estimating uncertainty in ecosystem budgets ruth yanai, suny-esf, syracuse ed rastetter, ecosystems...

47
Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Upload: brody-sorah

Post on 31-Mar-2015

221 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Estimating Uncertainty

in Ecosystem Budgets

Ruth Yanai, SUNY-ESF, SyracuseEd Rastetter, Ecosystems Center, MBL

Dusty Wood, SUNY-ESF, Syracuse

Page 2: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Ecosystem Budgets have No Error

Hubbard Brook P Budget

Yanai (1992) Biogeochemistry

Page 3: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Replicate Measurements

Page 4: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Disparate measurements, all with errors?

Page 5: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

How can we estimate the uncertainty in ecosystem budget calculations from the uncertainty in the component measurements?

Try it with biomass N in Hubbard Brook Watershed 6.

Page 6: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

For independent errors. If they’re correlated, use the sum of covariances.

Page 7: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

Biomass N content = wood N content+ bark N content+ branch N content+ foliar N content+ twig N content+ root N content

Page 8: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

When adding, the variance of the total (T) is the sum of the variances of the addends (x):

Biomass N content = wood mass · wood N concentration+ bark mass · bark N concentration+ branch mass · branch N concentration+ foliar mass · foliar N concentration+ twig mass · twig N concentration+ root mass · root N concentration

Page 9: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

When multiplying, variance of theproduct is the product of the means times the sum of

the variance of the factors:

Page 10: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

When multiplying, variance of theproduct is the product of the means times the sum of

the variance of the factors:

wood mass · wood N concentration

But

log (Mass) = a + b*log(PV) + error

AndPV = 1/2 r2 * Height

log(Height) = a + b*log(Diameter) + error

Page 11: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Mathematical Error Propagation

“The problem of confidence limits for treatment of forest samples by logarithmic regression is unsolved.” --Whittaker et al. (1974)

Page 12: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo Simulation

Page 13: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo SimulationTree Height

log (Height) = a + b*log(Diameter) + error

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

Page 14: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo SimulationTissue Mass

log (Mass) = a + b*log(PV) + errorPV = 1/2 r2 * Height

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Page 15: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo SimulationTissue Concentration

N concentration = constant + error

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

Page 16: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo Simulation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Page 17: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Monte Carlo Simulation

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

He

igh

t (c

m)

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Le

af

N c

on

ten

t (g

)

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm)

Le

af

N c

on

ce

ntr

ati

on

(%

)

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

Sugar Maple Diameter (cm

Su

ga

r M

ap

le L

ea

f B

iom

as

s (

g)

Calculate the nutrient contents of wood, branches, twigs, leaves and roots, using species- and element-specific parameters, sampling these parameters with known error.After many iterations, analyze the variance of the results.

Page 18: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

A Monte-Carlo approach could be implemented using specialized software or almost any programming language.

This illustration uses a spreadsheet model.

Page 19: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Height Parameters

Height = 10^(a + b*log(Diameter) + log(E))

LookupLookup

Lookup

***IMPORTANT***Random selection of parameters values happens HERE, not separately for each tree

Page 20: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse
Page 21: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse
Page 22: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse
Page 23: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

LookupLookup

Lookup

PV = 1/2 r2 * Height

Page 24: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

Lookup

Lookup Lookup

PV = 1/2 r2 * Height

Page 25: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Biomass Parameters

Biomass = 10^(a + b*log(PV) + log(E))

Lookup

Lookup Lookup

PV = 1/2 r2 * Height

Page 26: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Concentration Parameters

Concentration = constant + error

LookupLookup

Page 27: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse
Page 28: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

COPY THIS ROW-->

Page 29: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

After enough interations, analyze

your results

Paste Values button

Page 30: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

total N, kg/ha

0

200

400

600

800

1000

1200

0 50 100 150 200

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6

How many iterations is enough?

