etank full report

114
ETANK FULL REPORT - JGC ETank2000 Full 1.9.14 (26 Oct 2010) TABLE OF CONTENTS PAGE 1 ETANK SETTINGS SUMMARY PAGE 2 SUMMARY OF DESIGN DATA AND REMARKS PAGE 3 SUMMARY OF RESULTS PAGE 5 BOTTOM DESIGN PAGE 37 SEISMIC MOMENT PAGE 42 ANCHOR BOLT DESIGN PAGE 44 CAPACITIES AND WEIGHTS PAGE 51 MAWP & MAWV SUMMARY PAGE 52 ETANK SETTINGS SUMMARY To Change These ETank Settings, Go To Tools->Options, Behavior Tab.

Upload: punggawa-ical

Post on 03-Jan-2016

55 views

Category:

Documents


2 download

DESCRIPTION

tank

TRANSCRIPT

Page 1: Etank Full Report

ETANK FULL REPORT - JGC

ETank2000 Full 1.9.14 (26 Oct 2010)

TABLE OF CONTENTS PAGE 1

ETANK SETTINGS SUMMARY PAGE 2

SUMMARY OF DESIGN DATA AND REMARKS PAGE 3

SUMMARY OF RESULTS PAGE 5

BOTTOM DESIGN PAGE 37

SEISMIC MOMENT PAGE 42

ANCHOR BOLT DESIGN PAGE 44

CAPACITIES AND WEIGHTS PAGE 51

MAWP & MAWV SUMMARY PAGE 52

ETANK SETTINGS SUMMARY

To Change These ETank Settings, Go To Tools->Options, Behavior Tab.

----------------------------------------------------------------------

Page 2: Etank Full Report

No 650 Appendix F Calcs when Tank P = 0 -> Default : False

Show MAWP / MAWV Calcs : True

Enforce API Minimum thicknesses : True

Enforce API Maximum Roof thickness : True

Enforce Minimum Self Supp. Cone Pitch (2 in 12) : True

Force Non-Annular Btm. to Meet API-650 5.5.1 : False

Set t.actual to t.required Values : False

Maximum 650 App. S or App. M Multiplier is 1 : True

Enforce API Maximum Nozzle Sizes : True

Max. Self Supported Roof thickness : 0.5 in.

Max. Tank Corr. Allowance : 0.5 in.

External pressure calcs subtract C.A. per V.5 : False

Use Gauge Material for min thicknesses : False

Enforce API Minimum Live Load : True

Enforce API Minimum Anchor Chair Design Load

= Bolt Yield Load : True

SUMMARY OF DESIGN DATA and REMARKS

Job : JGC

Date of Calcs. : 7/15/2013 , 01:39 PM

Mfg. or Insp. Date : 7/15/2013

Designer : Faizal

Page 3: Etank Full Report

Project : Global Toyo

Plant : Marunda

Site : Indonesia

Design Basis : API-653 4th Edition, April 2009,

& API-620 10th Edition, Feb 2002

----------------------------------------------------------------------

- TANK NAMEPLATE INFORMATION

----------------------------------------------------------------------

- Operating Ratio: 0.4

- Design Standard:

- API-620 10th Edition, Feb 2002 -

- API-650 Appendices Used: E -

- Roof : A-285 Gr C: 0.375in. -

- Shell (10): A-283 Gr C: 0.25in. -

- Shell (9): A-36: 0.25in. -

- Shell (8): A-36: 0.25in. -

- Shell (7): A-36: 0.25in. -

- Shell (6): A-36: 0.25in. -

- Shell (5): A-36: 0.25in. -

- Shell (4): A-36: 0.25in. -

- Shell (3): A-36: 0.25in. -

- Shell (2): A-36: 0.25in. -

- Shell (1): A-36: 0.25in. -

Page 4: Etank Full Report

- Bottom : A-36: 0.25in. -

- Annular Ring : A-283 Gr C: 0.25in. -

----------------------------------------------------------------------

Design Internal Pressure = 0.142 PSI or 3.94 IN. H2O

Design External Pressure = 0 PSI or 0 IN. H2O

MAWP = 3.0130 PSI or 83.50 IN. H2O

MAWV = 0 PSI or 0 IN. H2O

OD of Tank = 57.1193 ft

Shell Height = 54.0353 ft

S.G. of Contents = 1

Max. Liq. Level = 20 ft

Re-Rate Temperature = 70 °F

Tank Joint Efficiency = 1

Ground Snow Load = 0 lbf/ft^2

Roof Live Load = 20 lbf/ft^2

Design Roof Dead Load = 0 lbf/ft^2

Basic Wind Velocity = 100 mph

Page 5: Etank Full Report

Wind Importance Factor = 1

Using Seismic Method: API-650 10th Ed.

Seismic Zone = 1

Site Amplification Factor = 1.5

Importance Factor = 1

DESIGN NOTES

NOTE 1 : There are tank calculation warnings.

Search for * * Warning * * notes.

NOTE 2 : Tank is not subject to API-650 Appendix F.7

SUMMARY OF RESULTS

Shell Material Summary (Bottom is 1)

------------------------------------------------------------------------

Shell Width Material Sts Sca Weight CA

# (ft) (psi) (psi) (lbf) (in)

------------------------------------------------------------------------

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

10 5.403 A-283 Gr C 15,200 729 9,886 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

Page 6: Etank Full Report

= 0.0007

9 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

8 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

7 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

6 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

5 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

4 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Page 7: Etank Full Report

3 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

2 5.403 A-36 16,000 729 9,885 0

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

1 5.403 A-36 16,000 729 9,885 0

------------------------------------------------------------------------

Total Weight 98,851

Shell API 653 Summary (Bottom is 1)

-----------------------------------------------------------------

Shell t.design(Sd) t.test(St) t.external t.required t.actual

# (in.) (in.) (in.) (in.) (in.)

-----------------------------------------------------------------

10 0.0032 0 0 0.1 0.25

9 0.003 0 0 0.1 0.25

8 0.003 0 0 0.1 0.25

7 0.003 0 0 0.1 0.25

6 0.003 0 0 0.1 0.25

5 0.2462 0 0 0.2462 0.25

4 0.0382 0 0 0.1 0.25

Page 8: Etank Full Report

3 0.0883 0 0 0.1 0.25

2 0.1384 0 0 0.1384 0.25

1 0.1885 0 0 0.1885 0.25

-----------------------------------------------------------------

Structurally Supported Conical Roof

Plate Material = A-285 Gr C,

Struct. Material = A-36

t.required = 0.1933 in.

t.actual = 0.375 in.

Roof Joint Efficiency = 0.85

Plate Weight = 39,234 lbf

Rafters:

26 Rafters at Rad. 28.559 ft.: 3 X 3 X 1/4 ANGLE

Rafters Weight = 3,646 lbf

Girders:

Girders Weight = 0 lbf

Page 9: Etank Full Report

Columns:

1 Column at Center: 6 INCH SCH 40 PIEP

Columns Weight = 1,005 lbf

Bottom Type: Flat Bottom: Annular

Bottom Floor Material = A-36

t.required = 0.1049 in.

t.actual = 0.25 in.

Bottom Joint Efficiency = 1

Annular Bottom Plate Material : A-283 Gr C

Minimum Annular Ring Thickness = 0.236 in.

t_Annular_Ring = 0.25 in.

Minimum Annular Ring Width = 24 in.

W_Annular_Ring = 24 in.

