l e s , and C . R . T o t t Z e . " C o n s t i - t u t i o n o f t h e Sodium R i c h R e g i o n o f t h e Sodium-Uranium- Oxygen S y s t e m , " A p p l . MatZ. R e s . , p . 203. O c t o b e r 1964 .

R. 0 . Gumprecht . Ma thema t i ca l B a s i s o f Computer Code RIBD, DUN-4136. Douglas u n i t e d N u c l e a r , June 1968 .

R. L . Enge l e t a l . ISOSHLD - A Computer Code f o r Genera l Purpose I s o t o p e S h i e l d i n g A n a l y s i s , BNWL-236. B u t t e Z l e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n , June 1966 .

E . T . B o u l e t t e and C . A . Mans ius . U n p u b l i s h e d Data. B a t t e l l e - N o r t h w e s t , R i c h l a n d , W a s h i n g t o n . ( P r i v a t e Commun ica t i on )

Page 82: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. o f Couies

OFFSITE

1

3 4

DISTRIBUTION

AEC Chicago P a t e n t G r o w

G . H . Lee

AEC D i v i s i o n o f R e a c t o r Development and Technology

M . Shaw, D i r e c t o r , RDT ( 5 ) A s s t D i r f o r Nuc lea r S a f e t y A n a l y s i s F, E v a l u a t i o n B r , RDT:NS A s s t Dir f o r P l a n t Engrg, RDT F a c i l i t i e s B r , RDT:PE Components B r , RDT:PE I n s t r u m e n t a t i o n 6 C o n t r o l B r , RDT:PE L i q u i d Meta l Systems B r , RDT:PE Asst D i r f o r Program A n a l y s i s , RDT Asst D i r f o r P r o j e c t Mgmt, RDT L i q u i d Meta l s P r o j e c t s B r , RDT:PM FFTF P r o j e c t Manager, RDT:PM Asst D i r f o r R e a c t o r Engrg, RDT C o n t r o l Mechanisms B r , RDT : R E Core Design B r , RDT :RE ( 2 ) Fue l E n g i n e e r i n g B r , RDT:RE ( 5 ) Fue l Handl ing B r , RDT:RE R e a c t o r V e s s e l s B r , RDT:RE Coolant Chemis t ry B r , RDT:RT Fue l Recycle B r , RDT:RT F u e l s 6 M a t e r i a l s B r , RDT:RT R e a c t o r P h y s i c s B r , RDT:RE S p e c i a l Technology B r , RDT:RT Asst D i r f o r Engrg S t a n d a r d s , RDT E B R - I 1 P r o j e c t Manager, RDT:PM

AEC D i v i s i o n of T e c h n i c a l I n f o r m a t i o n E x t e n s i o n

AEC Idaho O p e r a t i o n s O f f i c e Nuc lea r Technology D i v i s i o n

C . W . B i l l s , D i r e c t o r

AEC San F r a n c i s c o O p e r a t i o n s O f f i c e D i r e c t o r , R e a c t o r D i v i s i o n

AEC Chicago O u e r a t i o n s O f f i c e Manager

Page 83: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. o f Copies

AEC S i t e R e p r e s e n t a t i v e s

Argonne N a t i o n a l L a b o r a t o r y - CH Argonne N a t i o n a l L a b o r a t o r y - ID Atomics I n t e r n a t i o n a l Genera l E l e c t r i c Co, Sunnyvale West inghouse E l e c t r i c C o r p o r a t i o n

Argonne N a t i o n a l L a b o r a t o r y

R . A . J a r o s s LMFBR Program Off i c e N . J . Swanson EBR-I1 Experiment Manager (15) EBR-I1 l r r a d i a t i o n C o o r d i n a t o r

Atomic Power Development Assoc .

