european centre of excellence (coe) and something else… · • k-point sampling ... the...

20
and something else… Mikkel Strange (but presented by Karsten W. Jacobsen) European Centre of Excellence (CoE)

Upload: others

Post on 10-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • and something else…

    Mikkel Strange (but presented by Karsten W. Jacobsen)

    European Centre of Excellence (CoE)

  • Overview of current projects• Creating a big database for:


    DFT + Excited states + Molecular dynamics 
(writing parsers)

    • Error bars in DFT calculations (finite basis set) 
Useful for comparing calculations, or not?

    • Self-consistent 
hybrid functionals

  • Outline

    • Brief overview of the NOMAD project.

    • “Parsers” that converts output from electronic structure codes to a common format

    • “Error bars” from basis and k-point sampling

    • Self-consistent hybrid functionals in GPAW

  • NOMAD overview

    • Virtual reality (fx: exciton (r,r’)) • Remote visualisation 


    (structures, wave-functions, etc)

    • Stores your data for at least 10 years

    • Advanced analysis tools 
(machine learning etc)

    3,027,865 calculations today

  • Nomad: Producing dataRepository:

    output files from all codes are

    welcome (file.gpw)

    Archive:common data

    format (contains

    everything that is in the output files)

    50 most cited codes (GPAW, VASP, Gaussian,


    ASAP…)

    Conversion

    http://nomad-repository.eu/cms/

    Big data analytics Materials Encyclopedia

  • Nomad: Producing dataParsers done at DTU for: • GPAW | works • MOPAC | works • ASAP | works • ATK | not started • GROMACS | created

    All data should be parsed: Structures Energies

    Electron density Wave functions

    SCF iteration time Force field information

    Constraints …Start uploading your

    favourite GPAW gpw filescome June 15th!

  • Error bars project

    Next step: something about the error due to:• finite basis set • k-point sampling • other numerical settings?

    Should be useful for judging the quality of data in the
NOMAD database

    RESEARCH ARTICLE SUMMARY◥

    DFT METHODS

    Reproducibility in density functionaltheory calculations of solidsKurt Lejaeghere,* Gustav Bihlmayer, Torbjörn Björkman, Peter Blaha, Stefan Blügel,Volker Blum, Damien Caliste, Ivano E. Castelli, Stewart J. Clark, Andrea Dal Corso,Stefano de Gironcoli, Thierry Deutsch, John Kay Dewhurst, Igor Di Marco, Claudia Draxl,Marcin Dułak, Olle Eriksson, José A. Flores-Livas, Kevin F. Garrity, Luigi Genovese,Paolo Giannozzi, Matteo Giantomassi, Stefan Goedecker, Xavier Gonze, Oscar Grånäs,E. K. U. Gross, Andris Gulans, François Gygi, D. R. Hamann, Phil J. Hasnip,N. A. W. Holzwarth, Diana Iuşan, Dominik B. Jochym, François Jollet, Daniel Jones,Georg Kresse, Klaus Koepernik, Emine Küçükbenli, Yaroslav O. Kvashnin,Inka L. M. Locht, Sven Lubeck, Martijn Marsman, Nicola Marzari, Ulrike Nitzsche,Lars Nordström, Taisuke Ozaki, Lorenzo Paulatto, Chris J. Pickard, Ward Poelmans,Matt I. J. Probert, Keith Refson, Manuel Richter, Gian-Marco Rignanese, Santanu Saha,Matthias Scheffler, Martin Schlipf, Karlheinz Schwarz, Sangeeta Sharma,Francesca Tavazza, Patrik Thunström, Alexandre Tkatchenko, Marc Torrent,David Vanderbilt, Michiel J. van Setten, Veronique Van Speybroeck, John M.Wills,Jonathan R. Yates, Guo-Xu Zhang, Stefaan Cottenier*

    INTRODUCTION:The reproducibility of resultsis one of the underlying principles of science. Anobservation canonly be accepted by the scientificcommunity when it can be confirmed by inde-pendent studies. However, reproducibility doesnot come easily. Recent works have painfullyexposed cases where previous conclusionswerenot upheld. The scrutiny of the scientific com-munity has also turned to research involvingcomputer programs, finding that reproducibil-ity depends more strongly on implementationthan commonly thought. These problems areespecially relevant for property predictions ofcrystals and molecules, which hinge on precisecomputer implementations of the governingequation of quantum physics.

    RATIONALE:Thiswork focuses ondensity func-tional theory (DFT), a particularly popular quan-

    tum method for both academic and industrialapplications. More than 15,000 DFT papers arepublished each year, and DFT is now increas-ingly used in an automated fashion to buildlarge databases or applymultiscale techniqueswith limited human supervision. Therefore, thereproducibility of DFT results underlies thescientific credibility of a substantial fraction ofcurrent work in the natural and engineeringsciences. A plethora of DFT computer codesare available, many of them differing consid-erably in their details of implementation, andeach yielding a certain “precision” relative toother codes. How is one to decide formore thana few simple cases which code predicts the cor-rect result, and which does not? We devised aprocedure to assess the precision of DFT meth-ods and used this to demonstrate reproduci-bility among many of the most widely used

    DFT codes. The essential part of this assessmentis a pairwise comparison of a wide range ofmethodswith respect to their predictions of theequations of state of the elemental crystals. Thiseffort required the combined expertise of a largegroup of code developers and expert users.