Total Weight of Bottom = 26,440 lbf

ANCHOR BOLTS: (20) 1in. UNC Bolts, A-307

BOTTOM END STIFFENER: BAR 2x1/4, , 0 lbf

Page 10: Etank Full Report

SUPPORTED CONICAL ROOF (from Brownell & Young)

Roof Plate Material: A-285 Gr C, Sd = 16,500 PSI, Fy = 30,000 PSI (API-620 «

Table 5-1)

Structural Material: A-36, Sd = 18,000 PSI, Fy = 36,000 PSI (API-620 Table «

5-3)

R = 28.5596 ft

pt = 0.75 in/ft (Cone Roof Pitch)

Theta = ATAN(pt/12) = ATAN(0.0625) = 3.5763 degrees

Ap_Vert = Vertical Projected Area of Roof

= pt*OD^2/48

= 0.75*57.1193^2/48

= 50.978 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*57.1193

= 28.5596 ft

Ap = Projected Area of roof for wind moment

= PI*R^2

Page 11: Etank Full Report

= PI*28.5596^2

= 2,562 ft^2

Dead_Load = Ground_Snow_Load + Added_Dead_Load

= 0 + 0

= 0 lbf/ft^2

P = Design Load

= Snow Load + Live Load + Insulation + Roof Plates + P_external

= 0 + 20 + (8)(0/12) + 15.2982 + (0)(144)

= 35.2982 lbf/ft^2

= 0.2451 PSI

l = Maximum Rafter Spacing (Per API-650 5.10.4.4)

= (t - ca) * SQRT(1.5 * Fy / P)

= (0.375 - 0)*SQRT(1.5*30,000/0.2451)

= 160.67 in.

MINIMUM # OF RAFTERS

< FOR OUTER SHELL RING >

l = 84 in. since calculated l > 84 in. (7 ft)

N_min = 2*PI*R/l = 2*PI*(28.5596)(12)/84 = 25.64

Page 12: Etank Full Report

N_min = 26

Actual # of Rafters = 26

Minimum roof thickness based on actual rafter spacing

l = 82.82 in. (actual rafter spacing)

t-Calc = l/SQRT(1.5*Fy/p) + CA

= 82.82/SQRT(1.5*30,000/0.2451) + 0

= 0.1933 in.

NOTE: Governs for roof plate thickness.

RLoad_Max = Maximum Roof Load based on actual rafter spacing

RLoad_Max = 216(Fy)/(l/(t - ca))^2

= 216(30,000)/(82.82/(0.375 - 0))^2

= 177.14 lb/ft^2

Pa_rafter_1 = Max. External Pressure due to rafter ring 1

= (Roof_Plates + Lr + Dead_Load +

Insulation - RLoad_Max) / 144

= (15.3 + 20 + 0 +

Page 13: Etank Full Report

0 - 177.14)/144

= -0.985 PSI or -27.30 IN H2O.

t.required Must be >= 0.09 in. (per API-653)

t.required = MAX( 0.09 , t-Calc )

= 0.1933 in.

RAFTER DESIGN

Maximum Rafter Span = 28.56 ft

Average Rafter Spacing on Shell = 6.885 ft

Average Plate Width = (6.885)/2 = 3.443 ft

Mmax = Maximum Bending Moment

Mmax = wl^2/8

where, w = (0.2451)(3.443)*12 + 4.91/12 = 10.54 lbf/in

l = (28.56)(12) = 342.72 in.

Mmax = (10.54)(342.72)^2/8 = 154750. in-lbf

Z req'd = Mmax/18,000 = 154750./18,000 = 8.6 in^3

Actual Z = 0.58 in^3 using 3 X 3 X 1/4 ANGLE

W_Max (Max. stress allowed for each rafter in ring 1)

= Z * Sd * 8 / l^2

Page 14: Etank Full Report

= 0.58 * 18,000 * 8 / 342.72^2

= 0.7111 lbf/in.

Max_P (Max. Load allowed for each rafter in ring 1)

= (W_Max - W_Rafter/12)/(Average Plate Width*12)

= (0.7111 - 4.91/12)/(3.443*12)

= 0.0073 PSI

P_max_ext = 0 PSI

(limited by Rafter Type)

* * Warning * * Rafters Inadequate.

* * Warning * * Shell Ring:

Rafter Z Actual = 0.58 in^3,

Rafter Z Req'd = 8.6 in^3

COLUMN DESIGN

CENTER COLUMN

Page 15: Etank Full Report

l = Column Length

= 670 in = 55.83 ft (as computed)

r = Radius of gyration

if l/r must be less than 180, then

r req'd = l/180 = 670/180 = 3.72 in.

Actual r = 2.246 in. using 6 INCH SCH 40 PIPE

* * Warning * * Center Column:

Actual r = 2.246 in.,

Req'd r = 3.72 in.

P = Total load supported by center column

= [(rafter length)(rafter load)(# of inner rafters)]/2

= [(28.56 ft)(12 in/ft)(10.54 lbf/in)(26)]/2

= 46,959 lbf

Fa = Allowable Compressive Stress (Per API-620 Table 5-3)

R = L/r = 298.3 (actual)

Page 16: Etank Full Report

Fa = 18,000/(1 + R^2/18,000)

= 18,000/(1 + 298.3^2/18,000)

= 3,029 PSI

Fa is not modified Since Design Temp. <= 200 °F.

(API-650 M.3.5 N.A.)

Fa = 3,029 * 1

= 3,029 PSI

A_reqd = P/Fa

= [46,959 + (670/12)(18)]/3,029

= 15.83 in^2

F = actual induced stress for the column

= P/A = [ 46,959 + (670/12)(18) ] / 5.58

= 8,596 PSI

W_Max (Max. weight allowed for each column in ring 1)

= 15,897 lbf

Max_P (Max. Load allowed for each column in ring 1)

P_max_ext = 0 PSI

(limited by Column Type)

Page 17: Etank Full Report

Roof_Area = 36*PI*OD^2/COS(Theta)

= 36*PI*(57.1193)^2/COS()

= 369,712 in^2

ROOF WEIGHT

Weight of Roof Plates

= (density)(t)(PI/4)(12*OD - t)^2/COS(Theta)

= (0.2833)(0.375)(PI/4)(685.431 - 0.375)^2/COS(3.5763)

= 39,234 lbf (New)

= 39,234 lbf (Corroded)

Weight of Roof Plates supported by shell

= 39,234 lbf (New)

= 39,234 lbf (Corroded)

Weight of Rafters = 3,646 lbf (New)

Weight of Girders = 0 lbf (New)

Weight of Columns = 1,005 lbf (New)

Total Weight of Roof = 43,885 lbf (New)

= 43,885 lbf (Corroded)

Page 18: Etank Full Report

<Actual Participating Area of Roof-to-Shell Juncture>

(From API-620 5.12.4.2 Eqn. 25)

Wc = 0.6 * SQRT[Rc * (t-CA)] (Top Shell Course)

= 0.6 * SQRT[342.4655 * (0.25 - 0)]

= 5.5517 in.

(From API-620 5.12.4.2 Eqn. 24)

Wh = 0.6 * SQRT[R2 * (t-CA)] (Roof Plate)

= 0.6 * SQRT[5,494 * (0.375 - 0)]

= MIN(27.2344, 12)

= 12 in.

Top End Stiffener: NONE

Aa = (Cross-sectional Area of Top End Stiffener)

= 0 in^2

Ashell = Contributing Area due to shell plates

= Wc*(t_shell - CA)

= 5.5517 * (0.25 - 0)

= 1.388 in^2

Aroof = Contributing Area due to roof plates

= Wh*(t_roof - CA)

= 12 * (0.375 - 0)

Page 19: Etank Full Report

= 4.5 in^2

A = Actual Part. Area of Roof-to-Shell Juncture (per API-620)

= Aa + Aroof + Ashell

= 0 + 4.5 + 1.388

= 5.888 in^2

W/At = (-39,234 / 368,992)

= -0.1063 PSI

<Meridional and Latitudinal Forces>

T1 = R3/[2*COS(Alpha)]*(P + W/At)

= 342.7155/[2*COS(86.4237)]*(0 + -0.1063)

= -292.01 lbf/in

T2 = R3/COS(Alpha)*(P + W/At)

= 342.7155/COS(86.4237)*(0 + -0.1063)

= -584.03 lbf/in

Sts = 16,500 PSI (Allowable Tensile Stress per API-620 Table 5-1)

<Minimum Participating Area>

Page 20: Etank Full Report

T2s = P*R3 = (0)(342.7155) = 0 lbf/in

Q = (T2)(Wh) + (T2s)(Wc) - (T1)(Rc)(SIN(Alpha))

= (-584.03)(12)+(0)(5.5517)-(-292.01)(342.4655)(SIN(86.4237))

= 92,800 lbf

A_min = Minimum Participating Area ( per API-620 5.12.4.3 Eq. 27)

= Q/Sts

= 92,800/16,500

= 5.624 in^2

P_max_external = 0 PSI or 0 IN. H2O

SHELL COURSE RE-RATING (Bottom Course is #1)

Course # 1; Material: A-36; Width = 5.4035ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

Page 21: Etank Full Report

W = - (shell) = -98,891 lbf

W/At = (-98,891 / 368,992)

= -0.268 PSI

Px = P + P_liquid = 0.142 + 8.66 = 8.802 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(8.802 + -0.268)

= 1,462 lbf/in

T2 = P*Rc

= 8.802*342.7155

= 3,017 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 3,017 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 3,017/(16,000*1) + 0 = 0.1885 in.

