esperon(1( emma(esperon( april(17,(2012( · 2018. 9. 9. ·...

10
Esperon 1 Emma Esperon April 17, 2012 Jackie Esposito L ST 490 The Dark Side of Iron Gall Ink: Corrosion and Conservation Imagine a world where the drafts of the American Constitution, Leonardo da Vinci’s notebooks, and ink drawings done by Rembrandt and Van Gogh are piles of corroded confetti. This would be the reality for many documents written with iron gall ink without present day preservation and conservation efforts. When evaluating a piece, a conservator must decide whether to perform no action, preventative conservation, chemical conservation, or physical mending (Pedersoli). Each of these decisions can be called upon for different scenarios just as they are all associated with different side effects. Throughout the process of assessing potential and current damage, conservators offer varying opinions and preferences about the “correct” way to restore a corroded record. Thus, the controversy of iron gall inks lies in how to preserve these tender documents through aqueous, nonaqueous, or abstinence from treatments. Popular from the Middle Ages to the creation of synthetic inks in the 1900s, iron gall ink is one of the more prevalent inks found in archives today. Iron gall ink gets its name from the ingredients it is comprised of: tannin (from galls on trees), vitriol (iron sulfate), gum Arabic (the binding agent), and water. Making preservation more complicated for librarians, there are hundreds of recipes with varying ingredients. Plus, iron gall ink cannot simply be identified by its color. The iron in the ink rusts, changing the color and opacity of the ink when documents are exposed to a moist environment. Transitioning

Upload: others

Post on 06-Nov-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   1  

Emma  Esperon  

April  17,  2012  

Jackie  Esposito  

L  ST  490  

The  Dark  Side  of  Iron  Gall  Ink:  Corrosion  and  Conservation  

  Imagine  a  world  where  the  drafts  of  the  American  Constitution,  Leonardo  da  Vinci’s  

notebooks,  and  ink  drawings  done  by  Rembrandt  and  Van  Gogh  are  piles  of  corroded  

confetti.    This  would  be  the  reality  for  many  documents  written  with  iron  gall  ink  without  

present  day  preservation  and  conservation  efforts.    When  evaluating  a  piece,  a  conservator  

must  decide  whether  to  perform  no  action,  preventative  conservation,  chemical  

conservation,  or  physical  mending  (Pedersoli).    Each  of  these  decisions  can  be  called  upon  

for  different  scenarios  just  as  they  are  all  associated  with  different  side  effects.    Throughout  

the  process  of  assessing  potential  and  current  damage,  conservators  offer  varying  opinions  

and  preferences  about  the  “correct”  way  to  restore  a  corroded  record.  Thus,  the  

controversy  of  iron  gall  inks  lies  in  how  to  preserve  these  tender  documents  through  

aqueous,  non-­‐aqueous,  or  abstinence  from  treatments.  

  Popular  from  the  Middle  Ages  to  the  creation  of  synthetic  inks  in  the  1900s,  iron  gall  

ink  is  one  of  the  more  prevalent  inks  found  in  archives  today.  Iron  gall  ink  gets  its  name  

from  the  ingredients  it  is  comprised  of:  tannin  (from  galls  on  trees),  vitriol  (iron  sulfate),  

gum  Arabic  (the  binding  agent),  and  water.    Making  preservation  more  complicated  for  

librarians,  there  are  hundreds  of  recipes  with  varying  ingredients.    Plus,  iron  gall  ink  

cannot  simply  be  identified  by  its  color.  The  iron  in  the  ink  rusts,  changing  the  color  and  

opacity  of  the  ink  when  documents  are  exposed  to  a  moist  environment.    Transitioning  

Page 2: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   2  

from  a  deep  black  to  a  dark  brown  to  a  light  yellow,  with  an  array  of  shades  in  between,  

iron  gall  ink  can  range  from  appearing  like  its  blacker  predecessor,  carbon  ink,  to  lighter  

non  iron  mixes.    Carbon  ink  is  often  confused  with  its  successor  since  the  high  carbon  

content  level  of  around  80%  generally  causes  the  carbon  ink  to  appear  very  black  like  fresh  

iron  gall  ink  (Banik).    Since  inks  can  be  easily  confused  during  visual  assessments,  

conservationists  test  the  ink  for  iron  content,  while  still  wary  of  false  positives  from  inks  

that  were  contaminated  with  iron  during  the  manufacturing  process.  These  components  

create  hardy,  generally  non  water-­‐soluble  ink  with  high  acidity  and  iron  levels  that  can  

corrode  documents  over  time.  

