escib largefacility poster2.ppt · title: microsoft powerpoint - escib_largefacility_poster2.ppt...

1
4 5 4 5 5 6 5 6 Naoaki Yabuuchi 1,2 , Kei Kubota 1 , Mouad Dahbi 1 , and Shinichi Komaba 1,2 1 Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Tokyo 162-8601, Japan 2 Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan Studies on Electrode Materials for Rechargeable Na Batteries by Synchrotron Radiation Structural Analysis on P2 Structural Analysis on P2-Type Na Type Na 5/6 5/6 [Li [Li 1/4 1/4 Mn Mn 3/4 3/4 ]O ]O 2 ; X ; X-Ray and Neutron Diffraction Ray and Neutron Diffraction P2-Type Na 5/6 [Li 1/4 Mn 3/4 ]O 2 vs. Ion-Exchanged Li 0.7 [Li 1/4 Mn 3/4 ]O 2 Na cell, P2-type Na 5/6 [Li 1/4 Mn 3/4 ]O 2 Li cell, O2-type Li z [Li 1/4 Mn 3/4 ]O 2 Charging to 4.8 V at 10 mA g-1 Sample Loading; 2.5 mg cm-2 Charging to 4.4 V at 10 mA g-1 Sample Loading; 2.1 mg cm-2 Rietveld/MEM Analysis of P2-type Na 5/6 [Li 1/4 Mn 3/4 ]O 2 The results are indicative of self- diffusion of Na ions at different sites. Na at 2b and 2d sites 0.5 1.0 1.5 2.0 2.5 3.0 017 114 010 011 110 013 012 006 004 d / Å obs. cal. S.G. : P63/mmc; a = 2.8711(1) Å, c = 11.028(1) Å Rwp = 8.12% RB = 5.07% RF = 6.15% atom site g x y z B (Å2) Naf 2b 0.320(1) 0 0 1/4 3.7(1) Nae 2d 0.510(1) 1/3 2/3 3/4 2.3(1) Li 2a 0.24 0 0 0 0.12(1) Mn 2a 0.76 0 0 0 0.12(1) O 4f 1.000(1) 1/3 2/3 0.094(1) 0.56(1) Large B-values are also supported by ND. [001] A B B A A B B A Li, Mn Na edge-shared Isosurface level; 0.7 (e - ) Å -3 Na layer [Li1/4Mn3/4] layer Li-rich (2a site) Mn-rich (2b sites) face-shared site g (Li) g (Mn) 2a 0.478 0.522 2b 0.121 0.879 2b 0.121 0.879 *using space group P63 in-plane “anti-site defects” (and / or stacking faults ) 6 7 8 9 2θ / deg. (λ = 0.5 Å) obs. cal. The results are indicative of self-diffusion of Na ions at different sites. 2a, 2b (face) 6c (edge) a b Na layer with single Na-sites 6c (face) 6c (edge) Na layer with “splitting” Na-sites P2-Na5/6[Li1/4Mn3/4]O2 S.G. : P63 ; a = 4.9672(3) Å, c = 11.039(1) Å Rwp = 8.26% RB = 8.28% RF = 6.59% atom site g x y z B (Å2) Naf (1) 6c 0.104(1) 0.730(2) 0.397(2) 1/4 0.7 Naf (2) 6c 0.104(1) 0.064(2) 0.064(2) 1/4 0.7 Naf (3) 6c 0.104(1) 0.397(2) 0.730(2) 1/4 0.7 Nae(4) 6c 0.172(1) 0.606(1) 0.606(1) 1/4 0.7 Nae(5) 6c 0.172(1) 0.728(1) 2/3 1/4 0.7 Nae(6) 6c 0.172(1) 2/3 0.728(1) 1/4 0.7 5 10 15 20 25 30 2θ / deg. (λ = 0.5 Å) obs. cal. (obs.) - (cal.) Bragg position SPring-8, BL02B J-PARC, BL-21 iMATERIA High-resolution bank (d = ~ 5 Å) 012 002 014 Na 5/6 [Li 1/4 Mn 3/4 ]O 2 P63/mmc SPring-8, BL02B 5 10 15 20 25 30 2θ / deg. (λ = 0.5 Å) obs. cal. (obs.) - (cal.) Bragg position Crystal structures of new layered oxides are resolved by synchrotron XRD and ND, N. Yabuuchi et al., submitted 0 50 100 150 200 0 1 2 3 4 Voltage / V Capacity / mAh g -1 0 50 100 150 200 0 1 2 3 4 Voltage / V Capacity / mAh g -1 0 50 100 150 200 250 0 1 2 3 4 5 1st 2nd 10th 20th Voltage / V vs. Li