Page 22: Etank Full Report

t-Calc = 0.1885 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 8.803, t-620 = 0.1886

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 3.013 PSI (due to Shell Course, without Liquid Head)

< External Pressure - Empty >

W = - (shell) = -98,891 lbf

W/At = (-98,891 / 368,992)

= -0.268 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.268)

= -45.92 lbf/in

Page 23: Etank Full Report

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 45.9 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0935 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0003

(t_19 - CA)/Rpp = 0

Page 24: Etank Full Report

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0935 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0935

Exit Condition: V_x = -0.608, t-620 = 0.25

P_shell_ext = -0.608 PSI (due to Shell Course)

Course # 2; Material: A-36; Width = 5.4035ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

Page 25: Etank Full Report

< Internal Pressure - Full >

W = - (shell) = -89,002 lbf

W/At = (-89,002 / 368,992)

= -0.2412 PSI

Px = P + P_liquid = 0.142 + 6.3203 = 6.4623 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(6.4623 + -0.2412)

= 1,066 lbf/in

T2 = P*Rc

= 6.4623*342.7155

= 2,215 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 2,215 lb./in.

Page 26: Etank Full Report

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 2,215/(16,000*1) + 0 = 0.1384 in.

t-Calc = 0.1384 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 6.4633, t-620 = 0.1384

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 5.3527 PSI (due to Shell Course, without Liquid Head)

< External Pressure - Empty >

W = - (shell) = -89,002 lbf

W/At = (-89,002 / 368,992)

= -0.2412 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.2412)

Page 27: Etank Full Report

= -41.33 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 41.3 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0887 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

Page 28: Etank Full Report

(t_18 - CA)/Rp = 0.0003

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0887 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0887

Exit Condition: V_x = -0.615, t-620 = 0.2499

P_shell_ext = -0.615 PSI (due to Shell Course)

Course # 3; Material: A-36; Width = 5.4035ft

< API-620 >

Page 29: Etank Full Report

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -79,113 lbf

W/At = (-79,113 / 368,992)

= -0.2144 PSI

Px = P + P_liquid = 0.142 + 3.9806 = 4.1226 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(4.1226 + -0.2144)

= 669.7 lbf/in

T2 = P*Rc

= 4.1226*342.7155

= 1,413 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

Page 30: Etank Full Report

T = MAX(T1, T2) = 1,413 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 1,413/(16,000*1) + 0 = 0.0883 in.

t-Calc = 0.0883 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 4.1236, t-620 = 0.0883

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 7.6924 PSI (due to Shell Course, without Liquid Head)

< External Pressure - Empty >

W = - (shell) = -79,113 lbf

W/At = (-79,113 / 368,992)

= -0.2144 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

Page 31: Etank Full Report

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.2144)

= -36.74 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 36.7 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0836 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

Page 32: Etank Full Report

= 0 in.

(t_18 - CA)/Rp = 0.0002

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0836 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0836

Exit Condition: V_x = -0.623, t-620 = 0.2499

P_shell_ext = -0.623 PSI (due to Shell Course)

Course # 4; Material: A-36; Width = 5.4035ft

Page 33: Etank Full Report

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -69,224 lbf

W/At = (-69,224 / 368,992)

= -0.1876 PSI

Px = P + P_liquid = 0.142 + 1.6409 = 1.7829 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(1.7829 + -0.1876)

= 273.37 lbf/in

T2 = P*Rc

= 1.7829*342.7155

= 611.03 lbf/in

< API-620 >

Page 34: Etank Full Report

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 611 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 611/(16,000*1) + 0 = 0.0382 in.

t-Calc = 0.0382 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 1.7839, t-620 = 0.0382

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 10.0321 PSI (due to Shell Course, without Liquid Head)

< External Pressure - Empty >

W = - (shell) = -69,224 lbf

W/At = (-69,224 / 368,992)

= -0.1876 PSI

Page 35: Etank Full Report

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.1876)

= -32.15 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 32.2 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

Page 36: Etank Full Report

= 0.0783 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0002

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0783 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0783

Exit Condition: V_x = -0.631, t-620 = 0.25

P_shell_ext = -0.631 PSI (due to Shell Course)

Page 37: Etank Full Report

Course # 5; Material: A-36; Width = 5.4035ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -59,335 lbf

W/At = (-59,335 / 368,992)

= -0.1608 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.1608)

= -3.22 lbf/in

T2 = P*Rc

= 0.142*342.7155

Page 38: Etank Full Report

= 48.67 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.3)

T_tens = 48.7 (Tension Load),

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

N = 0.9995 (N from API-620 Fig. 5-1)

Sta = Sts*N = (16,000)(0.9995) = 15,992 PSI

tmin1 = T_tens / (Sta*E) + CA

= 48.7/(15,992*1) + 0 = 0.003 in.

T_comp = 3.2 (Compressive Load),

N = 0.0122 (actual N, using compressive stress)

M = 0.9939 (calculated M from API-620 Fig. F-1)

Sca = T_comp / M = 13 PSI

tmin2 = T_comp / Sca + CA = 3.2/13 + 0 = 0.2462 in.

t-Calc = MAX(tmin1, tmin2) = 0.2462 in.

Page 39: Etank Full Report

t-Calc = 0.2462 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.1618, t-620 = 0.0035

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 11.673 PSI (due to Shell Course)

< External Pressure - Empty >

W = - (shell) = -59,335 lbf

W/At = (-59,335 / 368,992)

= -0.1608 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.1608)

= -27.55 lbf/in

Page 40: Etank Full Report

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 27.6 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0725 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0002

(t_19 - CA)/Rpp = 0

Page 41: Etank Full Report

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0725 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0725

Exit Condition: V_x = -0.638, t-620 = 0.2499

P_shell_ext = -0.638 PSI (due to Shell Course)

Course # 6; Material: A-36; Width = 5.4035ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

Page 42: Etank Full Report

< Internal Pressure - Full >

W = - (shell) = -49,446 lbf

W/At = (-49,446 / 368,992)

= -0.134 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.134)

= 1.37 lbf/in

T2 = P*Rc

= 0.142*342.7155

= 48.67 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 48.7 lb./in.

Page 43: Etank Full Report

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 48.7/(16,000*1) + 0 = 0.003 in.

t-Calc = 0.003 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.143, t-620 = 0.0031

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 11.673 PSI (due to Shell Course)

< External Pressure - Empty >

W = - (shell) = -49,446 lbf

W/At = (-49,446 / 368,992)

= -0.134 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.134)

Page 44: Etank Full Report

= -22.96 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 23 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0662 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

Page 45: Etank Full Report

(t_18 - CA)/Rp = 0.0002

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0662 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0662

Exit Condition: V_x = -0.646, t-620 = 0.25

P_shell_ext = -0.646 PSI (due to Shell Course)

Course # 7; Material: A-36; Width = 5.4035ft

< API-620 >

Page 46: Etank Full Report

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -39,557 lbf

W/At = (-39,557 / 368,992)

= -0.1072 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.1072)

= 5.96 lbf/in

T2 = P*Rc

= 0.142*342.7155

= 48.67 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Page 47: Etank Full Report

(Per 5.10.3.2)

T = MAX(T1, T2) = 48.7 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 48.7/(16,000*1) + 0 = 0.003 in.

t-Calc = 0.003 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.143, t-620 = 0.0031

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 11.673 PSI (due to Shell Course)

< External Pressure - Empty >

W = - (shell) = -39,557 lbf

W/At = (-39,557 / 368,992)

= -0.1072 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

Page 48: Etank Full Report

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.1072)

= -18.37 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 18.4 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0592 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

Page 49: Etank Full Report

= 0 in.