  Once  the  iron  gall  ink  is  confirmed  through  testing,  a  visual  assessment  can  be  made  

on  the  direness  of  the  preservation.    When  assessing  a  document  it  is  important  to  notate  

the  original,  pretreatment  description  of  the  piece  and  judge  based  on  these  characteristics  

if  treatment  will  positively  impact  and  preserve  the  document.    Iron  gall  ink  corrodes  

records  on  multiple  levels.    Vitriol  was  often  overly  used  in  the  creation  of  iron  gall  ink  

leading  of  an  excess  of  iron  sulfate.    The  sulfate  generates  acidic  compounds  that  must  be  

neutralized  by  an  alkaline  buffer  system  and  then  the  remaining  iron  ions  must  also  be  

expelled  to  prevent  rust  (Banik).    In  some  instances  documents  have  specific  risk  indicators  

that  imply  whether  a  document  should  receive  a  specific  type  of  treatment  or  not.    Thus,  a  

conservator  must  determine  the  net  gain—if  a  treatment  would  destabilize  the  piece  

further  or  preserve  it  better.  

  One  risk  factor  is  the  depth  and  surface  area  of  the  ink  on  the  page.    Iron  gall  ink  is  

both  acidic  and  prone  to  rusting  in  moist  environments  (Banik).    These  qualities  cause  the  

ink  to  crack  while  the  remainder  of  the  paper  can  remain  sound.    If  the  document  is  a  

Page 3: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   3  

drawing  or  has  areas  with  large  brush  marks  or  insignias,  this  represents  a  high-­‐risk  

section  where  numerous  cracks  can  form,  connect,  and  leave  a  hole  in  the  page.    When  

pages  are  particularly  damaged  in  this  fashion,  sometimes  a  researcher  can  “read”  the  holes  

in  the  document  based  on  where  the  ink  used  to  be.    The  ink  strokes  can  also  be  heavy  

applied,  saturating  the  page  instead  of  layering  a  thin  deposit  on  the  top  layer  of  the  

document.    So  when  the  ink  cracks  it  cuts  through  the  entire  page  and  not  just  the  surface  

layer  of  ink.    The  image  below  demonstrates  the  cracking  of  ink  over  time  and  the  

importance  of  preserving  records  before  the  fissures  prove  detrimental  to  the  stability  of  

the  entire  piece.      

(Banik)  

  Another  common  ailment  that  documents  suffer  from  is  “bleeding”.    If  a  document  

gets  wet,  water  damaged,  or  even  in  a  humid  environment,  excess  iron  particles  can  travel  

through  the  moisture  and  seep  into  areas  of  the  document  immediately  surrounding  the  

text.    This  causes  a  discoloration  around  the  words  making  it  appear  hazy  or  shadowed.    

Furthermore,  ink  tends  to  bleed  through  the  paper  in  sections  of  the  document  that  have  

water  damage.    This  shows  that  the  ink  may  still  be  water-­‐soluble  and  thus  aqueous  baths  

should  not  be  implemented  to  stave  off  corrosion.    However,  if  a  document  does  not  have  

severe  water  damage  or  water-­‐soluble  ink,  an  aqueous  bath  could  remove  the  particles  that  

Page 4: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   4  

contribute  to  the  ink  corrosion,  deacidify  the  document,  or  simultaneously  chelate  and  

deacidify  the  record  depending  on  the  solution  implemented.      

  During  the  washing  process,  a  document  with  iron  gall  ink  is  soaked  into  a  water  

bath  for  a  designated  amount  of  time  and  temperature.    During  this  process  the  acidic  

partials  and  some  iron(II)  ions  are  dissolved  in  the  water  and  removed  from  the  document.      