Page 31: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6

Two different sets of 250 iterations:Mean settles down over many iterations

Mean estimate of Biomass of N

500

520

540

560

580

600

620

640

660

680

700

0 50 100 150 200 250

Number of Iterations

kg

N/h

a

Page 32: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Uncertainty in Biomass N: 110 kg/haCoefficient of Variation: 18%

Repeated Calculations of N in Biomass

Hubbard Brook Watershed 6 Standard Deviation of Biomass of N

40

60

80

100

120

140

160

180

200

220

240

0 50 100 150 200 250

Number of Iterations

kg

N/h

a

Page 33: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Hubbard Brook W6 is surveyed in 208 25m x 25m plots.

How much variation is there from one part of this watershed to another?

This is a more common way to represent uncertainty in budgets.

Approaches to Estimating Uncertainty:

Replicate Measurements

Page 34: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Replicate Samples

Variation across plots: 16 Mg/ha, or 5%

Biomass for 50 m x 50 m Plots

0

50

100

150

200

250

300

350

Plot Cluster1

Plot Cluster2

Plot Cluster3

Plot Cluster4

Plot Cluster5

Bio

mass (

Mg

/ha)

RS

WA

STM

YB

BE

SM

Page 35: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Replicate Samples

Biomass for 25 m x 25 m Plots

0

50

100

150

200

250

300

350

75 108 142 181 204

Plot

Bio

mass (

Mg

/ha)

RS

STM

YB

BE

SM

Variance across plots: 30 Mg/ha, or 10%with smaller plots

Page 36: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Which is More Uncertain?

Total biomass

CV

Nitrogen content

CV

Multiple Plots 5%, 10% 6%, 10%

Uncertainty in Calculations

18% 18%

Parameter uncertainty doesn’t affect comparisons across space. But it matters when you take your number and go.

Page 37: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

The Value of Ecosystem Error

Quantify uncertainty in our results

Page 38: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Borrmann et al. (1977) Science

The N budget for Hubbard Brook published in 1977 was “missing” 14.2 kg/ha/yr

Page 39: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Net N fixation (14.2 kg/ha/yr) = hydrologic export+ N accretion in the forest floor + N accretion in mineral soil + N accretion in living biomass- precipitation N input- weathering N input- change in soil N stores

Page 40: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

We can’t detect a difference of 1000 kg N/ha in the mineral soil…

Page 41: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

The Value of Ecosystem Error

Quantify uncertainty in our results

Identify ways to reduce uncertainty

Page 42: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

“What is the greatest source of uncertainty in my answer?”

Better than the sensitivity estimates that vary everything by the same amount--they don’t all vary by the same amount!

Page 43: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Better than the uncertainty in the parameter estimates--we can tolerate a large uncertainty in an unimportant parameter.

“What is the greatest source of uncertainty to my answer?”

Page 44: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

0

20

40

60

80

100

120

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

Bio

ma

ss

(M

g/h

a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

CV

of

Bio

ma

ss

0

5

10

15

20

25

StemWood

StemBark

Branches Leaves Twigs Roots LightWood

DarkWood

Tissue

Bio

ma

ss

Sta

nd

ard

De

via

tio

n

(Mg

/ha

)

0

50

100

150

200

250

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

N c

on

ten

t (k

g/h

a)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

CV

of

N C

on

ten

t

0

10

20

30

40

50

60

70

80

90

100

Stem Bark Branches Leaves Twigs Roots LightWood

Dark wood

Tissue

N C

on

ten

t S

tan

da

rd D

ev

iati

on

(k

g/h

a)

Page 45: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Other Considerations

Independence of error (covariance)

Distribution of errors (normal or not)

Page 46: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

Additional Sources of Error

Bias in measurements

Errors of omission

Conceptual errors

Measurement errors

Spatial and temporal variation

Page 47: Estimating Uncertainty in Ecosystem Budgets Ruth Yanai, SUNY-ESF, Syracuse Ed Rastetter, Ecosystems Center, MBL Dusty Wood, SUNY-ESF, Syracuse

The Value of Ecosystem Error

Quantify uncertainty in our results

Identify ways to reduce uncertainty

Advice

One way or another, find a way to calculate ecosystem errors, and report them.

This is not possible unless researchers also report error with parameters.