(t_18 - CA)/Rp = 0.0002

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0592 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0592

Exit Condition: V_x = -0.654, t-620 = 0.25

P_shell_ext = -0.654 PSI (due to Shell Course)

Course # 8; Material: A-36; Width = 5.4035ft

Page 50: Etank Full Report

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -29,668 lbf

W/At = (-29,668 / 368,992)

= -0.0804 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.0804)

= 10.56 lbf/in

T2 = P*Rc

= 0.142*342.7155

= 48.67 lbf/in

< API-620 >

Page 51: Etank Full Report

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 48.7 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 48.7/(16,000*1) + 0 = 0.003 in.

t-Calc = 0.003 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.143, t-620 = 0.0031

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 11.673 PSI (due to Shell Course)

< External Pressure - Empty >

W = - (shell) = -29,668 lbf

W/At = (-29,668 / 368,992)

= -0.0804 PSI

Page 52: Etank Full Report

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.0804)

= -13.78 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 13.8 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

Page 53: Etank Full Report

= 0.0512 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0001

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0512 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0512

Exit Condition: V_x = -0.661, t-620 = 0.2499

P_shell_ext = -0.661 PSI (due to Shell Course)

Page 54: Etank Full Report

Course # 9; Material: A-36; Width = 5.4035ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -19,779 lbf

W/At = (-19,779 / 368,992)

= -0.0536 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.0536)

= 15.15 lbf/in

T2 = P*Rc

= 0.142*342.7155

= 48.67 lbf/in

Page 55: Etank Full Report

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 48.7 lb./in.

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 48.7/(16,000*1) + 0 = 0.003 in.

t-Calc = 0.003 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.143, t-620 = 0.0031

Exit Condition: P_x = 11.673, t-620 = 0.25

P_shell_int = 11.673 PSI (due to Shell Course)

< External Pressure - Empty >

W = - (shell) = -19,779 lbf

W/At = (-19,779 / 368,992)

Page 56: Etank Full Report

= -0.0536 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.0536)

= -9.18 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 9.2 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

Page 57: Etank Full Report

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0418 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0001

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0418 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0418

Exit Condition: V_x = -0.669, t-620 = 0.25

Page 58: Etank Full Report

P_shell_ext = -0.669 PSI (due to Shell Course)

Course # 10; Material: A-283 Gr C; Width = 5.4038ft

< API-620 >

R = R2 = Rc = 342.7155 in.

At = 368,992 in^2

< Internal Pressure - Full >

W = - (shell) = -9,890 lbf

W/At = (-9,890 / 368,992)

= -0.0268 PSI

Px = P + P_liquid = 0.142 + 0 = 0.142 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0.142 + -0.0268)

= 19.74 lbf/in

Page 59: Etank Full Report

T2 = P*Rc

= 0.142*342.7155

= 48.67 lbf/in

< API-620 >

Minimum thickness (t) requirement:

(Per 5.10.3.2)

T = MAX(T1, T2) = 48.7 lb./in.

Sts = 15,200 PSI (Allowable Tensile Stress per API-620 Table 5-1)

t-Calc = T/(Sts*E) + CA = 48.7/(15,200*1) + 0 = 0.0032 in.

t-Calc = 0.0032 in.

Since t.actual > T620,

Back-Calculating Pmax using t.actual as target, and T620 routine...

Entry Condition: P_x = 0.143, t-620 = 0.0032

Exit Condition: P_x = 11.086, t-620 = 0.25

P_shell_int = 11.086 PSI (due to Shell Course)

< External Pressure - Empty >

Page 60: Etank Full Report

W = - (shell) = -9,890 lbf

W/At = (-9,890 / 368,992)

= -0.0268 PSI

PV = 0 PSI

<Meridional and Latitudinal Forces>

T1 = Rc/2*(P + W/At)

= 342.7155/2*(0 + -0.0268)

= -4.59 lbf/in

T2 = P*Rc

= 0*342.7155

= 0 lbf/in

< API-620 >

Minimum thickness (t) requirement:

Tp = MAX(ABS(T1),ABS(T2))

= 4.6 lb/in.

Tpp = MIN(ABS(T1),ABS(T2))

= 0 lb/in.

Page 61: Etank Full Report

Rp = R2 = 342.7155 in.

Rpp = R1 = 342.7155 in.

t_18 = SQRT[(Tp + 0.8*Tpp)*Rp]/1342 + CA

= 0.0296 in.

t_19 = SQRT[Tpp*Rpp]/1000 + CA

= 0 in.

(t_18 - CA)/Rp = 0.0000864

(t_19 - CA)/Rpp = 0

t-Calc = MAX(t_18,t_19)

Ratio = (t-CA)/R

= (0.25 - 0)/342.7155

= 0.0007

Sca = 10^6*Ratio (Per 5.5.4.3)

= 729 PSI (Allowable Compressive Stress)

t-Calc = 0.0296 in.

Since t.actual > T620,

Back-Calculating Pmax using t-Calc as target, and T620 routine...

Entry Condition: V_x = 0 PSI, t-620 = 0.0296

Page 62: Etank Full Report

Exit Condition: V_x = -0.677, t-620 = 0.25

P_shell_ext = -0.677 PSI (due to Shell Course)

Wtr = Transposed Width of each Shell Course

= Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (10)

Wtr(1) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(2) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(3) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(4) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(5) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(6) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(7) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(8) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(9) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(10) = 5.4038*[ 0.25/0.25 ]^2.5 = 5.4038 ft

Hts (Height of the Transformed Shell)

= SUM{Wtr} = 54.0353 ft

Page 63: Etank Full Report

INTERMEDIATE WIND GIRDERS (API 620 Section 5.10.6)

V (Wind Speed) = 100 mph

Ve = vf = Velocity Factor = (vs/100)^2 = (100/100)^2 = 1

Re-Rate PV = 0 PSI, OR 0 In. H2O

<TOP END STIFFENER CALCULATIONS>

Z = Required Top Comp Ring Section Modulus (per API-650 5.1.5.9.e)

= 0.35 in^3,

For Structural Roof and OD <= 60 ft,

Minimum Required Angle is 2 x 2 x 1/4 in.

<INTERMEDIATE STIFFENER CALCULATIONS> (PER API-620 Section 5.10.6)

* * * NOTE: Using the thinnest shell course, t_thinnest,

instead of top shell course.

* * * NOTE: Not subtracting corrosion allowance per user setting.

ME = 28,799,999/28,799,999

= 1

Hu = Maximum Height of Unstiffened Shell

= {ME*600,000*t_thinnest*SQRT[t_thinnest/OD]^3} / Ve)

Page 64: Etank Full Report

= {1*600,000*0.25*SQRT[0.25/57.1193]^3} / 1

= 43.4338 ft

Wtr = Transposed Width of each Shell Course

= Width*[ t_thinnest / t_course ]^2.5

Transforming Courses (1) to (10)

Wtr(1) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(2) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(3) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(4) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(5) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(6) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(7) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(8) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(9) = 5.4035*[ 0.25/0.25 ]^2.5 = 5.4035 ft

Wtr(10) = 5.4038*[ 0.25/0.25 ]^2.5 = 5.4038 ft

Hts (Height of the Transformed Shell)

= SUM{Wtr} = 54.0353 ft

L_0 = Hts/# of Stiffeners + 1

= 54.0353/1 = 54.04 ft.

Page 65: Etank Full Report

Req'd Number of Intermediate Wind Girders = 1, Rounded to 1

Actual Number of Intermediate Wind Girders = 0

Zi (Req. Wind Gird. Z)

= (0.0001)(Ve)(L0)(OD^2)

= (0.0001)(1)(54.04)(57.1193^2) = 17.63 in^3

Actual Zi = 0 (No Wind Girder Selected, but One Required)

Parameter Still Required: Int Wind Girder Type,

since Required Number of Int. Wind Girders > 0.