This  will  elongate  the  life  of  the  document;  however,  it  will  not  prevent  the  remaining  

particles  to  decay  the  record  in  the  future  (Reißland  125).    While  distilled  water  is  

primarily  used  in  this  capacity,  sometimes  conservators  utilize  tap  water  so  that  the  

calcium  and  magnesium  salts  in  the  water  bond  with  the  iron(II)  ions.    The  process  of  

“paper  simmering”  or  boiling  the  documents  in  90°-­‐95°C  water  for  15-­‐20  minutes  was  

common  practice  for  approximately  30  years  (Tse  14).      This  process  removes  50-­‐100%  of  

the  iron(II)  ions  and  most  of  the  acids,  making  the    page  appear  to  be  whiter  (Banik).    Yet,  

there  can  still  be  catastrophic  side  effects.  

Considering  that  most  documents  are  made  out  of  fragile  paper,  boiling  the  records  

does  not  sound  like  an  intelligent  plan.    There  are  negative  consequences  of  simmering  

pieces  such  as  the  paper  has  a  tendency  to  shrink  in  such  high  temperatures,  especially  

when  it  has  a  cotton  base  (Banik).    Also  the  water  bath  is  dislodging  ions  and  particles  

without  any  direction  of  where  these  particles  should  go.    While  many  remain  in  the  water  

bath  after  the  document  is  removed,  some  particles  are  reabsorbed  into  the  paper  causing  

bleeding  (Reißland).    Thus  the  particles  seep  into  the  document  around  the  text,  which  may  

not  be  immediately  evident  but  can  still  mar  the  page  overtime.    Reißland  and  de  Goot,  

esteemed  conservators  from  the  Netherlands,  claim  that  the  paper  washing  was  the  “least  

effective  in  delaying  ink  corrosion  …  using  distilled  water,  even  if  the  water  temperature  

Page 5: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   5  

was  adjusted  at  90°C”  (128).    While  these  side  effects  are  not  a  new  discovery,  other  

practices  such  as  the  calcium  phytate  treatment  were  not  widely  endorsed  until  after  2001  

(Tse  14).    This  means  that  documents  like  the  National  Archives  and  Library  of  Canada’s  

McKay  Sketchbook  were  treated  with  less  effective  conservation  methods  and  may  require  

follow  up  attention  in  the  future.  

Another  treatment  option  to  protect  against  corroding  iron  gall  ink  is  through  

deacidification.    In  an  aqueous  solution  this  process  introduces  a  chemical  (usually  

Magnesium  carbonate,  Calcium  bicarbonate,  or  Magnesium  bicarbonate)  that  is  very  basic  

(numerically  high  pH)  in  order  to  neutralize  the  acidity  in  the  ink  and  prevent  future  acid  

hydrolysis  (Banik).    While  this  does  protect  the  paper  and  preserve  the  ink  for  some  time,  

this  procedure  does  not  totally  negate  the  threats  of  iron  gall  ink.    The  second  part  of  the  

problem  with  this  type  of  ink  is  that  it  also  oxidizes,  essentially  rusting.    The  alkaline  

compounds  do  little  to  prevent  the  oxidation  and  only  temporarily  convert  the  iron(II)  ions  

into  iron(III)  ions  by  oxidizing  them  in  a  highly  basic  setting,  opposed  to  the  previously  

acidic  setting  (Reißland  125).    Thus  the  short  lived  iron(III)  ions  are  not  catalysts  for  

oxidation  like  their  counterparts  and  their  transformation  earn  the  document  a  momentary  

respite  from  the  iron(II)  ions  and  acid.    A  byproduct  of  this  seemingly  effective  process  is  

that  the  paper  initially  appears  significantly  whiter  and  then  rapidly  yellows,  especially  if  

the  wash  contains  magnesium,  as  shown  in  the  following  figure  (127-­‐128).    Furthermore,  

the  addition  of  these  aqueous  compounds  sometimes  causes  the  ink  to  fade,  bleed,  or  wash  

out  (Banik).    These  results  are  so  variable  because  there  is  not  one  established  way  to  make  

iron  gall  ink,  instead  there  are  a  myriad  of  recipes  dating  back  well  before  the  historically  

consulted  1596  A  Booke  of  Secrets.      

