essential statistics in biology: getting the numbers right

57
Essential Statistics in Biology: Getting the Numbers Right Raphael Gottardo Clinical Research Institute of Montreal (IRCM) [email protected] http://www.rglab.org

Upload: sue

Post on 31-Jan-2016

48 views

Category:

Documents


0 download

DESCRIPTION

Essential Statistics in Biology: Getting the Numbers Right. Raphael Gottardo Clinical Research Institute of Montreal (IRCM) [email protected] http://www.rglab.org. Outline. Exploratory Data Analysis 1-2 sample t -tests, multiple testing Clustering SVD/PCA - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Essential Statistics in Biology: Getting the Numbers Right

Essential Statistics in

Biology: Getting the Numbers

Right

Raphael GottardoClinical Research Institute of Montreal (IRCM)

[email protected]://www.rglab.org

Page 2: Essential Statistics in Biology: Getting the Numbers Right

Day 1 2

Outline

•Exploratory Data Analysis

•1-2 sample t-tests, multiple testing

•Clustering

•SVD/PCA

•Frequentists vs. Bayesians

Page 3: Essential Statistics in Biology: Getting the Numbers Right

PCA and SVD(Multivariate

analysis)

Page 4: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 4

Outline

•What is SVD? Mathematical definition

•Relation to Principal Component Analysis (PCA)

•Applications of PCA and SVD

•Illustration with gene expression data

Page 5: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 5

SVDLet X be a matrix of size mxn (m≥n) and rank r≤nthen we can decompose X as

XXVVSS

UU= x x T

m

n

m n

n n n

n

- U is the matrix of left singular vectors- V is the matrix of right singular vectors- S is a diagonal matrix who’s diagonal are the singular values

Page 6: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 6

SVDLet X be a matrix of size mxn (m≥n) and rank r≤nthen we can decompose X as

XXVVSS

UU= x x T

m

n

m n

n n n

n

Page 7: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 7

SVDLet X be a matrix of size mxn (m≥n) and rank r≤nthen we can decompose X as

XXVVSS

UU= x x T

m

n

m n

n n n

n

DirectionAmplitude

Page 8: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 8

Relation to PCA

Assume that the rows of X are centered then is (up to a constant) the empirical covariance matrix and SVD is equivalent to PCA

The rows of V are the singular vectors or principal components

New variabl

esVarianc

e

Gene expression: Eigengenes or eigenassays

Page 9: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 9

Applications of SVD and PCA•Dimension reduction (simplify a dataset)

•Clustering

•Discriminant analysis

•Exploratory data analysis tool

•Find the most important signal in data

•2D projections

Page 10: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 10

Toy examples=(13.47,1.45)set.seed(100)

x1<-rnorm(100,0,1)y1<-rnorm(100,1,1)

var0.5<-matrix(c(1,-.5,-.5,.1),2,2)

data1<-t(var0.5%*%t(cbind(x1,y1)))

set.seed(100)x2<-rnorm(100,2,1)y2<-rnorm(100,2,1)

var0.5<-matrix(c(1,.5,.5,1),2,2)

data2<-t(var0.5%*%t(cbind(x2,y2)))

data<-rbind(data1,data2)

svd1<-svd(data1)plot(data1,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6))abline(coef=c(0,svd1$v[2,1]/svd1$v[1,1]),col=2)abline(coef=c(0,svd1$v[2,2]/svd1$v[1,2]),col=3)

Page 11: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 11

Toy examples=(47.79,13.25)svd2<-svd(data2)

plot(data2,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6))abline(coef=c(0,svd2$v[2,1]/svd2$v[1,1]),col=2)abline(coef=c(0,svd2$v[2,2]/svd2$v[1,2]),col=3)

svd<-svd(data)

plot(data,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6))abline(coef=c(0,svd$v[2,1]/svd$v[1,1]),col=2)abline(coef=c(0,svd$v[2,2]/svd$v[1,2]),col=3)

Page 12: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 12

Toy example### Projectiondata.proj<-svd$u%*%diag(svd$d)svd.proj<-svd(data.proj)

plot(data.proj,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6))abline(coef=c(0,svd.proj$v[2,1]/svd.proj$v[1,1]),col=2)### svd.proj$v[1,2]=0abline(v=0,col=3)

Page 13: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 13

Toy examples=(47.17,11.88)

