ev-tem: transmission electron microscopy at leem energies

1
Discover the world at Leiden University eV-TEM: Transmission Electron Microscopy at LEEM Energies Imaging in LEEM and eV-TEM • Comparison of the same area in eV-TEM and LEEM • gold nanoparticles on graphene • Silicon Nitride support grid (2.5 μm holes) eV-TEM Setup References [1] P.S. Neu, D. Geelen et al., arxiv.org, 2009.09856 (2020, preprint) [2] D. Geelen et al., Ultramicroscopy. 159, 482–487 (2015) [3] D. Geelen, doctoral dissertation, Casimir PhD Series (2018) [4] M. Seah & W. Dench, Surface and interface analysis 1, 2–11 (1979) [5] Gatta-AFM, http://www.gattaquant.com/products/ gatta-afm.html [6] D. Geelen et al., Phys. Rev. Lett. 123, 86802 (2019) P.S. Neu 1 , D. Geelen 1 , A. Thete 1 , R.M. Tromp 2,1 & S.J. van der Molen 1 1 Leiden University, 2 IBM Yorktown Heights [email protected] contrast aperture electron gun -15 kV detector prism 1 deflector 3 deflector 1 sample -15 kV + V 0 objective lens electron mirror prism 2 TEM gun -15 kV 80% 20% 3.0 eV 3.0 eV 3.0 eV eV-TEM 2.5 eV 4.0 eV Resonant Transmission and Reflection in Graphene • Transmissivity minimum, i.e. Mean Free Path minimum, at ~30 eV -> matches ‘universal curve’ prediction [4] • Transmissivity maxima (corresponding reflectivity minima) caused by the interference of electrons reflected from different layers [6] • Insets: splitting of the minima is characteristic of the layer count Resolution • ~10 nm resolution measured from 20% to 80% intensity increase • Limited by size & coherence of electron emitter • Electron gun behind sample - barium-oxide emitter - 0.8 eV energy spread • 0-100 eV landing energy • Extension of fully-operational aberration corrected LEEM DNA Origami • DNA origami rectangles[5] on graphene oxide • no visible degradation over one hour [2] 4.0 eV 2.5 eV eV-TEM LEEM 3.0 eV 2.0 eV LEEM eV-TEM long axis, 70 nm short axis, 50 nm Intensity profiles along arrows of corresponding color 0 10 20 30 40 50 60 70 Energy [eV] 10 -4 10 -3 10 -2 10 -1 10 0 Transmissivity One layer Two layers Three layers 7.0 eV 500 nm 0 10 20 30 40 50 60 70 Energy [eV] 10 -4 10 -3 10 -2 10 -1 10 0 Reflectivity One layer Two layers Three layers 0 2 4 6 Energy [eV] 0.2 0.4 Reflectivity 16 18 20 22 24 Energy [eV] 0.06 0.12 2.0 eV 500 nm

Upload: others

Post on 14-Nov-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: eV-TEM: Transmission Electron Microscopy at LEEM Energies

Discover the world at Leiden University

eV-TEM: Transmission Electron Microscopy at LEEM Energies

Imaging in LEEM and eV-TEM• Comparison of the same area in eV-TEM and LEEM• gold nanoparticles on graphene• Silicon Nitride support grid (2.5 µm holes)

eV-TEM Setup

References[1] P.S. Neu, D. Geelen et al., arxiv.org, 2009.09856 (2020, preprint)[2] D. Geelen et al., Ultramicroscopy. 159, 482–487 (2015)[3] D. Geelen, doctoral dissertation, Casimir PhD Series (2018)[4] M. Seah & W. Dench, Surface and interface analysis 1, 2–11 (1979)[5] Gatta-AFM, http://www.gattaquant.com/products/ gatta-afm.html[6] D. Geelen et al., Phys. Rev. Lett. 123, 86802 (2019)

P.S. Neu1, D. Geelen1, A. Thete1, R.M. Tromp2,1 & S.J. van der Molen1

1Leiden University, 2IBM Yorktown Heights [email protected]

contrast aperture

electron gun-15 kV

detector

prism 1

deector 3

deector 1

sample-15 kV + V0

objective lens

electron mirrorprism 2

TEM gun-15 kV

80%

20%

3.0 eV3.0 eV3.0 eVeV-TEM

2.5 eV

4.0 eV

Resonant Transmission and Re�ection in Graphene• Transmissivity minimum, i.e. Mean Free Path minimum, at ~30 eV -> matches ‘universal curve’ prediction [4]

• Transmissivity maxima (corresponding reflectivity minima) caused by the interference of electrons reflected from different layers [6]

• Insets: splitting of the minima is characteristic of the layer count

Resolution• ~10 nm resolution measured from 20% to 80% intensity increase• Limited by size & coherence of electron emitter

• Electron gun behind sample - barium-oxide emitter - 0.8 eV energy spread• 0-100 eV landing energy• Extension of fully-operational aberration corrected LEEM

DNA Origami• DNA origami rectangles[5] on graphene oxide• no visible degradation over one hour

[2]

4.0 eV 2.5 eVeV-TEM LEEM

3.0 eV

2.0 eV

LEEM

eV-TEM

long axis, 70 nm short axis, 50 nm

Inte

nsity

pro

files

alo

ng a

rrow

s of

cor

resp

ondi

ng c

olor

0 10 20 30 40 50 60 70

Energy [eV]

10−4

10−3

10−2

10−1

100

Refl

ectivi

ty

One layer

Two layers

Three layers

0 10 20 30 40 50 60 70

Energy [eV]

10−4

10−3

10−2

10−1

100

Tra

nsm

issivi

ty

One layer

Two layers

Three layers

0 2 4 6

Energy [eV]

0.2

0.4

Refl

ectivity

16 18 20 22 24

Energy [eV]

0.06

0.12

7.0 eV

2.0 eV

500 nm

500 nm

0 10 20 30 40 50 60 70

Energy [eV]

10−4

10−3

10−2

10−1

100

Refl

ectivi

ty

One layer

Two layers

Three layers

10−2

10−1

100

Tra

nsm

issivi

ty

One layer

Two layers

Three layers

0 2 4 6

Energy [eV]

0.2

0.4

Refl

ectivity

16 18 20 22 24

Energy [eV]

0.06

0.12

7.0 eV

2.0 eV

500 nm

500 nm