evaluation of pwr pres sure ves sel fast neu tron …

7
EVALUATION OF PWR PRESSURE VESSEL FAST NEUTRON FLUENCE BENCHMARKS FROM NUREG/CR-6115 WITH ARES TRANSPORT CODE by Liang ZHANG, Bin ZHANG * , Cong LIU, and Yixue CHEN School of Nuclear Science and Engineering, North China Electric Power University, Beijing, China Scientific paper http://doi.org/10.2298/NTRP1703204Z An accurate evaluation of PWR pressure vessel fast neutron fluence is essential to ensure pres- sure vessel integrity over the design lifetime. The discrete ordinates method is one of the main methods to treat such problems. In this paper, evaluations have been performed for three PWR benchmarks described in NUREG/CR-6115 using ARES transport code. The calculated re- sults were compared to the reference values and a satisfactory agreement was obtained. In addi- tion, the effects of S N numeric and source distribution modeling for pressure vessel fast neutron fluence calculation are investigated. Based on the fine enough grids adopted, the different spa- tial and angular discretization introduces derivations less than 3 %, and fix-up for negative scat- tering source causes no noticeable effects when calculating pressure vessel fast neutron fluence. However, the discrepancy of assembly-wise and pin-wise source modeling for peripheral assem- blies reaches ~20 %, which indicates that pin-wise modeling for peripheral assemblies is essen- tial. These results provide guidelines for pressure vessel fast neutron fluence calculation and demonstrate that the ARES transport code is capable of performing neutron transport calcula- tions for evaluating PWR pressure vessel fast neutron fluence. Key words: discrete or dinate, NUREG/CR-6115, reactor pressure vessel, fast neutron fluence, transport calculation INTRODUCTION The integrity of pressurized water reactor pres- sure vessel (RPV) must be guaranteed over the de- signed lifetime, or even longer when considering the plant life extension in recent years. Radiation embrittlement, primarily caused by fast neutrons, is one of the major factors affecting the integrity of pressure vessel. Therefore, an accurate calculation of fast neu- tron fluence in the pressure vessel is essential to evalu- ate material radiation damage. Considering the deep penetration and anisotropy that characterize the fast neutron transport process, discrete ordinates method is one of the methods selected to treat such problems. The vessel fast neutron fluence benchmark prob- lems described in NUREG/CR-6115 are identified in Guide 1.190 [1] for using in the benchmarking pressure vessel fast neutron fluence prediction methodologies. Traditionally, the 3-D neutron flux distribution is ob- tained by the synthesis procedure [1, 2], which combines the two-dimensional R q, R z solutions, and one-di- mensional R solutions. Also, “bootstrap” is performed where computer-storage limitations prevent a sin- gle-model representation. The TORSED [3] and TORSET [4] are used for the procedure of bootstrapping, in which the interior boundary neutron flux, picked up from the up-stream region, is used as the boundary source of calculations for the down-stream region. In this paper, a direct 3-D transport calculation based on Carte- sian orthogonal structured mesh, is conducted. Based on the synthesis transport procedure, many analyses have been performed to assess the im- pact of different issues on the accuracy of fast neutron fluence calculations, including the S N numeric [5], dif- ferent multigroup libraries [6], the anisotropy order [7], and the neutron source spectrum [8]. Nowadays, 3-D pressure vessel fast neutron fluence calculation with S N method is feasible. Therefore, we examine the effect of S N numeric and source distribution modeling when performing the pressure vessel calculations. DISCRETE ORDINATES METHOD IN ARES ARES [9] is a multi-dimensional parallel dis- crete ordinates neutral particle transport code that uses state-of-the-art solution methods to obtain accurate L. Zhang, et al.: Evaluation of PWR Pressure Vessel Fast Neutron Fluence ... 204 Nuclear Technology & Radiation Protection: Year 2017, Vol. 32, No. 3, pp. 204-210 * Corresponding author; e-mail: zhangbin@ncepu.edu.cn

Upload: others

Post on 02-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

EVAL U A TION OF PWR PRES SURE VES SEL FASTNEU TRON FLUENCE BENCHMARKS FROM NUREG/CR-6115

WITH ARES TRANS PORT CODE

by

Liang ZHANG, Bin ZHANG*, Cong LIU, and Yixue CHEN

School of Nu clear Sci ence and En gi neer ing, North China Elec tric Power Uni ver sity, Beijing, China