SHELL COURSE #1 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.1885, 0, 0)

= 0.1885 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

Page 66: Etank Full Report

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1885,0.1) = 0.1885 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1885 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.113100 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #2 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.1384, 0, 0)

= 0.1384 in.

Page 67: Etank Full Report

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.1384,0.1) = 0.1384 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1384 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.083040 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #3 SUMMARY

-------------------------------------------

Page 68: Etank Full Report

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0883, 0, 0)

= 0.0883 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0883,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

Page 69: Etank Full Report

SHELL COURSE #4 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0783, 0, 0)

= 0.0783 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0783,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

Page 70: Etank Full Report

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #5 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.2462, 0, 0)

= 0.2462 in.

Per 5.6.1.3, this course t-Calc cannot exceed the lower course t-Calc.

reset t-Calc_4 = 0.2462 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.2462,0.1) = 0.2462 in.

< API-653 4.3.2.1 >

Page 71: Etank Full Report

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.2462 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.147720 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #6 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0662, 0, 0)

= 0.0662 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

Page 72: Etank Full Report

= MAX(0.0662,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #7 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0592, 0, 0)

= 0.0592 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

Page 73: Etank Full Report

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0592,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #8 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0512, 0, 0)

= 0.0512 in.

Page 74: Etank Full Report

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0512,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

SHELL COURSE #9 SUMMARY

-------------------------------------------

Page 75: Etank Full Report

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0418, 0, 0)

= 0.0418 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0418,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4035*0.25

= 9,885 lbf (New)

= 9,885 lbf (Corroded)

Page 76: Etank Full Report

SHELL COURSE #10 SUMMARY

-------------------------------------------

t-Calc = MAX(t-Calc_620, t_min_ext, t.seismic)

= MAX(0.0296, 0, 0)

= 0.0296 in.

Course Minimum t shall not be less than 0.1" + CA

(per API-653 Section 4.3.3.1)

t-653min = 0.1 in.

t.required = MAX(t.design, t.min653)

= MAX(0.0296,0.1) = 0.1 in.

< API-653 4.3.2.1 >

t1 (lowest average thickness in the shell course)

t1 must be >= t.required = 0.1 in.

t2 (least min. thickness in an area of shell course)

t2 must be >= 0.6*(t.required - CA) + CA = 0.060000 in.

t.actual = 0.25 in.

Weight = Density*PI*[(12*OD) - t]*12*Width*t

= 0.2833*PI*[(12*57.1193)-0.25]*12*5.4038*0.25

Page 77: Etank Full Report

= 9,886 lbf (New)

= 9,886 lbf (Corroded)

FLAT BOTTOM: ANNULAR PLATE DESIGN

Bottom Plate Material : A-36

Annular Bottom Plate Material : A-283 Gr C

<Weight of Bottom Plate>

Bottom_Area = PI/4*(OD - 2*t_course_1 - 2*AnnRing_Width)^2

= PI/4*(685.431 - 2*0.25 - 2*24)^2

= 318,621 in^2

Annular_Area = PI/4*(Bottom_OD)^2 - Bottom_Area

= PI/4*(689.431)^2 - 318,621

= 54,691 in^2

Weight = Btm_Density * t.actual * Bottom_Area + Ann_Density * t-AnnRing * «

Annular_Area)

= 0.2833 * 0.25*318,621 + 0.2833 * 0.25*54,691

= 26,440 lbf (New)

Page 78: Etank Full Report

= 25,996 lbf (Corroded)

< API-653 >

Calculation of Hydrostatic Test Stress & Product Design Stress

(per API-653 Table 4-5 footnote b)

t_1 : Original Bottom (1st) Shell Course thickness.

H'= Max. Liq. Level + P(psi)/(0.433)

= 20 + (0.142)/(0.433) = 20.3279 ft

St = Hydrostatic Test Stress in Bottom (1st) Shell Course

= (2.6)(OD)(H' - 1)/t_1

= (2.6)(57.1193)(20.3279 - 1)/(0.1875)

= 15,309 PSI

Sd = Product Design Stress in Bottom (1st) Shell Course

= (2.6)(OD)(H' - 1)(G)/(t_1 - ca_1)

= (2.6)(57.1193)(20.3279 - 1)(1)/(0.1875)

= 15,309 PSI

--------------------------

<Non-Annular Bottom Plates>

Page 79: Etank Full Report

t_min = 0.1 + 0.0049 = 0.1049 in. (per API-653 Table 4-4)

t-Calc = t_min = 0.1049 in.

t-Actual = 0.25 in.

<Annular Bottom Plates> (Per API-653 Section 4.4.8),

t_Min_Annular_Ring = 0.236 + 0 = 0.236 in. (per API-650 Table 5-1)

t_Annular_Ring = Actual Annular Ring Thickness

= 0.25 in.

W_Annular_Ring = Actual Annular Ring Width

= 24 in.

<Annular Bottom Plates> (per API-650 Section 5.5.2),

W_int = Minimum Annular Ring Width

(from Shell ID to Any Lap-Welded Joint)

(t_Min_Annular_Ring exclusive of corrosion)

= 390*t_Min_Annular_Ring/SQRT(H*G)

Page 80: Etank Full Report

= 390(0.236)/SQRT(20.3279*1)

= 20.41 in.

W_int = 24 in.

< FLAT BOTTOM: ANNULAR SUMMARY >

t.required = t-Calc = 0.1049 in.

t.actual = 0.25 in.

Annular Bottom Plate Material : A-283 Gr C

Minimum Annular Ring Thickness = 0.236 in.

t_Annular_Ring = 0.25 in.

Minimum Annular Ring Width = 24 in.

W_Annular_Ring = 24 in.

NET UPLIFT DUE TO INTERNAL PRESSURE

(See roof report for calculations)

Net_Uplift = -138,085 lbf

Anchorage NOT required for internal pressure.

Page 81: Etank Full Report

WIND MOMENT (Using API-650 SECTION 5.11)

vs = Wind Velocity = 100 mph

vf = Velocity Factor = (vs/100)^2 = (100/100)^2 = 1

Wind_Uplift = Iw * 30 * vf

= 1 * 30 * 1

= 30 lbf/ft^2

API-650 5.2.1.k Uplift Check

P_F41 = WCtoPSI(0.962*Fy*A*TAN(Theta)/D^2 + 8*t_h)

P_F41 = WCtoPSI(0.962*30,000*5.888*0.0625/57.1193^2 + 8*0.375)

= 0.2259 PSI

Limit Wind_Uplift/144+P to 1.6*P_F41

Wind_Uplift/144 + P = 0.3503 PSI

1.6*P_F41 = 0.3614 PSI

Wind_Uplift/144 + P = MIN(Wind_Uplift/144 + P, 1.6*P_F41)

Wind_Uplift/144 = MIN(Wind_Uplift/144, 1.6*P_F41 - P)

Wind_Uplift = MIN(Wind_Uplift, (1.6*P_F41 - P) * 144)

= MIN(30,31.5994)

= 30 lbf/ft^2

Ap_Vert = Vertical Projected Area of Roof

= pt*OD^2/48

Page 82: Etank Full Report

= 0.75*57.1193^2/48

= 50.978 ft^2

Horizontal Projected Area of Roof (Per API-650 5.2.1.f)

Xw = Moment Arm of UPLIFT wind force on roof

= 0.5*OD

= 0.5*57.1193

= 28.5596 ft

Ap = Projected Area of roof for wind moment

= PI*R^2

= PI*28.5596^2

= 2,562 ft^2

M_roof (Moment Due to Wind Force on Roof)

= (Wind_Uplift)(Ap)(Xw)

= (30)(2,562)(28.5596) = 2,195,476 ft-lbf

Xs (Moment Arm of Wind Force on Shell)

= H/2 = (54.0353)/2 = 27.0176 ft

As (Projected Area of Shell)

= H*(OD + t_ins / 6)

= (54.0353)(57.1193 + 0/6) = 3,086 ft^2

Page 83: Etank Full Report

M_shell (Moment Due to Wind Force on Shell)

= (Iw)(vf)(18)(As)(Xs)

= (1)(1)(18)(3,086)(27.0176) = 1,500,996 ft-lbf

Mw (Wind moment)

= M_roof + M_shell = 2,195,476 + 1,500,996

= 3,696,472 ft-lbf

W = Net weight (PER API-650 5.11.3)

(Force due to corroded weight of shell and

shell-supported roof plates less

40% of F.1.2 Uplift force.)