Newcoordina

tes

Projecteddata

Page 14: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 14

Toy example### New data

set.seed(100)x1<-rnorm(100,-1,1)y1<-rnorm(100,1,1)

var0.5<-matrix(c(1,-.5,-.5,1),2,2)

data1<-t(var0.5%*%t(cbind(x1,y1)))

set.seed(100)x2<-rnorm(100,1,1)y2<-rnorm(100,1,1)

var0.5<-matrix(c(1,.5,.5,1),2,2)

data2<-t(var0.5%*%t(cbind(x2,y2)))

data<-rbind(data1,data2)

svd1<-svd(data1)plot(data1,xlab="x",ylab="y",xlim=c(-

6,6),ylim=c(-6,6))

abline(coef=c(0,svd1$v[2,1]/svd1$v[1,1]),col=2)

abline(coef=c(0,svd1$v[2,2]/svd1$v[1,2]),col=3)

svd2<-svd(data2)plot(data2,xlab="x",ylab="y",xlim=c(-

6,6),ylim=c(-6,6))

abline(coef=c(0,svd2$v[2,1]/svd2$v[1,1]),col=2)

abline(coef=c(0,svd2$v[2,2]/svd2$v[1,2]),col=3)

svd<-svd(data)

plot(data,xlab="x",ylab="y",xlim=c(-6,6),ylim=c(-6,6))

abline(coef=c(0,svd$v[2,1]/svd$v[1,1]),col=2)

abline(coef=c(0,svd$v[2,2]/svd$v[1,2]),col=3)

Page 15: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 15

Toy examples=(26.48,24.98)

Page 16: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 16

Application to microarrays•Dimension reduction (simplify a dataset)

•Clustering (two many samples)

•Discriminant analysis (find a group of genes)

•Exploratory data analysis tool

•Find the most important signal in data

•2D projections (clusters?)

Page 17: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 17

Application to microarrays

Cho cell cycle data set384 genes

We have standardized the datacho.data<-as.matrix(read.table("logcho_237_4class.txt",skip=1)[,3:19])

cho.mean<-apply(cho.data,1,"mean")cho.sd<-apply(cho.data,1,"sd")cho.data.std<-(cho.data-cho.mean)/cho.sd

svd.cho<-svd(cho.data.std)### Contribution of each PCbarplot(svd.cho$d/sum(svd.cho$d),col=heat.colors(17))### First three singular vectors (PCA)plot(svd.cho$v[,1],xlab="time",ylab="Expression profile",type="b")plot(svd.cho$v[,2],xlab="time",ylab="Expression profile",type="b")plot(svd.cho$v[,3],xlab="time",ylab="Expression profile",type="b")

### Projectionplot(svd.cho$u[,1]*svd.cho$d[1],svd.cho$u[,2]*svd.cho$d[2],xlab="PCA 1 ",ylab="PCA 2")plot(svd.cho$u[,1]*svd.cho$d[1],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 1 ",ylab="PCA 3")plot(svd.cho$u[,2]*svd.cho$d[2],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 2 ",ylab="PCA 3")

### Select a clusterind<-(svd.cho$u[,2]*svd.cho$d[2])^2+(svd.cho$u[,3]*svd.cho$d[3])^2>5 & svd.cho$u[,2]*svd.cho$d[2]>0 & svd.cho$u[,3]*svd.cho$d[3]<0

plot(svd.cho$u[,2]*svd.cho$d[2],svd.cho$u[,3]*svd.cho$d[3],xlab="PCA 2 ",ylab="PCA 3")points(svd.cho$u[ind,2]*svd.cho$d[2],svd.cho$u[ind,3]*svd.cho$d[3],col=2)

matplot(t(cho.data.std[ind,]),xlab="time",ylab="Expression profiles",type="l")

Page 18: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 18

Application to microarrays

Singular values

Relativecontribution

Why?

Main contribution

Page 19: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 19

Application to microarraysPC1

Page 20: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 20

Application to microarraysPC2

Page 21: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 21

Application to microarraysPC3

Page 22: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 22

Application to microarraysProjection

onto PC1 PC2

Page 23: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 23

Application to microarraysProjection

onto PC1 PC3

Page 24: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 24

Application to microarraysProjection

onto PC2 PC3

Page 25: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 25

Application to microarraysProjection

onto PC2 PC3

24 genes

Page 26: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 26

Application to microarraysProjection

onto PC2 PC3

24 genes

Page 27: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 4 27

Conclusion

•SVD is a powerful tool

•Can be very useful in gene expression data

•SVD of genes (eigen-genes)

•SVD of samples (eigen-assays)

•Mostly an EDA tool

Page 28: Essential Statistics in Biology: Getting the Numbers Right

Overview of Statistics

inference: Bayes vs. Frequentists

(If time permits)

Page 29: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 29

Introduction

•Parametric statistical model

•Observation are drawn from a probability distribution where is the parameter vectorLikelihood function →

(Inverted density)

Page 30: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 30

Introduction

•Parametric statistical model

•Observation are drawn from a probability distribution where is the parameter vectorLikelihood function →

(Inverted density)

Page 31: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 31

Introduction

Normal distributionProbability distribution for one observation is

If independence

Page 32: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 32

Introduction15 observations

N(1,1)

Page 33: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 33

Introduction15 observations

N(1,1)

True probability distribution

Page 34: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 34

Inference

•The parameters are unknown

•“Learn” something about the parameter vector θ from the data

•Make inference about θ

‣ Estimate θ

‣ Confidence region

‣ Test an hypothesis (θ=0)

Page 35: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 35

The frequentist approach

•The parameters are fixed but unknown

•Inference is based on the relative frequency of occurrence when repeating the experiment

•For example, one can look at the variance of an estimator to evaluate its efficiency

Page 36: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 36

The Normal Example: Estimation

Normal distribution

is the mean and is the variance

(Sample mean and sample variance)

Numerical example, 15 obs. from N(1,1)

Use the theory of repeated samples to evaluatethe estimators.

