error and uncertainty in modeling

58
Error and Uncertainty in Modeling George H. Leavesley, Research Hydrologist, USGS, Denver,

Upload: ban

Post on 11-Jan-2016

41 views

Category:

Documents


0 download

DESCRIPTION

Error and Uncertainty in Modeling. George H. Leavesley, Research Hydrologist, USGS, Denver, CO. Sources of Error and Uncertainty. Model Structure Parameters Data Forecasts of future conditions. Sacramento. Conceptualization of Reality. measurement. Effective Parameters and States. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Error and Uncertainty in Modeling

Error and Uncertainty in Modeling

George H. Leavesley, Research Hydrologist, USGS, Denver, CO

Page 2: Error and Uncertainty in Modeling

Sources of Error and Uncertainty

• Model Structure

• Parameters

• Data

• Forecasts of future conditions

Page 3: Error and Uncertainty in Modeling

INTERFLOWSURFACERUNOFF

INFILTRATIONTENSION

TENSION TENSION

PERCOLATION

LOWERZONE

UPPERZONE

PRIMARYFREE

SUPPLE-MENTAL

FREE

RESERVED RESERVED

FREE

EVAPOTRANSPIRATION

BASEFLOW

SUBSURFACEOUTFLOW

DIRECTRUNOFF

Precipitation Sacramento

Conceptualization of Reality

Page 4: Error and Uncertainty in Modeling

homog.

(xeff,eff)

input

input

output

output

identical Identical ?

heterog.

measurement

After Grayson and Blöschl, 2000, Cambridge Univ. Press

real world

model

Effective Parameters and States

Page 5: Error and Uncertainty in Modeling

1000M

Mountain blockage of radar

2000M3000M

Precipitation Measurement

Source: Maddox, et. al. Weather and Forecasting, 2002.

Sparse precip gauge distribution

SAHRA – NSF STC

Page 6: Error and Uncertainty in Modeling

Streamflow Measurement Accuracy (USGS)

• Excellent– 95% of daily discharges are within 5% of true value

• Good– 95% of daily discharges are within 10% of true value

• Fair– 95% of daily discharges are within 15% of true value

• Poor– Do not meet Fair criteria

Different accuracies may be attributed to different parts of a given record

Page 7: Error and Uncertainty in Modeling

Dimensions of Model Evaluation

From Wagener 2003, Hydrological Processes

Page 8: Error and Uncertainty in Modeling

Dimensions of Model Evaluation

From Wagener 2003, Hydrological Processes

Page 9: Error and Uncertainty in Modeling

Performance Measures

Mean (observed vs simulated)

Standard deviation (observed vs simulated)

Root Mean Square Error (RMSE)

Mean Absolute Error (MAE)

Page 10: Error and Uncertainty in Modeling

Performance Measures

Coefficient of Determination R2

Not a good measure -- High correlations can be achieved for mediocre or poor models

Page 11: Error and Uncertainty in Modeling

Performance Measures

Coefficient of Efficiency E

Nash and Sutcliffe, 1970, J. of Hydrology

Widely used in hydrology Range – infinity to +1.0 Overly sensitive to extreme values

Page 12: Error and Uncertainty in Modeling

Seasonal Variability of Nash-Sutcliffe Efficiency

Seasonal Analysis of Daily Nash-Sucliffe Efficiency01608500

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

Month

Eff

icie

ncy SAC

GR4J

PRMS

Page 13: Error and Uncertainty in Modeling

Performance Measures

Index of Agreement d

Willmott, 1981, Physical Geography

Range 0.0 – 1.0 Overly sensitive to extreme values

Page 14: Error and Uncertainty in Modeling

Analysis of Residuals

Page 15: Error and Uncertainty in Modeling

Performance Measure Issues

• Different measures have different sensitivities for different parts of the data.

• Are assumptions correct regarding the nature of the error structures (i.e. zero mean, constant variance, normality, independence, …)?

• Difficulty in defining what constitutes an acceptable level of performance for different types of data.

Page 16: Error and Uncertainty in Modeling

Dimensions of Model Evaluation

From Wagener 2003, Hydrological Processes

Page 17: Error and Uncertainty in Modeling

Definitions

• Uncertainty analysis: investigation of the effects of lack of knowledge or potential errors on model components and output.