Scientific pa perhttp://doi.org/10.2298/NTRP1703204Z

An ac cu rate eval u a tion of PWR pres sure ves sel fast neu tron fluence is es sen tial to en sure pres -sure ves sel in teg rity over the de sign life time. The dis crete or di nates method is one of the mainmeth ods to treat such prob lems. In this pa per, eval u a tions have been per formed for three PWRbenchmarks de scribed in NUREG/CR-6115 us ing ARES trans port code. The cal cu lated re -sults were com pared to the ref er ence val ues and a sat is fac tory agree ment was ob tained. In ad di -tion, the ef fects of SN nu meric and source dis tri bu tion mod el ing for pres sure ves sel fast neu tronfluence cal cu la tion are in ves ti gated. Based on the fine enough grids adopted, the dif fer ent spa -tial and an gu lar discretization in tro duces der i va tions less than 3 %, and fix-up for neg a tive scat -ter ing source causes no no tice able ef fects when cal cu lat ing pres sure ves sel fast neu tron fluence.How ever, the dis crep ancy of as sem bly-wise and pin-wise source mod el ing for pe riph eral as sem -blies reaches ~20 %, which in di cates that pin-wise mod el ing for pe riph eral as sem blies is es sen -tial. These re sults pro vide guide lines for pres sure ves sel fast neu tron fluence cal cu la tion anddem on strate that the ARES trans port code is ca pa ble of per form ing neu tron trans port cal cu la -tions for eval u at ing PWR pres sure ves sel fast neu tron fluence.

Key words: dis crete or di nate, NUREG/CR-6115, re ac tor pres sure ves sel, fast neu tron fluence,trans port cal cu la tion

IN TRO DUC TION

The in teg rity of pres sur ized wa ter re ac tor pres -sure ves sel (RPV) must be guar an teed over the de -signed life time, or even lon ger when con sid er ing theplant life ex ten sion in re cent years. Ra di a tionembrittlement, pri mar ily caused by fast neu trons, is oneof the ma jor fac tors af fect ing the in teg rity of pres sureves sel. There fore, an ac cu rate cal cu la tion of fast neu -tron fluence in the pres sure ves sel is es sen tial to eval u -ate ma te rial ra di a tion dam age. Con sid er ing the deeppen e tra tion and ani so tropy that char ac ter ize the fastneu tron trans port pro cess, dis crete or di nates method isone of the meth ods se lected to treat such prob lems.

The ves sel fast neu tron fluence bench mark prob -lems de scribed in NUREG/CR-6115 are iden ti fied inGuide 1.190 [1] for us ing in the benchmarking pres sureves sel fast neu tron fluence pre dic tion meth od ol o gies.Tra di tion ally, the 3-D neu tron flux dis tri bu tion is ob -tained by the syn the sis pro ce dure [1, 2], which com binesthe two-di men sional R – q, R – z so lu tions, and one-di -men sional R so lu tions. Also, “boot strap” is per formedwhere com puter-stor age lim i ta tions pre vent a sin -

gle-model rep re sen ta tion. The TORSED [3] andTORSET [4] are used for the pro ce dure of boot strap ping, in which the in te rior bound ary neu tron flux, picked upfrom the up-stream re gion, is used as the bound arysource of cal cu la tions for the down-stream re gion. In this pa per, a di rect 3-D trans port cal cu la tion based on Car te -sian or thogo nal struc tured mesh, is con ducted.

Based on the syn the sis trans port pro ce dure,many anal y ses have been per formed to as sess the im -pact of dif fer ent is sues on the ac cu racy of fast neu tronfluence cal cu la tions, in clud ing the SN nu meric [5], dif -fer ent multigroup li brar ies [6], the ani so tropy or der[7], and the neu tron source spec trum [8]. Now a days,3-D pres sure ves sel fast neu tron fluence cal cu la tionwith SN method is fea si ble. There fore, we ex am ine theef fect of SN nu meric and source dis tri bu tion mod el ingwhen per form ing the pres sure ves sel cal cu la tions.

DIS CRETE OR DI NATES METHODIN ARES

ARES [9] is a multi-di men sional par al lel dis -crete or di nates neu tral par ti cle trans port code that uses state-of-the-art so lu tion meth ods to ob tain ac cu rate

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...204 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210

* Cor re spond ing au thor; e-mail: [email protected]

Page 2: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

so lu tions to the lin ear Boltzmann trans port equation[10]

r r r r r r r r rW W W WÑ + = +å

+ ¢

y y( , , ) ( ) ( , , ) ( , , )r r,E r r

d

E E Q E

E

t

0

4

ò ¢ ¢ ® ¢ ® ¢ ¢åò d (r rs

r r r r r rW W W W

p

, , ) ( , , ) ( )E E Ey 14

There are six in de pend ent vari ables in thesteady-state trans port equa tion. The en ergy vari able isdiscretized in a stan dard man ner to ob tain a set ofmulti-group equa tions.