Capacity / mAh g -1 0 50 100 150 200 250 0 1 2 3 4 5 1st 2nd 10th 20th Voltage / V vs. Na Capacity / mAh g -1 2.0 – 4.8 V 1.5 – 4.4 V 1/5 C 1/2 C 1 C (275 mA g-1) 2 C ~1/28 C (10 mA g-1) 1/10 C ~1/24 C (10 mA g-1) 1/10 C 1/5 C 1/2 C 1 C (236 mA g-1) 2 C Na cell Li cell P2-type Na 5/6 [Li 1/4 Mn 3/4 ]O 2 in the Na cell shows better rate capability compared with the O2-type phase in the Li cell. Facilitated diffusion of Na ions in the P2-type phase with a open two-dimensional path. 5 10 15 20 25 30 112 110 015 013 0 011 004 1/3 1/3 1 008 112 110 016 013 012 011 010 004 1/3 1/3 0 002 2θ / deg. (λ = 0.5Å) Li 0.70 [Li 1/4 Mn 3/4 ]O 2 3 a = 2.8677(2) Å c = 11.039(1) Å P63mc a = 2.8417 Å c = 9.7777 Å ion-exchange in molten salt *The ratio of metals in the product was determined by ICP-AES. Reaction Mechanisms on P2 Reaction Mechanisms on P2-Na Na 2/3 2/3 [Fe [Fe 1/2 1/2 Mn Mn 1/2 1/2 ]O ]O 2 ; ; SXRD and XAS SXRD and XAS Studies on Surface of Phosphorus Electrodes Studies on Surface of Phosphorus Electrodes 4 8 12 16 20 24 2θ / deg. (λ = 0.5 Å) (107) hex (105) hex (1010) hex (110) hex (108) hex (009) hex (104) hex (102) hex (101) hex (006) hex (003) hex (112) (110) (106) (104) (103) (102) (100) (004) (002) S.G. P6 3 /mmc a = 2.933(1) Å c = 11.223(1)Å P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 S.G. R-3m a = 2.958(1) Å c = 16.521(1)Å O3-Na[Fe 1/2 Mn 1/2 ]O 2 a c A B B A A B B A b MeO2 layer NaPri. A B C A B C A B a b c MeO2 layer NaOct. P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 O3-Na[Fe 1/2 Mn 1/2 ]O 2 P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 shows better electrode performance 0 50 100 150 200 0 1 2 3 4 5 0 1 2 3 4 5 2nd 5th 3rd ca. 120 mAh/g Capacity / mAhg -1 ca. 190 mAh/g 5th 2nd Voltage / V P2-Na 2/3 [Fe 1/2 Mn 1/2 ]O 2 O3-Na[Fe 1/2 Mn 1/2 ]O 2 Note; 1st cycle is not shown 1 mol dm -3 NaClO4 in PCFEC=(982) Charged to 4.2V x = 0.12 Clear change Phase transition A B B A C (110) (105) O2-type Phase Transitions on Charge; SXRDSPring-8, BL02B SPring-8, BL02B Crystal Structures and Electrode PerformanceN. Yabuuchi et al., Nature Mat., 11, 512 (2012) S.G. P6 3 /mmc P + 3Na + + 3e - ↔ Na 3 P Na 3 P a b c P 3- Na + Black Phosphorus is reversibly reduced with a three-electron reaction. 20 25 30 35 40 45 50 * * Reduced to 0.38 V Reduced to 0 V Reduced to 0.17 V 2θ θ θ / deg. / deg. / deg. / deg. As-prepared * Al current collector Na 3 P Capacity /mAh g -1 0 500 1000 1500 2000 2500 Potential / (V vs. Na/Na + ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Additive-free + FEC (5%) + VC (1%) Capacity /mAh g-1 0 50 100 150 200 250 Potential / (V vs. Na/Na + ) 0.4 0.6 0.8 1.0 Hard X-ray absorption spectroscopy; HAXPES TOF-SIMS After 1 st cycle -CH2- NaO-C(=O)-O-R Na2CO3 -C(=O)ONa P NaxP (H2PO2)- PR2(OR’) (PO4)3- NaxPFyOz C1s P1s SPring-8, BL46XU Surface AnalysisCharge/Discharge MechanismsRed phosphorus for Na cells; N. Yabuuchi et al., ChemElectroChem, in-press DOI: 10.1002/celc.201300149 Acknowledgements; these studies were in part granted by JSPS through the “Funding for NEXT Program,” and MEXT program "Elements Strategy Initiative to Form Core Research Center" (since 2012). 