• Sensitivity analysis: the computation of the effect of changes in input values or assumptions on model output.

EPA, CREM, 2003

Page 18: Error and Uncertainty in Modeling

Parameter Sensitivity

The single, “best-fit model” assumption

Page 19: Error and Uncertainty in Modeling

Magnitude of Parameter Error

5% 10% 20% 50%

%> VAR 0.23963 0.95852 3.83408 23.96303 %> SE 0.11974 0.47812 1.89901 11.33868 soil_moist_max 0.15243 0.60973 2.43891 15.24316

%> VAR 0.16210 0.64840 2.59359 16.20993 %> SE 0.08102 0.32367 1.28849 7.80071 hamon_coef 0.10311 0.41245 1.64981 10.31133

%> VAR 0.07889 0.31556 1.26224 7.88900 %> SE 0.03944 0.15766 0.62914 3.86963 ssrcoef_sq 0.05018 0.20073 0.80293 5.01829

joint 0.32477 1.29908 5.19632 32.47698

Error Propagation

Page 20: Error and Uncertainty in Modeling

routing

gw rech

soil moisture

et

et

soil moisture

gw rech

routing

baseflow

Objective Function Selection

Page 21: Error and Uncertainty in Modeling

Relative Sensitivity

SR = (QPRED / PI) * (PI / QPRED)

Page 22: Error and Uncertainty in Modeling

Relative Sensitivity Analysis

Soil available water holding capacity

Evapotranspiration coefficient

Page 23: Error and Uncertainty in Modeling

Relative Sensitivity Analysis

Snow/rain threshold temperature

Snowfall adjustment

Page 24: Error and Uncertainty in Modeling

Parameter Sensitivity

The “parameter equifinality” assumption

• Consider a population of models• Define the likelihood that they are

consistent with the available data

Page 25: Error and Uncertainty in Modeling

Regional Sensitivity Analysis

• Apply a random sampling procedure to the parameter space to create parameter sets

•Classify the resulting model realizations as “behavioural” (acceptable) or “non-behavioural”

•Significant difference between the set of “behavioural” and “non-behavioural” parameters identifies the parameter as sensitive

Spear and Hornberger, 1980, WRR

Page 26: Error and Uncertainty in Modeling

ji

0

11

0 cum

ulat

ive

dist

ribu

tion

cum

ulat

ive

dist

ribu

tion

)B|(F i

)B|(F i

)(F i

)B|(F j

)B|(F j

)(F j

Sensitive Not sensitive

B = behavioural B = non-behavioural

Regional Sensitivity Analysis

Page 27: Error and Uncertainty in Modeling

• Monte Carlo generated simulations are classified as behavioural or non-behavioural, and the latter are rejected.

• The likelihood measures of the behavioural set are scaled and used to weight the predictions associated with individual behavioural parameter sets.

• The modeling uncertainty is then propagated into the simulation results as confidence limits of any required percentile.

Generalized Likelihood Uncertainty Analysis (GLUE)

Page 28: Error and Uncertainty in Modeling

Dotty Plots and Identifiability Analysis

behavioural

Page 29: Error and Uncertainty in Modeling

GLUE computed 95%confidence limits

Page 30: Error and Uncertainty in Modeling

Animas Carson Cle Elum

rad_trncf

soil_moist_max

tmax_allsnow

Obj

ecti v

e Fu

ncti

on

o

bsQ

pre

dQ–

0.0 0.2 0.4 0.6 0.850000.0

100000.0

150000.0

200000.0

250000.0

300000.0

0.0 5.0 10.0 15.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

25.0 30.0 35.0 40.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

0.0 0.2 0.4 0.6 0.850000.0

100000.0

150000.0

200000.0

250000.0

300000.0

0.0 5.0 10.0 15.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

25.0 30.0 35.0 40.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

0.0 0.2 0.4 0.6 0.850000.0

100000.0

150000.0

200000.0

250000.0

300000.0

0.0 5.0 10.0 15.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

25.0 30.0 35.0 40.050000.0

100000.0

150000.0

200000.0

250000.0

300000.0

Figure 3

Uncalibrated Estimate

Parameter Equifinality

(deg F)

(inches)

Rockies Sierras Cascades

Regional Variability

Page 31: Error and Uncertainty in Modeling

Increasing the information content of the data

Multi-criteria Analysis

A single objective function:• cannot capture the many performance attributes

that an experienced hydrologist might look for• uses only a limited part of the total information

content of a hydrograph• when used in calibration it will tend to bias model

performance to match a particular aspect of the hydrograph

A multi-criteria approach overcomes these problems (Wheater et al., 1986, Gupta et al., 1998, Boyle et al., 2001, Wagener et al., 2001).