= W_shell + W_roof - 0.4*P*(PI/4)(144)(OD^2)

= 98,851 + 39,234 - 0.142*(PI/4)(144)(57.1193^2)

= 117,126 lbf

RESISTANCE TO OVERTURNING (per API-650 5.11.2)

An unanchored Tank must meet these two criteria:

1) 0.6*Mw + MPi < (MDL + MF_min_liq)/1.5

2) Mw + 0.4MPi < (MDL + MF)/2

Mw = Destabilizing Wind Moment = 3,696,472 ft-lbf

Page 84: Etank Full Report

MPi = Destabilizing Moment about the Shell-to-Bottom Joint from Design «

Pressure.

= P*(PI*OD^2/4)*(144)*(OD/2)

= 0.142*(3.1416*57.1193^2/4)*(144)*(28.5596)

= 1,496,436 ft-lbf

MDL = Stabilizing Moment about the Shell-to-Bottom Joint from the Shell and «

Roof weight supported by the Shell.

= (W_shell + W_roof)*OD/2

= (98,851 + 39,234)*28.5596

= 3,943,656 ft-lbf

tb = Annular Bottom Ring thickness less C.A. = 0.25 in.

Lb = Minimum bottom annular ring width

Lb = greater of 18 in. or 0.365*tb*SQRT(Sy_btm/H_liq)

= 18 in.

wl = Circumferential loading of contents along Shell-To-Bottom Joint.

= 4.67*tb*SQRT(Sy_btm*H_liq)

= 4.67*0.25*SQRT(36,000*20)

= 990.66 lbf/ft

Page 85: Etank Full Report

wl_min_liq = Circumferential loading of Minimum-Level contents along «

Shell-To-Bottom Joint.

= 4.67*ta*SQRT(Sy_btm*H_min_liq)

= 4.67*0.25*SQRT(36,000*0)

= 0 lbf/ft

MF_min_liq = wa_min_liq*PI*OD

= 0*3.1416*57.1193

= 0 lbf

MF = Stabilizing Moment due to Bottom Plate and Liquid Weight.

= (OD/2)*wl*PI*OD

= (28.5596)(990.66)(3.1416)(57.1193)

= 5,077,027 ft-lbf

Criteria 1

0.6*(3,696,472) + 1,496,436 < (3,943,656 + 0)/1.5

Since 3,714,319 >= 2,629,104, Tank must be anchored.

Criteria 2

3,696,472 + 0.4 * 1,496,436 < (3,943,656 + 5,077,027)/2

Since 4,295,047 < 4,510,342, Tank is stable.

RESISTANCE TO SLIDING (per API-650 5.11.4)

Page 86: Etank Full Report

F_wind = vF * 18 * As

= 1 * 18 * 3,086

= 55,556 lbf

F_friction = Maximum of 40% of Weight of Tank

= 0.4 * (W_Roof_Corroded + W_Shell_Corroded +

W_Btm_Corroded + RoofStruct + W_min_Liquid)

= 0.4 * (39,234 + 98,851 + 25,996 + 4,651 + 0)

= 67,493 lbf

No anchorage needed to resist sliding since

F_friction > F_wind

<Anchorage Requirement>

Anchorage required since Criteria 1, Criteria 2, or Sliding

are NOT acceptable.

Bolt Spacing = 10 ft, Min # Anchor Bolts = 18

SEISMIC MOMENT (API-650 APPENDIX E & API-620 APPENDIX L)

Ms (Seismic Moment)

Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)

Page 87: Etank Full Report

Z = 0.075 Zone coefficient for zone 1 (from Table E-2)

I = 1 Importance Factor

S = 1.5 Site amplification factor (from Table E-3)

C1 = 0.6 = Lateral earthquake force coefficient

k = 0.6319 (factor for D/H = 2.856 from figure E-4)

T = Natural Period of First Sloshing Mode

= k*SQRT(OD) = 0.6319*SQRT(57.1193) = 4.776

C2 = Lateral Earthquake Force Coefficient

= 3.375(S)/T^2 = 3.375(1.5)/(4.776)^2 = 0.2219

From Figures E-2 & E-3

X1_H = X1/H chart factor

X2_H = X2/H chart factor

W1_Wt = W1/Wt chart factor

W2_Wt = W2/Wt chart factor

Wt = Weight of tank contents @ Max. Liquid Level

X1 = (X1_H)*H = (0.375)*20 = 7.5

X2 = (X2_H)*H = (0.5578)*20 = 11.1565

W1 = (W1_Wt)*Wt = (0.4081)*3,191,735 = 1,302,586

Page 88: Etank Full Report

W2 = (W2_Wt)*Wt = (0.5451)*3,191,735 = 1,739,817

Ws = W_shell + W_Insulation (New Condition)

= 98,851 + 0 = 98,851

Wr = W_roof + Snow Load + W_Insulation (New Condition)

= 39,234 + 0 + 0 = 39,234

C1*Ws*Xs = 0.6*(98,851)(27.0176) = 1,602,432

C1*Wr*Ht = 0.6*(39,234)(54.0353) = 1,272,012

C1*W1*X1 = 0.6*(1,302,586)(7.5) = 5,861,635

C2*W2*X2 = (0.2219)(1,739,817)(11.1565) = 4,307,914

Ms = Z*I*(C1*Ws*Xs + C1*Wr*Ht + C1*W1*X1 + C2*W2*X2)

= (0.075)(1)(1,602,432 + 1,272,012 + 5,861,635 + 4,307,914)

= 978,300 ft-lbf

W_shell = Weight of Shell (New Condition)

W_roof2 = Weight of Roof Plates Supported By Shell (New)

wt = (W_shell + W_roof2)/(PI*OD) (New Condition)

= (98,851 + 39,234)/(PI*57.1193)

= 770. lbf/ft

RESISTANCE TO OVERTURNING (per Section E.4.1, E.4.2,

assuming no anchors)

Page 89: Etank Full Report

wl = 7.9*(tb1)*SQRT(Sy*G*H)

= 7.9*(0.2451)*SQRT(30,000*1*20)

= 1,500 lbf/ft

where tb1 = t - CA = 0.2451 in. (for Bottom Plate)

1.25*G*H*OD = 1.25(1)(20)(57.1193)

= 1,428 lbf/ft

since wl > 1.25*G*H*OD, wl = 1.25G*H*OD

wl = 1,428 lbf/ft

UNANCHORED TANKS (Section E.5.1)

Ms/[OD^2(wt+wl)] = 978,300/[(57.1193^2)(770. + 1,428)] = 0.1365

b = wt + 1.273(Ms)/OD^2 = max longitudinal compressive force

= 770. + 1.273(978,300)/(57.1193)^2 = 1,151 lbf/ft

MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3)

b/(12t) = Max Longitudinal Compressive Stress

= 1,151/(12*(0.25 - 0)) = 384 PSI

Page 90: Etank Full Report

G*H*OD^2/t^2 = (1)(20)(57.1193^2)/(0.25 - 0)^2 = 1,044,035

Fa = 10^6*t/OD = (10^6)(0.25 - 0)/57.1193 = 4,377 PSI

t = 0.25 - 0 = 0.25 in. (OK since b/(12t) <= Fa)

ANCHORED TANKS (Section E.5.2)

b = wt + 1.273(Ms)/OD^2 = Max Longitudinal Compressive Force

= 770. + 1.273(978,300)/(57.1193)^2 = 1,151 lbf/ft

MAXIMUM ALLOWABLE SHELL COMPRESSION (Section E.5.3)

b/(12t) = Max Longitudinal Compressive Stress

= 1,151/(12*(0.25 - 0)) = 384 PSI

G*H*OD^2/t^2 = (1)(20)(57.1193^2)/(0.25 - 0)^2 = 1,044,035

Fa = 10^6*t/OD = (10^6)(0.25 - 0)/57.1193 = 4,377 PSI

t = 0.25 - 0 = 0.25 in. (OK since b/(12t) <= Fa)

ANCHORAGE OF TANKS (Section E.6.1)

N = 20 Number of Anchors

Page 91: Etank Full Report

D = 57.3623 ft Diameter of Anchor Circle

W = Minus Corroded weight of shell and roof plates.