5 10 15 20 25 As-Prepared Charged to 3.8V (112) (110) (106) (104) (103) (102) (100) (004) (002) 2θ / deg. (λ = 0.5 Å) x = 2/3 (0.67) x = 0.4 C A A C A B A B B A A B B A NaPri. (2/3,1/3,0) (0,0,0) P2 (as-prepared) OP4 (charged) Na + extraction Phase transition from P2 to OP4 phase during charge 5 10 15 20 25 (105)OP4 Observed P2-type OP4-type O2-type (107)OP4 (106)OP4 (103)OP4 2θ / deg. (λ = 0.5 Å) Note: P2-O2 phase transition for Na x [Ni 1/3 Mn 2/3 ]O 2 Z. Lu and J.R. Dahn, J. Electrochem. Soc. 148, A1225A1229 (2001). 6540 6550 6560 6570 Charged to 4.2 V Charged to 3.8 V As-Prepared Normalized Absorbance Energy / eV Mn-K edge Mn 3+ /Mn 4+ Redox below 3.8V Shift of XANES spectra during charge to 3.8 V, but NOT from 3.8 to 4.2 V 7115 7125 7135 7145 As-Prepared Charged to 3.8V Charged to 4.2V Normalized Absorbance Energy / eV 0 2 4 6 5.0 Å-4 4.2 V Charge 3.8 V Charge As-Prepared F.T. Magnitude R / Å Fe-O Fe-Fe(Mn) Fe-K edge EXAFS XANES XANES Change in the XAFS spectra and shortened Fe-O interatomic distance above 3.8 V 1.99 Å for 3.8 V vs. 1.90 Å for 4.2 V 0 50 100 150 1 2 3 4 5 Charge to 4.2 V Charge to 3.8 V As-Prepared Voltage / V Capacity / mAhg -1 Change in Electronic Structures; XASFe 3+ /Fe 4+ Redox at 4 V region. 99.2 99.6 100.0 -10 -5 0 5 10 97 98 99 100 Fe 3+ (s) As-Prepared Fe 3+ (d) Fe 3+ (s) Fe 4+ (d) Fully Charged State Relative Intensity / % Velocity / mm s -1 Mössbauer spectroscopy X-ray absorption spectroscopy (XAS) Photon Factory, BL-7C FEC and VC additives effectively stabilize the sufrace films formed on phosphorus and suppress the continuous decomposition of electrolyte and deposition of decomposed products. + FEC (5%) Inorganic + VC (1%) Organic After 20 th cycle 295 290 285 280 1 vol. % VC 5 vol.% FEC Additive-free As-prepared sp2 C in A.B. hydrocarbon Na2CO3 x 2152 2148 2144 2140 2152 2148 2144 2140 P NaxP (PO4)3- NaxPFyOz FEC and VC additive effectively suppresses the loss of surface chemical species formed on the black Phosphorus, resulting in the good cyclability as electrode materials. 295 290 285 280 1 vol. % VC 5 vol.% FEC Additive-free NaO-R NaO-C(=O)-O-R PR2(O-R’) sp2 C in A.B. hydrocarbon -CH2- NaO-C(=O)-O-R Na2CO3 -C(=O)ONa C1s P1s Capacity /mAh g -1 0 500 1000 1500 2000 2500 Potential / (V vs. Na/Na + ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 st 30 th 20 th 10 th Capacity /mAh g -1 0 500 1000 1500 2000 2500 Potential / (V vs. Na/Na + ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 st 25 th 20 th Capacity /mAh g -1 0 500 1000 1500 2000 2500 Potential / (V vs. Na/Na + ) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 1 st 25 th 20 th EC/DEC/ 1M NaPF 6 + FEC (5%) + VC (1% ) Cycle Performance