Page 6: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   6  

 (Reißland  128)  

In  addition  to  the  water-­‐based  procedure,  there  is  also  a  non-­‐aqueous  treatment  

that  is  implemented  when  the  iron  gall  ink  is  especially  water  soluble  due  to  its  unique  set  

of  ingredients.    However,  this  treatment  similarly  deals  with  the  acids  and  not  the  iron.    An  

alkaline  compound  is  evenly  sprayed  over  the  pages  of  the  document  where  it  reacts  with  

the  moisture  that  is  already  present  within  the  record.    Two  of  the  most  common  alkaline  

compounds  include:  magnesium  oxide,  commonly  called  “Bookkeeper”,  and  

methylmagnesium  carbonate  (Morenus  119).    However,  the  non-­‐aqueous  procedure  is  

based  predominantly  on  surface  area,  thus  it  doesn’t  have  the  penetration  ability  of  an  

aqueous  wash  to  access  the  depths  of  the  ink  (Banik).    A  study  done  by  Dr.  Chandru  

Shahani  and  Frank  Hengemihle  determined  that  an  aqueous  bath  was  more  effective  than  

eleven  times  the  quantity  of  alkaline  compound  in  a  non-­‐aqueous  treatment  (Morenus  

123).    Thus,  if  a  document’s  ink  is  not  soluble,  a  water-­‐based  process  is  preferred,  despite  

the  looming  conflicts  of  bleeding  and  yellowing  associated  with  the  aqueous  process.  

  Lastly,  the  calcium  phytate  treatment  is  a  favorite  of  conservators.    This  compound  

acts  as  a  chelating  agent,  binding  with  iron(II)  and  iron(III)  ions.    Since  the  iron  takes  the  

place  of  the  calcium  in  the  calcium  phytate  the  iron  ions  are  no  longer  free.    Thus,  the  iron  

Page 7: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   7  

ions  cannot  increase  the  rate  of  the  oxidation  process;  the  ink  virtually  ceases  to  rust  

(Reißland  125).    The  calcium  phytate  also  works  in  conjunction  with  the  deacidification  

processes.    After  a  record  is  rid  of  the  spare  iron  ions,  it  can  be  washed  with  an  aqueous  

calcium  bicarbonate  treatment.    This  alkaline  neutralizes  the  remaining  acids  in  the  

document  and  stops  the  acid  hydrolysis  without  the  extreme  yellowing  caused  by  

magnesium  deacidifiers.    This  combination  of  plans  manages  to  treat  both  the  acidic  and  

corrosive  natures  of  the  iron  gal  ink.    As  the  chart  below  demonstrates  and  Reißland  agrees  

stating,  “calcium  phytate/calcium  bicarbonate  is  the  most  effective  treatment  to  delay  ink  

corrosion”  (125).    While  this  may  seem  like  the  dream  combination  it  is  not  without  faults  

as  a  quantity  of  white  powder  can  precipitate  on  top  of  the  document  after  the  

deacidification  process.    This  powder  is  result  of  the  reactions  with  the  sulphuric  acid  and  

calcium  ions.    These  can  be  easily  brushed  off  without  harming  the  ink  or  the  paper.    

Overall  calcium  phytate  and  calcium  bicarbonate  appears  to  be  the  most  effective  paper  

conservation  technique  for  iron  gall  ink.    

(  Reißland  125)  

Page 8: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   8  

 

While  calcium  phytate  is  the  best  conservation  tool,  a  better  option  is  to  preserve  a  

document  so  well  based  on  environmental  and  handling  controls  that  no  conservation  

efforts  are  needed  to  rescue  a  record  from  the  corrosive,  iron  gall  ink.      After  a  record  

undergoes  any  treatment  to  increase  its  durability  and  life  length,  the  basic  chemical  

structures  of  the  document  and  ink  undergoes  a  fundamental  change.    Even  when  a  record  

has  a  water  bath  without  any  chemical  additives,  the  structure  of  the  paper  seems  to  melt  

together  because  of  the  heat,  as  shown  in  the  following  figure:  

(Tse  20)  

This  principle  also  holds  true  for  aqueous  and  non-­‐aqueous  treatments.    As  alkaline  

compounds  neutralize  the  low  pH,  the  original  composition  of  the  physical  document  and  

ink  is  irreparably  lost.    This  has  a  huge  impact  on  the  library  and  museum  worlds  since  

chemically  preserved  documents  and  records  can  no  longer  be  identified  by  their  

composition.    In  its  altered  form,  the  record  cannot  be  verified  to  prove  the  document’s  

history:  dating,  provenance,  authorship,  etc.    This  is  especially  relevant  when  rare,  famous,  

and  expensive  records  are  being  considered  for  conservation  work.    There  are  also  other  

Page 9: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   9  

situations  when  a  conservator  would  not  want  to  change  the  construction  of  the  document.    