    RESULTS:We calculated equation-of-state datafor four classes of DFT implementations, total-ing 40 methods. Most codes agree very well,with pairwise differences that are comparableto those between different high-precision exper-

    iments. Even in the case ofpseudization approaches,which largely depend ontheatomic potentials used,a similar precision can beobtainedaswhenusing thefull potential. The remain-

    ing deviations are due to subtle effects, such asspecific numerical implementations or the treat-ment of relativistic terms.

    CONCLUSION: Our work demonstrates thatthe precision of DFT implementations can bedetermined, even in the absence of one absolutereference code. Although this was not the case 5to 10 years ago,most of the commonlyused codesand methods are now found to predict essen-tially identical results. The established precisionof DFT codes not only ensures the reproducibilityof DFT predictions but also puts several past andfuture developments on a firmer footing. Anynewly developedmethodology can nowbe testedagainst the benchmark to verify whether itreaches the same level of precision. NewDFT ap-plications can be shown to have used a suffi-ciently precise method.Moreover, high-precisionDFT calculations are essential for developing im-provements to DFTmethodology, such as newdensity functionals, whichmay further increasethe predictive power of the simulations.▪

    RESEARCH

    SCIENCE sciencemag.org 25 MARCH 2016 • VOL 351 ISSUE 6280 1415

    The list of author affiliations is available in the full article online.*Corresponding author. E-mail: [email protected] (K.L.);[email protected] (S.C.)Cite this article as K. Lejaeghere et al., Science 351, aad3000(2016). DOI: 10.1126/science.aad3000

    Recent DFTmethods yield reproducible results.Whereas older DFT implementations predict different values (red darts), codes have now evolved tomutual agreement (green darts).The scoreboard illustrates the good pairwise agreement of four classes of DFT implementations (horizontal direction)with all-electron results (vertical direction). Each number reflects the average difference between the equations of state for a given pair of methods,withthe green-to-red color scheme showing the range from the best to the poorest agreement.

    ON OUR WEB SITE◥

    Read the full articleat http://dx.doi.org/10.1126/science.aad3000..................................................

    on

    June

    1, 2

    016

    http

    ://sc

    ienc

    e.sc

    ienc

    emag

    .org

    /D

    ownl

    oade

    d fr

    om

    Delta DFT:DFT codes can be converged to good agreement

  • Error bars projectSome simple questions

    • Is convergence with k-points and 
basis set independent?

    • Can we give error estimates?