Upload: others

Post on 21-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ESCIB LargeFacility Poster2.ppt · Title: Microsoft PowerPoint - ESCIB_LargeFacility_Poster2.ppt [Compatibility Mode] Author: naoaki Created Date: 2/18/2014 5:08:22 PM

4

5

4

5

5

6

5

6

Naoaki Yabuuchi1,2, Kei Kubota1, Mouad Dahbi1, and Shinichi Komaba1,2

1Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Tokyo 162-8601, Japan2Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan

Studies on Electrode Materials for Rechargeable Na Batteries by Synchrotron Radiation

Structural Analysis on P2Structural Analysis on P2--Type NaType Na5/65/6[Li[Li1/41/4MnMn3/43/4]O]O22; X; X--Ray and Neutron Diffraction Ray and Neutron Diffraction

【【【【P2-Type Na5/6[Li1/4Mn3/4]O2 vs. Ion-Exchanged Li0.7[Li1/4Mn3/4]O2 】】】】 Na cell, P2-type Na5/6[Li1/4Mn3/4]O2 Li cell, O2-type Liz[Li1/4Mn3/4]O2

Charging to 4.8 V at 10 mA g-1

Sample Loading; 2.5 mg cm-2Charging to 4.4 V at 10 mA g-1

Sample Loading; 2.1 mg cm-2

【【【【Rietveld/MEM Analysis of P2-type Na5/6[Li1/4Mn3/4]O2】】】】

���� The results are indicative of self-

diffusion of Na ions at different sites.

Na at 2b and 2d sites

0.5 1.0 1.5 2.0 2.5 3.0

017

114

010

011

110

013

012

006

004

d / Å

obs. cal.

S.G. : P63/mmc; a = 2.8711(1) Å, c = 11.028(1) Å

Rwp = 8.12% RB = 5.07% RF = 6.15%

atom site g x y z B (Å2)

Naf 2b 0.320(1) 0 0 1/4 3.7(1)

Nae 2d 0.510(1) 1/3 2/3 3/4 2.3(1)

Li 2a 0.24 0 0 0 0.12(1)

Mn 2a 0.76 0 0 0 0.12(1)

O 4f 1.000(1) 1/3 2/3 0.094(1) 0.56(1)

Large B-values are also supported by ND.

[001]

A

B

B

A

A

B

B

A

Li, Mn

Na

edge-shared

Isosurface level; 0.7 (e-) Å-3

Na layer

[Li1/4Mn3/4] layer

Li-rich(2a site)

Mn-rich (2b sites)

face-shared

site g (Li) g (Mn)

2a 0.478 0.522

2b 0.121 0.879

2b 0.121 0.879

*using space group P63

���� in-plane “anti-site defects” (and / or stacking faults )

6 7 8 92θθθθ / deg. (λλλλ = 0.5 Å)

obs. cal.

The results are indicative of self-diffusion of Na ions at different sites.

2a, 2b (face)6c (edge)

a

b

Na layer with single Na-sites

6c (face)6c (edge)

Na layer with “splitting” Na-sites

P2-Na5/6[Li1/4Mn3/4]O2

S.G. : P63 ; a = 4.9672(3) Å, c = 11.039(1) Å

Rwp = 8.26% RB = 8.28% RF = 6.59%

atom site g x y z B (Å2)

Naf (1) 6c 0.104(1) 0.730(2) 0.397(2) 1/4 0.7

Naf (2) 6c 0.104(1) 0.064(2) 0.064(2) 1/4 0.7

Naf (3) 6c 0.104(1) 0.397(2) 0.730(2) 1/4 0.7

Nae (4) 6c 0.172(1) 0.606(1) 0.606(1) 1/4 0.7

Nae (5) 6c 0.172(1) 0.728(1) 2/3 1/4 0.7

Nae (6) 6c 0.172(1) 2/3 0.728(1) 1/4 0.7

5 10 15 20 25 30

2θθθθ / deg. (λλλλ = 0.5 Å)

obs. cal. (obs.) - (cal.) Bragg positionSPring-8, BL02B J-PARC, BL-21

iMATERIAHigh-resolution bank

(d = ~ 5 Å)

012

002

014

Na5/6[Li1/4Mn3/4]O2

P63/mmc

SPring-8, BL02B

5 10 15 20 25 302θθθθ / deg. (λλλλ = 0.5 Å)

obs. cal. (obs.) - (cal.) Bragg position

Crystal structures of new layered oxides are resolved by synchrotron XRD and ND, N. Yabuuchi et al., submitted