If  a  record  still  had  some  of  the  original  blotting  paper  or  sand  left  stuck  to  the  ink,  then  it  

has  a  special  historical  worth  that  must  not  be  overlooked.    Overall  using  chemicals  to  

preserve  the  appearance  and  context  of  a  document  may  be  inappropriate  if  it  sacrifices  the  

character  and  historical  value  of  the  piece.    

  Conservators  spend  a  lot  of  time  and  effort  getting  it  right  the  first  time,  testing  

before  they  treat  because  there  is  no  undo  button  in  the  real  world.    This  is  why  it  is  vital  

that  the  proper  conservation  methods  are  used  first.    In  this  case  the  best  options  are  to  

preserve  records  with  iron  gall  ink  in  cool,  low  moisture  storage  facilities  or  treat  them  

with  calcium  phytate  and  calcium  bicarbonate.    With  this  combination  of  chemical  

processes,  records  are  proven  to  have  a  longer  lifetime  without  being  marred  by  many  

common  side  effects  such  as  bleeding,  fading,  cracking,  and  other  blemishes  caused  by  

oxidizing  iron  or  acid  hydrolysis.    While  the  decision  ultimately  falls  on  the  conservator  and  

his  or  her  experience  to  determine  which  conservation  technique  will  best  preserve  the  

record,  the  best  chemical  conservation  technique  offered  today  effectively  terminates  the  

corrosion  of  iron  gall  ink.    

Page 10: Esperon(1( Emma(Esperon( April(17,(2012( · 2018. 9. 9. · Esperon(3(drawing(or(has(areas(with(large(brush(marks(or(insignias,(this(represents(a(highTrisk(section(where(numerous(cracks(can(form,(connect,(and(leave(a(hole(in

Esperon   10  

Bibliography  

Banik,  Gerhard,  et  al.  The  Iron  Gall  Ink  Website.  Ed.  Birgit  Reissland  and  Frank  Ligterink.  

  European  Commission  on  Preservation  and  Access,  Bureau  Metamorfoze,  the  

  Cultural  Heritage  Agency  of  the  Netherlands,  13  Feb.  2011.  Web.  16  Apr.  2012.  

  <http://ink-­‐corrosion.org/>.    

Morenus,  Linda  Stiber.  “In  Search  of  a  Remedy:  History  of  Treating  Iron-­‐Gall  Ink  at  the    

Library  of  Congress.”  The  Book  and  Paper  Group  Annual  22  (2003):  119-­‐125.  Web.  

16  Apr.  2012  PDF  File.  <  http://cool.conservation-­‐

us.org/coolaic/sg/bpg/annual/v22/bp22-­‐23.pdf>.  

Pedersoli,  Jose  Luiz,  Jr.,  and  Birgit  Reißland.  "Risk  Assessment."  N.d.  PDF  File.    

<www.viks.sk/chk/res_4_03_205_226.doc>.  

Reißland,  Birgit,  and  Suzan  De  Goot.  "Ink  Corrosion:  Comparison  of  Currently  Used  

  Aqueous  Treatments  for  Paper  Objects."  N.d.  PDF  file.    <cool.conservation-­‐

  us.org/iada/ta99_121.pdf>.  

Tse,  Season,  et  al.  "The  Effect  of  Simmering  on  the  Chemical  and  Mechanical  Properties  of  

Paper."  Restaurator  and  Canadian  Conservation  Institute  Newsletter  36  (Fall  2005):  

14-­‐35.  Germany.  Web.  16  Apr.  2012  PDF  file.  

<http://www.viks.sk/chk/res_1_05_14_35.doc>.