Page 32: Error and Uncertainty in Modeling

Identifying Characteristic Behavior

Page 33: Error and Uncertainty in Modeling

Developing Objective Measures

1 2

1 2

1 2

Qobs QcomnDnD

FD

FQ Qobs

Qobs

Qcom

Qcomnsns

nQnQ

FS

peaks/timing

baseflow

quick recession

Page 34: Error and Uncertainty in Modeling

Pareto Optimality

Paret

o Solu

tions

Page 35: Error and Uncertainty in Modeling

500 Pareto Solutions

Normalized Parameter Space

FS

FQ

FD FD FQ

FS

Function Space

Page 36: Error and Uncertainty in Modeling

SAC-SMA Hydrograph Range

Page 37: Error and Uncertainty in Modeling

Overall Performance Measures

RMSE min

BIAS min

Page 38: Error and Uncertainty in Modeling

Parameter Sensitivity by Objective Function

Page 39: Error and Uncertainty in Modeling

Dimensions of Model Evaluation

From Wagener 2003, Hydrological Processes

Page 40: Error and Uncertainty in Modeling

Evaluation of Model Evaluation of Model Component ProcessesComponent Processes

PET

Day

Annual Runoff

Percent Groundwater

Nash-Sutcliffe

Daily Q

0.7

0

.8 0

.9

Observed

SCE

Final SCE

1991 1993 1995 1997 Year

1991 1993 1995 1997 Year

1991 1993 1995 1997 Year

J F M A M J J A S O N DMonth

J F M A M J J A S O N DMonth

Solar Radiatio

n

Page 41: Error and Uncertainty in Modeling

Coupling SCA remote sensing products with point measures and modeled SWE to evaluate snow component process

East River

0

0.2

0.4

0.6

0.8

1

1/0 1/20 2/9 2/29 3/20 4/9 4/29 5/19 6/8 6/28 7/18

1996

Pe

rce

nt

Ba

sin

Sn

ow

co

ve

r

MODELSATELLITE

Integrating Remotely Sensed Data

Page 42: Error and Uncertainty in Modeling

Identifiability Analysis

Identification of the model structure and a corresponding parameter set that are most representative of the catchment under investigation, while considering aspects such as modeling objectives and available data.

Wagener et al., 2001, Hydrology Earth System Sciences

Page 43: Error and Uncertainty in Modeling

Dynamic Identifiability Analysis - DYNIA Information content by parameter

Page 44: Error and Uncertainty in Modeling

Dynamic Identifiability Analysis - DYNIA

Identifiability measure and 90% confidence limits

Page 45: Error and Uncertainty in Modeling

A Wavelet Analysis Strategy

• Daily time series

• Seasonally varying daily variance (row sums)

• Seasonally varying variance frequency decomposition (column sums)

• Annual average variance frequency decomposition

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12Precipitation

John Schaake, NWS

Page 46: Error and Uncertainty in Modeling

Variance Decomposition

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

OBSQ

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

OBSQ2

Precipitation Streamflow Variance Transfer Functions

8 da

y w

i ndo

w64

day

win

dow

1-D

ay8-

Day

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12Precipitation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12Variance Transfer Function - Observed

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

128-day Average Precipitation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

128-day Avg Variance Transfer Function - Observed

Page 47: Error and Uncertainty in Modeling

Streamflow

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12Estimated Streamflow - Linear

ObsLinear

PRMS SAC

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

ESTQ H

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

OBSQ

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

ESTQ B

Page 48: Error and Uncertainty in Modeling

Variance Transfer Functions

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12Variance Transfer Function - Linear