0 50 100 150 2000

1

2

3

4

Voltage / V

Capacity / mAh g-1

0 50 100 150 2000

1

2

3

4

Voltage / V

Capacity / mAh g-1

0 50 100 150 200 2500

1

2

3

4

5

1st 2nd 10th 20th

Voltage / V vs. Li

Capacity / mAh g-1

0 50 100 150 200 2500

1

2

3

4

5

1st 2nd 10th 20th

Voltage / V vs. Na

Capacity / mAh g-1

2.0 – 4.8 V1.5 – 4.4 V

1/5 C1/2 C

1 C (275 mA g-1)

2 C

~1/28 C (10 mA g-1)1/10 C

Sample Loading; 2.1 mg cm

~1/24 C (10 mA g-1)

1/10 C

1/5 C1/2 C

1 C (236 mA g-1)

2 C

Na cell Li cell

P2-type Na5/6[Li1/4Mn3/4]O2 in the Na cell shows better rate capability compared with the O2-type phase in the Li cell.

� Facilitated diffusion of Na ions in the P2-type phase with a open two-dimensional path.

5 10 15 20 25 30

112

110

015

013

012

011

004

1/3 1/3 1

008

112110

016

013

012011

010

004

1/3 1/3 0

002

2θθθθ / deg. (λλλλ = 0.5Å)

Li0.70[Li1/4Mn3/4]O2

P63/mmc

a = 2.8677(2) Åc = 11.039(1) Å

P63mc

a = 2.8417 Åc = 9.7777 Å

ion-exchange

in molten salt

*The ratio of metals in the productwas determined by ICP-AES.

Reaction Mechanisms on P2Reaction Mechanisms on P2--NaNa2/32/3[Fe[Fe1/21/2MnMn1/21/2]O]O22; ; SXRD and XAS SXRD and XAS Studies on Surface of Phosphorus ElectrodesStudies on Surface of Phosphorus Electrodes

4 8 12 16 20 242θ / deg. (λ = 0.5 Å)

(107)

hex

(105) hex

(1010) hex

(110)

hex

(108) hex

(009) hex

(104) hex

(102) hex

(101) hex

(006) hex

(003) hex

(112)

(110)

(106)(104)

(103)(1

02)

(100)

(004)

(002) S.G. P6

3/mmc

a = 2.933(1) Å c = 11.223(1)Å

P2-Na2/3[Fe

1/2Mn

1/2]O

2

S.G. R-3ma = 2.958(1) Å c = 16.521(1)Å

O3-Na[Fe1/2Mn

1/2]O

2

a

c

AB

BA

AB

BA

b

MeO2 layer

NaPri.

AB

CA

BC

AB

ab

c

MeO2 layer

NaOct.

P2-Na2/3[Fe1/2Mn1/2]O2

O3-Na[Fe1/2Mn1/2]O2

P2-Na2/3[Fe1/2Mn1/2]O2 shows better electrode performance

0 50 100 150 2000

1

2

3

4

50

1

2

3

4

5

2nd5th 3rd

ca. 120 mAh/g

Capacity / mAhg-1

ca. 190 mAh/g

5th 2nd

Voltage / V

P2-Na2/3[Fe1/2Mn1/2]O2

O3-Na[Fe1/2Mn1/2]O2

Note; 1st cycle is not shown

1 mol dm-3 NaClO4 in PC:FEC=(98:2)

Charged to 4.2V

x = 0.12Clear change���� Phase transition

AB

BAC

(110)

(105)O2-type

【【【【Phase Transitions on Charge; SXRD】】】】

SPring-8, BL02B

SPring-8, BL02B

【【【【Crystal Structures and Electrode Performance】】】】N. Yabuuchi et al., Nature Mat., 11, 512 (2012)

S.G. P63/mmc

P + 3Na+ + 3e- ↔ Na3P

Na3P ab

c

P3-

Na+

Black Phosphorus is reversibly reduced with a three-electron reaction.

20 25 30 35 40 45 50

*

*

Reduced to 0.38 V

Reduced to 0 V

Reduced to 0.17 V

2222θθθθ / deg. / deg. / deg. / deg.

As-prepared

* Al current collector◆ Na

3P

Capacity /mAh g-1

0 500 1000 1500 2000 2500

Potential / (V vs. Na/Na+)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Additive-free + FEC (5%)+ VC (1%)

Capacity /mAh g-10 50 100 150 200 250

Potential / (V vs. Na/Na+)

0.4

0.6

0.8

1.0

Hard X-ray absorption spectroscopy; HAXPES

TOF-SIMSAfter 1st cycle

-CH2-

NaO-C(=O)-O-R

Na2CO3

-C(=O)ONa P

NaxP

(H2PO2)-

PR2(OR’)(PO4)3-

NaxPFyOz

C1s P1s

SPring-8, BL46XU

【【【【Surface Analysis】】】】

【【【【Charge/Discharge Mechanisms】】】】Red phosphorus for Na cells; N. Yabuuchi et al.,

ChemElectroChem, in-press DOI: 10.1002/celc.201300149

Acknowledgements; these studies were in part granted by JSPS through the “Funding for NEXT Program,”

and MEXT program "Elements Strategy Initiative to Form Core Research Center" (since 2012).