Page 37: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 37

The Normal Example: EstimationIn our toy example, the data are normal, and we can derive the sampling distribution of the estimators.For example we know that is normal with mean and variance . The standard deviation of an estimator is called the standard error. What if we can’t derive the sampling distribution?Use the bootstrap!

Page 38: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 38

The Bootstrap- Basic idea is to resample the data we have observed and compute a new value of the statistic/estimator for each resampled data set.- Then one can assess the estimator by looking at the empirical distribution across the resampled data sets.

set.seed(100)x<-rnorm(15)mu.hat<-mean(x)sigma.hat<-sd(x)B<-100mu.hatNew<-rep(0,B)for(i in 1:B){ x.new<-sample(x,replace=TRUE) mu.hatNew[i]<-mean(x.new)}se<-sd(mu.hatNew)set.seed(100)x<-rnorm(15)mu.hat<-mean(x)sigma.hat<-sd(x)B<-100mu.hatNew<-rep(0,B)for(i in 1:B){ x.new<-sample(x,replace=TRUE) mu.hatNew[i]<-median(x.new)}se<-sd(mu.hatNew)

Page 39: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 39

The Normal Example: CIConfidence interval for

the mean :

depends on n but when n is large

and usuallywhere

Numerical example, 15 obs. from N(1,1)

What does this mean?set.seed(100)x<-rnorm(15)t.test(x,mean=0)

> set.seed(100)> x<-rnorm(15)> t.test(x,mean=0)

One Sample t-test

data: x t = 0.3487, df = 14, p-value = 0.7325alternative hypothesis: true mean is not equal to 0 95 percent confidence interval: -0.2294725 0.3185625 sample estimates:mean of x 0.044545

Page 40: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 40

The Normal Example:Testing

Test an hypothesis about the mean:

t-test

If , t follows a t-distribution with n-1 degrees of freedom

p-value

Page 41: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 41

The Bayesian Approach

•Parametric statistical model

•Observation are drawn from a probability distribution where is the parameter vector

● The parameters are unknown but random● The uncertainty on the vector parameter is model through a prior distribution

Page 42: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 42

The Bayesian Approach

A Bayesian statistical model is made of

1. A parametric statistical model

2. A prior distribution

Q: How can we combine the two?A: Bayes Theorem!

Page 43: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 43

The Bayesian ApproachBayes theorem ↔ Inversion of probability

If A and E are events such that P(E)≠0 and P(A)≠0 then P(A|E) and P(E|A) are related by

Page 44: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 44

The Bayesian ApproachFrom prior to posterior:

Information on Information on θθ contained in the contained in the observation observation yy

Prior informationPrior information

Normalizing constant

Page 45: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 45

The Bayesian ApproachSequential nature of Bayes’ theorem:

The posterior is the new prior!

Page 46: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 46

The Bayesian Approach

•Actualization of the information about θ by extracting the information about θ from the data

• Condition upon the observations (Likelihood principle)

•Avoids averaging over the unobserved values of y

•Provide a complete unified inferential scope

Justifications:

Page 47: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 47

The Bayesian Approach

•Calculation of the normalizing constant can be difficult

•Conjugate priors (exact calculation is possible)

•Markov chain Monte Carlo

Practical aspect:

Page 48: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 48

The Bayesian Approach

Conjugate priors:

Example:

and

+ →

Normal mean, one observation

Page 49: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 49

The Bayesian Approach

Conjugate priors:

Example:

and

+ →

Normal mean, n observations

Shrinkage

Page 50: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 50

Introduction15 observations

N(1,1)Standardized

likelihood

Page 51: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 51

Introduction15 observations

N(1,1)Standardized

likelihood

Prior

Page 52: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 52

Introduction15 observations

N(1,1)Standardized

likelihood

Prior

Posterior

Page 53: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 53

Introduction15 observations

N(1,1)Standardized

likelihood

Prior

Page 54: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 54

Introduction15 observations

N(1,1)Standardized

likelihood

Prior

Posterior

Page 55: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 55

The Bayesian Approach

•Many!

•Subjectivity of the prior (most critical)

•The prior distribution is the key to Bayesian inference

Criticism of the Bayesian choice:

Page 56: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 56

The Bayesian Approach

•Prior information is (almost) always available

•There is no such things as a prior distribution

•The prior is a tool summarizing available information as well as uncertainty related with this information

• The use of your prior is ok as long as you can justify it

Response:

Page 57: Essential Statistics in Biology: Getting the Numbers Right

Day 1 - Section 5 57

The Bayesian Approach

•Make the best of available prior information

•Unified framework

•The prior information can be used to regularize noisy estimates (few replicates)

•Computationally demanding?

Bayesian statistics and Bioinformatics