MAR = minimum anchorage resistance due to seismic moment

= 1.273(Ms)/OD^2 - W/Circumference

= 1.273(978,300)/57.1193^2 + -138,085/(PI*57.1193)

= -388 lbf/ft circumference

btseis = anchor tension req'd to resist seismic moment

= MAR*D*PI/(N)

= (-388)(57.3623)(PI)/(20) = -3,496 lbf

ANCHOR BOLT DESIGN

Bolt Material : A-307

Sy = 36,000 PSI

< Uplift Load Cases, per API-650 Table 5-21b >

D (tank OD) = 57.1193 ft

P (design pressure) = 3.94 INCHES H2O

Pt (test pressure per F.4.4) = P = 3.94 INCHES H2O

Page 92: Etank Full Report

Pf (failure pressure per F.6) = N.A. (see Uplift Case 3 below)

t_h (roof plate thickness) = 0.375 in.

Mw (Wind Moment) = 3,696,472 ft-lbf

Mrw (Seismic Ringwall Moment) = 978,300 ft-lbf

W1 (Dead Load of Shell minus C.A. and Any

Dead Load minus C.A. other than Roof

Plate Acting on Shell)

W2 (Dead Load of Shell minus C.A. and Any

Dead Load minus C.A. including Roof

Plate minus C.A. Acting on Shell)

W3 (Dead Load of New Shell and Any

Dead Load other than Roof

Plate Acting on Shell)

For Tank with Structural Supported Roof,

W1 = Corroded Shell + Shell Insulation

= 98,851 + 0

= 98,851 lbf

W2 = Corroded Shell + Shell Insulation + Corroded Roof Plates

Supported by Shell + Roof Dead Load Supported by Shell

= 98,851 + 0

+ 39,234 * [1 + 369,308*0/(144 * 39,234)]

= 138,085 lbf

Page 93: Etank Full Report

W3 = New Shell + Shell Insulation

= 98,851 + 0

= 98,851 lbf

Uplift Case 1: Design Pressure Only

U = [(P - 8*t_h) * D^2 * 4.08] - W1

U = [(3.94 - 8*0.375) * 57.1193^2 * 4.08] - 98,851

= -86,338 lbf

bt = U / N = -4,317 lbf

Sd = 15,000 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = N.A., since Load per Bolt is zero.

Uplift Case 2: Test Pressure Only

U = [(Pt - 8*t_h) * D^2 * 4.08] - W1

U = [(3.94 - 8*0.375) * 57.1193^2 * 4.08] - 98,851

= -86,338 lbf

bt = U / N = -4,317 lbf

Sd = 20,000 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = N.A., since Load per Bolt is zero.

Page 94: Etank Full Report

Uplift Case 3: Failure Pressure Only

Not applicable since if there is a knuckle on tank roof,

or tank roof is not frangible.

Pf (failure pressure per F.6) = N.A.

Uplift Case 4: Wind Load Only

PWR = Wind_Uplift/5.208

= 30/5.208

= 5.7604 IN. H2O

PWS = vF * 18

= 1 * 18

= 18 lbf/ft^2

MWH = PWS*(D+t_ins/6)*H^2/2

= 18*(57.1193+0/6)*54.0353^2/2

= 1,500,997 ft-lbf

U = PWR * D^2 * 4.08 + [4 * MWH/D] - W2

= 5.7604*57.1193^2*4.08+[4*1,500,997/57.1193]-138,085

= 43,707 lbf

bt = U / N = 2,185 lbf

Sd = 0.8 * 36,000 = 28,800 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = bt/Sd

= 2,185/28,800 = 0.076 in^2

Page 95: Etank Full Report

Uplift Case 5: Seismic Load Only

U = [4 * Mrw / D] - W2*(1-0.4*Av)

U = [4 * 978,300 / 57.1193] - 138,085*(1-0.4*0)

= -69,576 lbf

bt = U / N = -3,479 lbf

Sd = 0.8 * 36,000 = 28,800 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = N.A., since Load per Bolt is zero.

Uplift Case 6: Design Pressure + Wind Load

U = [(0.4*P + PWR - 8*t_h) * D^2 * 4.08] + [4 * MWH / D] - W1

= [(0.4*3.94+5.7604-8*0.375)*57.1193^2 * 4.08]+[4*1,500,997 / 57.1193] «

- 98,851

= 63,986 lbf

bt = U / N = 3,199 lbf

Sd = 20,000 = 20,000 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = bt/Sd

= 3,199/20,000 = 0.16 in^2

Uplift Case 7: Design Pressure + Seismic Load

U = [(0.4*P - 8*t_h)*D^2 * 4.08] + [4*Mrw/D] - W1*(1-0.4*Av)

= -49,297 lbf

Page 96: Etank Full Report

bt = U / N = -2,465 lbf

Sd = 0.8 * 36,000 = 28,800 PSI

A_s_r = Bolt Root Area Req'd

A_s_r = N.A., since Load per Bolt is zero.

Uplift Case 8: Frangibility Pressure

Not applicable since if there is a knuckle on tank roof,

or tank roof is not frangible.

Pf (failure pressure per F.6) = N.A.

< ANCHOR BOLT SUMMARY >

Bolt Root Area Req'd = 0.16 in^2

d = Bolt Diameter = 1 in.

n = Threads per inch = 8

A_s = Actual Bolt Root Area

= 0.7854 * (d - 1.3 / n)^2

= 0.7854 * (1 - 1.3 / 8)^2

= 0.5509 in^2

Exclusive of Corrosion,

Bolt Diameter Req'd = 0.56 in. (per ANSI B1.1)

Page 97: Etank Full Report

Actual Bolt Diameter = 1.000 in.

Bolt Diameter Meets Requirements.

<ANCHORAGE REQUIREMENTS>

Minimum # Anchor Bolts = 18

NOTE: API-620 has no minimum spacing requirement, but

per API-650 5.12.3, maximum spacing is 10 ft if anchorage required.

Actual # Anchor Bolts = 20

Anchorage Meets Spacing Requirements.

ANCHOR CHAIR DESIGN

(from AISI 'Steel Plate Engr Data' Dec. 92, Vol. 2, Part VII)

Entered Parameters

Chair Material: A-283 Gr C

Top Plate Type: DISCRETE

Chair Style: VERT. STRAIGHT

Page 98: Etank Full Report

a : Top Plate Width = 4.000 in.

b : Top Plate Length = 2.708 in.

k : Verical Plate Width = 2.500 in.

m : Bottom Plate Thickness = 0.2500 in.

t : Shell Course + Repad Thickness = 0.2500 in.

r : Nominal Radius to Tank Centerline = 342.591 in.

Design Load per Bolt: P = 4.8 KIPS (1.5 * Maximum from Uplift Cases)

d = Bolt Diameter = 1 in.

n = Threads per unit length = 8 TPI

A_s = Computed Bolt Root Area

= 0.7854 * (d - 1.3 / n)^2

= 0.7854 * (1 - 1.3 / 8)^2

= 0.551 in^2

Bolt Yield Load = A*Sy/1000 (KIPS)

= 0.551*36,000/1000

= 19.836 KIPS

Anchor Chairs will be designed to withstand

Page 99: Etank Full Report

Bolt Yield Load (per API-650 App. E.6.2.1.2)

Anchor Chair Design Load, P = 19.836 KIPS

Sts = 15,200 PSI (Allowable Tensile Stress per API-620 Table 5-1)

For Anchor Chair material: A-283 Gr C

Sd_Chair = 15.2 KSI

Since bottom t <= 3/8 in., Seismic Zone is a Factor,

and Wind Speed is >= 100 mph,

h_min is 12 in.