5 10 15 20 25

As-Prepared

Charged to 3.8V

(112)(110)

(106)

(104)

(103)

(102)

(100)

(004)

(002)

2θθθθ / deg. (λλλλ = 0.5 Å)

x = 2/3 (0.67)

x = 0.4

CA

AC

AB

AB

BA

AB

BA

NaPri.

(2/3,1/3,0)

(0,0,0)

P2 (as-prepared)

OP4 (charged)

Na+

extraction

Phase transition from P2 to OP4 phase during charge

5 10 15 20 25

(105)OP4

Observed

P2-type

OP4-type

O2-type

(107)OP4(106)OP4(103)OP4

2θθθθ / deg. (λλλλ = 0.5 Å)

Note: P2-O2 phase transition for Nax[Ni1/3Mn2/3]O2

Z. Lu and J.R. Dahn, J. Electrochem. Soc. 148, A1225A1229 (2001).

6540 6550 6560 6570

Charged to 4.2 V

Charged to 3.8 V

As-Prepared

Norm

alized Absorbance

Energy / eV

Mn-K edge

���� Mn3+/Mn4+ Redox below 3.8V

Shift of XANES spectra during charge to 3.8 V,

but NOT from 3.8 to 4.2 V

7115 7125 7135 7145

As-Prepared

Charged to 3.8V

Charged to 4.2V

Norm

alized Absorbance

Energy / eV

0 2 4 6

5.0 Å-4

4.2 V Charge

3.8 V Charge

As-Prepared

F.T. Magnitude

R / Å

Fe-O Fe-Fe(Mn)

Fe-K edge

EXAFS

XANES

XANES

Change in the XAFS spectra and shortened Fe-O

interatomic distance above 3.8 V

1.99 Å for 3.8 V vs. 1.90 Å for 4.2 V

0 50 100 1501

2

3

4

5

Charge to 4.2 V

Charge to 3.8 V

As-Prepared

Voltage / V

Capacity / mAhg-1

【【【【Change in Electronic Structures; XAS】】】】

Fe3+/Fe4+ Redox at 4 V region.

99.2

99.6

100.0

-10 -5 0 5 10

97

98

99

100

Fe3+(s)

As-Prepared

Fe3+(d)

Fe3+(s)Fe

4+(d)

Fully Charged State

Relative Intensity / %

Velocity / mm s-1

Mössbauer spectroscopyX-ray absorption spectroscopy (XAS)

Photon Factory, BL-7C FEC and VC additives effectively stabilize the sufrace films formed on phosphorus and suppress

the continuous decomposition of electrolyte and deposition of decomposed products.

+ FEC (5%)

Inorganic

+ VC (1%)

Organic

After 20th cycle295 290 285 280

1 vol. % VC

5 vol.% FEC

Additive-free

As-prepared

sp2 C in A.B.hydrocarbon

Na2CO3NaxP

2152 2148 2144 2140

2152 2148 2144 2140

P

NaxP

(PO4)3-NaxPFyOz

FEC and VC additive effectively suppresses the loss of surface chemical species formed on the

black Phosphorus, resulting in the good cyclability as electrode materials.

295 290 285 280

1 vol. % VC

5 vol.% FEC

Additive-free

NaO-R

NaO-C(=O)-O-R

PR2(O-R’)

sp2 C in A.B.hydrocarbon

-CH2-

NaO-C(=O)-O-R

Na2CO3

-C(=O)ONa

C1sP1s

Capacity /mAh g-1

0 500 1000 1500 2000 2500

Potential / (V vs. N

a/Na+)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1st30th 20th10th

Capacity /mAh g-1

0 500 1000 1500 2000 2500

Potential / (V vs. N

a/Na+)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1st

25th20th

Capacity /mAh g-1

0 500 1000 1500 2000 2500

Potential / (V vs. N

a/Na+)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1st

25th20th

EC/DEC/ 1M NaPF6 + FEC (5%) + VC (1% )

【【【【Cycle Performance】】】】