Document L i b r a r i a n

Atomics I n t e r n a t i o n a l

FFTF Program O f f i c e

Babcock 6 Wilcox Co. Atomic Energy D i v i s i o n

S . H . E s l e e c k G . B . Gar ton

Babcock 6 Wilcox Co. B o i l e r D i v i s i o n S t e r l i n g Avenue B a r b e r t o n , Ohio 44203

T . P. F a r r e l l

B e c h t e l C o r ~ o r a t i o n

J . J . Teachnor

BNW R e ~ r e s e n t a t i v e

R . M. Fleishman (ZPPR)

Combustion E n g i n e e r i n g 1000 MWe Follow-On Study

W . P. S t a k e r , P r o j e c t Manager

Page 84: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. o f Copies

1 Combustion E n g i n e e r i n g 911 West Main S t r e e t Cha t t anooga , Tennessee 37401

Mrs. N e l l Ho lde r , L i b r a r i a n

Genera l E l e c t r i c Company Advanced P r o d u c t s O p e r a t i o n

W . E . B a i l y Kar l Cohen (3) R . E . Skavdahl

Genera l E l e c t r i c Company Nuc leon ics L a b o r a t o r y P.O. Box 846 P l e a s a n t o n , C a l i f o r n i a 94566

D r . H . W . A l t e r , Manager

Gulf Genera l Atomic I n c . Genera l Atomic D i v i s i o n

Idaho Nuc lea r C o r p o r a t i o n

J . A . Buckham

L i q u i d Meta l E n g i n e e r i n g C e n t e r

R . W . Dickinson

L i q u i d Meta l I n f o r m a t i o n C e n t e r

A . E . M i l l e r

Oak Ridee N a t i o n a l L a b o r a t o r v

W . 0 . Harms

D i v i s i o n of blechanical Engrg

R . She r

Un i t ed Nuc lea r C o r p o r a t i o n Research and E n g i n e e r i n g Cen te r

Page 85: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. o f Copies

15 West inghouse E l e c t r i c C o r p o r a t i o n Atomic Power O i v i s i o n Advanced Reac to r Systems

D . C . Spencer

1 AEC Chicago P a t e n t Group

R . K . Sharp

RDT A s s i s t a n t D i r e c t o r f o r P a c i f i c Northwest L a b o r a t o r i e s

L . R . Lucas T . A . Nemzek (2) A . D . Toth

AEC R ich land O p e r a t i o n s O f f i c e

J . M . S h i v l e y

B a t t e l l e Memorial I n s t i t u t e

B e c h t e l C o r p o r a t i o n

W . A . Smith (R ich land)

WADCO --

W. H . Esselman W . M . Gajewski J . M . N o r r i s B . G . Rieck

West inghouse E l e c t r i c C o r p o r a t i o n

J . D . Herb

B a t t e l l e - N o r t h w e s t

Arneson B a l l a r d Bard Batch Bement Boyd Boyd B u l l i n g t o n Brown Bunch Burgess C a b e l l ( 2 ) C a l l e n J . C a r l s o n Cawley Chand le r

Page 86: ERRATA - UNT Digital Library/67531/metadc871301/...ERRATA Page 3.6, last line - should read and propagate outward. As shown in Figure 3.5, the fuel center Engineering Drawing H-3-27688,

No. of Copies

T . T . Claudson J . C . Cochran P . D . Cohn R . $4. Crawford G . E . Cu l ley (10) G . M . Dalen J . M . Davidson D . R . Doman J . F . Erben E . A . Evans T . W. Evans L . M . F inch G . L . Fox E . E . G a r r e t t V . M . Gustafson J . W . Hagan J . P . Hale J . E . Hanson (5) R . E . Harvey B . R. Hayward P . Hofman G . R . Horn L . A . Jones G . A . L a s t R . D . Legget F . J . L e i t z W . W . L i t t l e W . B. McDonald J . S. McMahon C . R . Nash C . L . Peckinpaugh L . A . Pember R . E . P e t e r s o n 0 . W . P r i e b e J . C . Richardson W . E . Roake F. H . Shade1 D . 0 . Sheppherd (10) D . E . Simpson R . J . S q u i r e s D . D . Stepnewski C . D . Swanson J . C . Tobin R . C . Walker W . E . Warden J . W . Weber

J . H. Westsik N . G . Wi t tenbrock B. Wolfe Legal - 703 Bldg Legal ROB, 2 2 1 A BNW Techn ica l In fo rmat ion ( 5 ) BNW Technica l P u b l i c a t i o n (3) FFTF F i l e (703) (10) FFTF-TPO ( 7 0 3 )