For Discrete Top Plate,

Max. Chair Height Recommended : h <= 3 * a

h_max = 3 * 4 = 12 in.

h = 12 in.

e_min = 0.886 * d + 0.572 = 1.458 in.

e = e_min = 1.458 in.

g_min = d + 1 = 2 in.

g = g_min = 2 in.

Page 100: Etank Full Report

f_min = d/2 + 0.125 = 0.625 in.

f = f_min = 0.625 in.

c_min = SQRT[P / Sd_Chair / f * (0.375 * g - 0.22 * d)]

= SQRT[19.836 / 15.2 / 0.625 * (0.375 * 2 - 0.22 * 1)]

= 1.052 in.

c >= c_min = 1.052 in.

j_min = MAX(0.5, [0.04 * (h - c)])

= MAX(0.5, [0.04 * (12.000 - 1.052)])

= 0.5 in.

j = j_min = 0.5 in.

b_min = e_min + d + 1/4

= 1.458 + 1 + 1/4

= 2.708 in.

Checking Requirement: b - k > 0.5 in.

<Stress due to Top Plate Thickness>

S_actual_TopPlate = P / f / c^2 * (0.375 * g - 0.22 * d)

= 19.84/0.625/1.052^2 * (0.375 * 2 - 0.22 * 1)

= 15.2 KSI

Page 101: Etank Full Report

<Shell Stress due to Chair Height> (For Discrete Top Plate)

S_actual_ChairHeight = P * e / t^2 * F3

where F3 = F1 + F2,

now F1 = (1.32 * z) / (F6 + F7)

where F6 = (1.43 * a * h^2) / (r * t)

and F7 = (4 * a * h^2)^(1/3)

and z = 1 / (F4 * F5 + 1)

where F4 = (0.177 * a * m) / SQRT(r * t)

and F5 = (m / t)^2

yields F5 = (0.25 / 0.25)^2

= 1.

yields F4 = (0.177 * 4. * 0.25) / SQRT(342.5905 * 0.25)

= 0.0191

yields z = 1 / (0.0191 * 1. + 1)

= 0.9812

yields F7 = (4 * 4. * 12.^2)^(1/3)

= 13.2077

yields F6 = (1.43 * 4. * 12.^2) / (342.5905 * 0.25)

= 9.6171

yields F1 = (1.32 * z) / (9.6171 + 13.2077)

= 0.0567

Page 102: Etank Full Report

now F2 = 0.031 / SQRT(r * t)

yields F2 = 0.031 / SQRT(342.5905 * 0.25)

= 0.0033

yields F3 = 0.0567 + 0.0033

= 0.0601

yields S_actual_ChairHeight = 19.836 * 1.458 / 0.25^2 * 0.0601

= 27.8086 KSI

Sts = 16,000 PSI (Allowable Tensile Stress per API-620 Table 5-1)

For Shell Course material: A-36,

Sd_ChairHeight = Sd_shell1 = 16 KSI

< ANCHOR CHAIR SUMMARY >

S_actual_TopPlate Meets Design Calculations

(within 105% of Sd_Chair)

S_actual_TopPlate/Sd_Chair

= 15.2/34.58 = 44.0%

S_actual_ChairHeight/Sd_ChairHeight

= 27.8086/16 = 173.8%

* * Warning * * S_actual_ChairHeight Exceeds 105% of Sd_ChairHeight

Use Anchor Chair Repad ( t = 0.100).

Page 103: Etank Full Report

NORMAL & EMERGENCY VENTING (API-2000)

Contents : Base Oil

Tank OD = 57.11925 ft

Tank Shell Height = 54.03527 ft

Tank Design Temp. = 70 °F

<INBREATHING - VACUUM RELIEF>

Q1 (Maximum Movement Out of Tank) (per Section 4.3.2.1.1)

= 5.6 CFH Air per 42 GPH outflow

= (5.6/42)*220*60

= 1,760 CFH, or 29 CFM free air

Q2 (Thermal Inbreathing) (per Section 4.3.2.1.2)

= 24,598 CFH, or 410. CFM free air (Table 2A Column 2)

Total Vacuum Relief Required = Q1 + Q2 = 26,358 CFH, or 439. CFM

Page 104: Etank Full Report

<OUTBREATHING - PRESSURE RELIEF>

Q1 (Maximum Movement Into Tank) (per Section 4.3.2.2.1)

= 6 CFH Air per 42 GPH inflow

= (6/42)*1,321*60 = 11,323 CFH, or 189. CFM free air

Q2 (Thermal Outbreathing) (per Section 4.3.2.2.2)

= 15,299 CFH, or 255 CFM free air (Table 2A Column 3)

Total Pressure Relief Required = Q1 + Q2 = 26,622 CFH, or 444. CFM

<EMERGENCY VENTING>

Max W = 30 ft.

For flat bottom tanks, only shell is considered for Wetted Area.

Wetted Area = 5,383 ft^2

(Section 4.3.3.2.2, Design Pressure <= 1 PSI)

Qe = 742,000 CFH, or 12367. CFM free air (Table 3A Column 2)

Page 105: Etank Full Report

x1 = 0.5 (Environment Factor for Drainage)

x2 = 1 (Environment Factor for Insulation)

Qe = x1*x2*Qe = (0.5)(1)(742,000)

= 371,000 CFH

CAPACITIES and WEIGHTS

Maximum Capacity (to upper TL) : 1,034,265 gal

Design Capacity (to Max Liquid Level) : 382,810 gal

Minimum Capacity (to Min Liquid Level) : 0 gal

NetWorking Capacity (Design - Min.) : 382,810 gal

New Condition Corroded

-----------------------------------------------------------

Shell 98,851 lbf 98,851 lbf

Roof

Plates 39,234 lbf 39,234 lbf

Rafters 3,646 lbf 3,646 lbf

Girders 0 lbf 0 lbf

Columns 1,005 lbf 1,005 lbf

Bottom 26,440 lbf 25,996 lbf

Stiffeners 0 lbf 0 lbf

Page 106: Etank Full Report

Nozzle Wgt 0 lbf 0 lbf

Misc Roof Wgt 0 lbf 0 lbf

Misc Shell Wgt 0 lbf 0 lbf

Insulation 0 lbf 0 lbf

-----------------------------------------------------------

Total 169,176 lbf 168,732 lbf

Weight of Tank, Empty : 169,176 lbf

Weight of Tank, Full of Product (SG=1): 8,800,531 lbf

Weight of Tank, Full of Water : 8,800,531 lbf

Net Working Weight, Full of Product : 3,363,879 lbf

Net Working Weight, Full of Water : 3,363,879 lbf

Foundation Area Req'd : 2,562 ft^2

Foundation Loading, Empty : 66.03 lbf/ft^2

Foundation Loading, Full of Product (SG=1) : 3,435 lbf/ft^2

Foundation Loading, Full of Water : 3,435 lbf/ft^2

SURFACE AREAS

Roof 2,565 ft^2

Shell 9,696 ft^2

Bottom 2,562 ft^2

Wind Moment 3,696,472 ft-lbf

Page 107: Etank Full Report

Seismic Moment 978,300 ft-lbf

MISCELLANEOUS ATTACHED ROOF ITEMS

MISCELLANEOUS ATTACHED SHELL ITEMS

MAWP & MAWV SUMMARY FOR JGC

MAXIMUM CALCULATED INTERNAL PRESSURE

MAWP = 15 PSI or 415.7 IN. H2O (per API-620)

MAWP = Maximum Calculated Internal Pressure (due to shell)

= 3.013 PSI or 83.5 IN. H2O

MAWP = Maximum Calculated Internal Pressure (due to roof)

= 36.0473 PSI or 999 IN. H2O

TANK MAWP = 3.013 PSI or 83.5 IN. H2O

MAXIMUM CALCULATED EXTERNAL PRESSURE

Page 108: Etank Full Report

MAWV = Maximum Calculated External Pressure (due to shell)

= -0.0536 PSI or -1.49 IN. H2O

MAWV = Maximum Calculated External Pressure (due to roof)

= 0 PSI or 0 IN. H2O

MAWV = N.A. (not calculated due to columns)

TANK MAWV = 0 PSI or 0 IN. H2O