  • Error bars project

    1 225

    H

    LiH

    3 225

    Li

    LiF

    11 225

    Na

    Nacl

    19 225

    K

    KCl

    37 225

    Rb

    RbCl

    55 225

    Cs

    CsCl

    87

    Fr

    4 216

    Be

    BeS

    12 225

    Mg

    MgO

    20 225

    Ca

    CaO

    38 225

    Sr

    SrO

    56 225

    Ba

    BaO

    88 225

    Ra

    RaF

    21 225

    Sc

    ScS

    39 225

    Y

    YN

    57-71

    La-Lu

    Lanthanide

    89-103

    Ac-Lr

    Actinide

    22 225

    Ti

    TiN

    40 225

    Zr

    ZrC

    72 225

    Hf

    HfC

    104

    Rf

    23 225

    V

    VC

    41 225

    Nb

    NbC

    73 225

    Ta

    TaC

    105

    Db

    24 225

    Cr

    CrN

    42 187

    Mo

    MoC

    74 187

    W

    WC

    106

    Sg

    25 225

    Mn

    MnS

    43 14

    Tc

    TcO2

    75 221

    Re

    ReO

    107

    Bh

    26 225

    Fe

    FeO

    44 136

    Ru

    RuO

    76 187

    Os

    BOs

    108

    Hs

    27 225

    Co

    CoO

    45 136

    Rh

    RhO

    77 136

    Ir

    IrO

    109

    Mt

    28 225

    Ni

    NiO

    46 131

    Pd

    PdO

    78 131

    Pt

    PtO

    110

    Ds

    29 216

    Cu

    CuBr

    47 225

    Ag

    AgCl

    79 224

    Au

    Au2S

    111

    Rg

    30 216

    Zn

    ZnO

    48 225

    Cd

    CdO

    80 225

    Hg

    HgF

    112

    Uub

    31 216

    Ga

    GaP

    13 216

    Al

    AlP

    5 194

    B

    BN

    49 216

    In

    InP

    81 225

    Tl

    TlCl

    113

    Uut

    6 225

    C

    TiC

    14 216

    Si

    SiC

    32 160

    Ge

    TeGe

    50 62

    Sn

    SnS

    82 225

    Pb

    PbS

    114

    Uuq

    7 225

    N

    VN

    15 216

    P

    InP

    33 216

    As

    GaAS

    51 216

    Sb

    InSb

    83 215

    Bi

    BiF5

    115

    Uup

    8 225

    O

    CdO

    16 216

    S

    ZnS

    34 186

    Se

    CdSe

    52 216

    Te

    ZnTe

    84 225

    Po

    PoO

    116

    Uuh

    9 225

    F

    NaF

    17 216

    Cl

    CuCl

    35 225

    Br

    KBr

    53 225

    I

    LiI

    85

    At

    117

    Uus

    10

    Ne

    2

    He

    18

    Ar

    36

    Kr

    54

    Xe

    86

    Rn

    118

    Uuo

    1

    2

    3

    4

    5

    6

    7

    1 IA

    2 IIA

    3 IIIA 4 IVB 5 VB 6 VIB 7 VIIB 8 VIIIB 9 VIIIB 10 VIIIB 11 IB 12 IIB

    13 IIIA 14 IVA 15 VA 16 VIA 17 VIIA

    18 VIIIA

    57 176

    La

    LaCl

    58 225

    Ce

    CeN

    59 225

    Pr

    PrN

    60 225

    Nd

    NdN

    61 164

    Pm

    PmO2

    62 225

    Sm

    SmN

    63 225

    Eu

    EuN

    64 225

    Gd

    GdN

    65 225

    Tb

    TbN

    66 225

    Dy

    DyN

    67 225

    Ho

    HoN

    68 225

    Er

    ErN

    69 225

    Tm

    TmN

    70 225

    Yb

    YbN

    71 225

    Lu

    Lu

    89 176

    Ac

    AcCl

    90 225

    Th

    ThC

    91

    Pa

    92

    U

    93

    Np

    94

    Pu

    95

    Am

    96

    Cm

    97

    Bk

    98

    Cf

    99

    Es

    100

    Fm

    101

    Md

    102

    No

    103

    LrZ Spacegroup

    Symbol

    Binary solid

    notused

    Periodic Table of Chemical Elements for Binary solids

    Codes: GPAW | PW | DTU

    VASP | PW | TU Graz Exciting | LAPW | HU Berlin

    AIMS | NAO | FHI Berlin

    Properties:Structures Energies

    Band gaps

    Functional: PBE and LDA 90 Binary solids 73 Elemental (from ∆DFT) -> ~5000 calculations

    (+ random systems from the NOMAD database)

  • Error bars projectTotal energies (binaries): light vs really tight basis

    AIMS

    -12 -10 -8 -6 -4 -2 0Etot (Ec=400eV) (eV)

    -12

    -10

    -8

    -6

    -4

    -2

    0

    E tot

    (Ec=

    1600

    eV) (

    eV)

    kdens=4, error: 7.08%kdens=6, error: 7.07%kdens=8, error: 7.07%

    GPAW

    Error from k-point sampling looks “small” 
compared to basis set

  • Error bars projectTotal energies (binaries)

    Things really improve at Ecut = 600eV!

    MAE: Mean absolute error MAXAE: Max absolute error MAPE: Mean absolute percentage error

  • Error bars projectCohesive energies (binaries)

    Energy differences benefit from error cancelation

    MAE: Mean absolute error MAXAE: Max absolute error MAPE: Mean absolute percentage error

  • Error bars project

    N

    O

    F

    Elemental solids

    N, O and F are the bad guys!

  • Error bars projectBinaries without


    N, O and F

    N, O and F are the bad guys!

    Binaries

  • Error bars project

    400 800 1200Ecut (eV)

    1

    10

    100

    1000

    E tot

    abs

    erro

    r (m

    eV)

    Mean | binariesMax | binariesMean | monomersMax | monomers Max abs error for binaries

    and elemental solids similar

    Simple error 
estimate suggestion:simply use the error for the worst element.

  • Error bars projectIs convergence with basis set and k-points independent?

    E(kpts, basis) = F1(kpts) + F2(basis)

    Å Å

    400 eV 1600 eV

    4 5 6 7 8kdens

    -0.15

    -0.1

    -0.05

    0

    0.05

    ∆E t

    ot(1

    600e

    V) - ∆

    E tot

    (400

    eV) (

    eV)

    �Etot

    (⇢k

    ) = Etot

    (⇢k

    = 8)� Etot

    (⇢k

    ) Independent or not?

  • Error bars projectAlso need to look at: - band gaps - structures…

  • Self-consistent hybrid functionals (HSE, PBE0, …)

    Challenges:• Slow (compared to GGA) • Convergence is 


    supposed to be difficult

    Currently in GPAW• Non-SC with PW and k-points • SC with FD Gamma point only

    VASP tells you to use: 
Damped “molecular dynamics”

  • Self-consistent hybrid functionals (HSE, PBE0, …)

    Challenges:• Convergence is difficult

    hg|ĥ|g0iHamiltonian in PW basis

    We are trying with damped molecular dynamics but also brute force:

    ĥHF = t̂+ v̂H + v̂F + ...

    Should be stable, but limited in supercell size

  • Thank you for the attention!