Obs Linear

PRMS SAC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

thOBSH

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

ESTH H

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 81

2

3

4

5

6

7

8

9

10

11

12

Component

Mon

th

ESTH B

Page 49: Error and Uncertainty in Modeling

Forecast Uncertainty

Page 50: Error and Uncertainty in Modeling

Ensemble Streamflow Prediction

Using history as an analog for the future

Simulate to today

Predict future using historic data

Probability of exceedence

NOAA

USGS

BOR

Page 51: Error and Uncertainty in Modeling

ESP - Animas River @ Durango

010002000

30004000500060007000

80009000

10000

4/3

/20

05

4/1

7/2

00

5

5/1

/20

05

5/1

5/2

00

5

5/2

9/2

00

5

6/1

2/2

00

5

6/2

6/2

00

5

7/1

0/2

00

5

7/2

4/2

00

5

8/7

/20

05

8/2

1/2

00

5

9/4

/20

05

9/1

8/2

00

5

Str

ea

mfl

ow

(c

fsd

)1982

1983

1987

1991

1992

1993

1994

1995

1997

1998

2002

2003

2004

2005

ESP Animas River @ Durango

0

2000

4000

6000

8000

10000

120004/

3/20

05

4/17

/200

5

5/1/

2005

5/15

/200

5

5/29

/200

5

6/12

/200

5

6/26

/200

5

7/10

/200

5

7/24

/200

5

8/7/

2005

8/21

/200

5

9/4/

2005

9/18

/200

5

Str

eam

flo

w (

cfsd

)

1981

1982

1983

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2005 ESP Forecast

Forecast Period 4/3 – 9/30

Made 4/2/2005

All historic years

Only el nino years

Observed 2005

Page 52: Error and Uncertainty in Modeling

Ranked Probability Skill Score (RPSS) for each forecast day and month using measured runoff and

simulated runoff (Animas River, CO) produced using: (1) SDS output and (2) ESP technique

For

ecas

t D

ay

Month MonthJ F M A M J J A S O N D J F M A M J J A S O N D

8

6

4

2

0

8

6

4

2

0

0.1 0.3 0.5 0.7 0.9

RPSSRPSS

ESPSDS

Perfect Forecast: RPSS=1

Given current uncertainty in long-term atmospheric-model forecasts, seasonal to annual forecasts may be better with ESP

Page 53: Error and Uncertainty in Modeling

• This presentation has been a selected review of uncertainty and error analysis techniques.

• No single approach provides all the information needed to assess a model. The appropriate mix is a function of model structure, problem objectives, data constraints, and spatial and temporal scales of application.

• Still searching for the unified theory of uncertainty analysis.

Summary

Page 54: Error and Uncertainty in Modeling

• Input-output behaviour of the model is consistent with measured behaviour -performance

• Model predictions are accurate (negligible bias) and precise (prediction uncertainty relatively small)

• Model structure and behaviour are consistent with the understanding of reality

Necessary Conditions for a Model to be Considered Properly

Calibrated

Gupta, H.V., et al, in review

Page 55: Error and Uncertainty in Modeling

http://www.es.lancs.ac.uk/hfdg/uncertainty_workshop/uncert_intro.htm

National and international groups are collaborating to assess existing methods and tools for uncertainty analysis and to explore potential avenues for improvement in this area.

Page 56: Error and Uncertainty in Modeling

A Federal Interagency

Working Group is developing a Calibration,

Optimization, and Sensitivity and

Uncertainty Analysis Toolbox

International Workshop Proceedings describes this effort: available at http://www.iscmem.org

Page 57: Error and Uncertainty in Modeling

Aquatic, Riparian& Terrestrial

GISLanduse

GeochemicalFlowpaths

Coupled Hydrological Modelling Systems

HydrologicalModelling

INPUTS

ModelComplexity

ScaleUncertainty

Analysis

PREDICTIONS

Increased Model Complexity More Parameters

More Spatial Interactions

More Complex Responses

but still data limited ….

MORE MODELLING UNCERTAINTY

Future Model Development and Application

Page 58: Error and Uncertainty in Modeling

ImprovedRepresentations of

Hydrological Processorsand Predictions

ModelStructures

Visualisations ofModels &

Uncertainty

FieldMeasurements

Visualisations of Measurements

0

1

2

3

4

5

BedrockDepth (m)

C onceptualised Bedrock

D eeper ValleyZoneModular Modelling

System - USGS

Visual Uncertainty Analysis Framework

Freer, et al., Lancaster Univ., UK