The dis crete or di nates method is em ployed toad dress the discretization of the an gu lar vari able. Thisap prox i ma tion con sists of eval u at ing the trans portequa tion in dis tinct an gu lar di rec tions and then, ap ply -ing a com pat i ble quad ra ture ap prox i ma tion to an gu larintegrals

f y

y

gnk

nk

nk

Y

Y

( ) ( , ) (

( , ) (

r r r r r

r r r

r r )d

r

g

g m m

= @

@

ò W W W

W W

p4

)wm=

M

m1

å (2)

where fgnk is the neu tron an gu lar flux mo ment of group

g, Ynk – the neu tron an gu lar flux in group g, yg – the

spher i cal har monic, and {( , ) ,... , }rW m mw m M= 1 – the

quad ra ture sets. Cur rently, ARES pro vides the levelsym met ric quad ra ture sets, the equal weight quad ra turesets, the even-odd mo ment quad ra ture sets, which arefull-sym met ric, as well as the Legendre-Chebyshevquad ra ture sets which are half-sym met ric. In ad di tion, a bi as ing tech nique based on the Legendre-Chebyshevquad ra ture sets, called “the an gu lar re fine ment tech -nique for po lar an gles”, is de vel oped and im ple mentedin ARES code. From a prac ti cal en gi neer ing point ofview, first col li sion source method is em ployed to mit i -gate ray ef fects, which ap pears as unphysical os cil la -tions in the neu tron sca lar flux and rep re sents the mostsig nif i cant de fi ciency of the dis crete or di nates ap prox i -ma tion.

For any given en ergy group and di rec tion, thetrans port equa tion can be re duced to

r r r r rWm m,g t,g m,g m,gr r r rÑ + å =y y( ) ( ) ( ) ( )Q (3)

In te grat ing eq. (3) over a sin gle mesh, we can get the cell-bal ance equa tion

my y

hy y

xy

mi,out i,in

m

jj,out j,in

m

kk,+

D D

D

x y

z

i

( ) ( )

(

- + - +

out k,in m,ijkt,ijk m,ijk- + å =y y) Q (4)

To close eq. (4), the re la tion ship be tween the cell av er age neu tron fluxes and the face-edge neu tronfluxes is in tro duced

y y y

y y

m,ijk m,iin m,iout

m, jin m, j

=-

++

=

=-

++

1

2

1

21

2

1

2

a a

b bout

m, kin m, kout

=

=-

++1

2

1

2

c cy y (5)

Sev eral schemes were im ple mented in ARES tode ter mine the weight ing fac tors a, b and c, in clud ingtheta weighted (TW), di rec tional theta weighted(DTW), and ex po nen tial di rec tional weighted (EDW)[11]. Apart from the cell bal ance schemes, ARES alsoem ployed the lin ear dis con tin u ous fi nite el e mentscheme and short char ac ter is tic schemes to treat spa -tial discretization. To avoid neg a tive neu tron fluxes inthis deep pen e tra tion trans port cal cu la tion, we onlycon sider schemes which pro duce non-neg a tive neu -tron fluxes when the source is greater than zero.

RPV FAST NEU TRON FLUENCECAL CU LA TIONS

Bench mark spec i fi ca tion

The PWR calculational bench mark adopts a typ -i cal 204 fuel as sem bly pres sur ized wa ter re ac tor corewith a power of 2527.73 MW. As de picted in fig. 1, themodel in cludes core re gion, core bar rel, ther malshield, pres sure ves sel, ves sel in su la tion and an outercon crete bi o log i cal shield. The de tails of ge om e try di -men sions and ma te rial com po si tion are doc u mented in NUREG/CR-6115. Three sur veil lance cap sules are in -cluded in this bench mark: (a) ther mal shield cap sule,which is lo cated on the outer wall of the ther mal shield, (b) pres sure ves sel cap sule, which is lo cated on the in -ner wall of the ves sel, and (c) cav ity cap sule, which islo cated at a ra dius of 320.06 cm and the az i muth of9.5º. Lo ca tions of the first two cap sules are il lus tratedin fig. 1.

Three dif fer ent types of fuel load ings are eval u -ated: stan dard core load ing (SCL), low leak age coreload ing (LLCL), and par tial length shield as sem blycore (PLSA). The SCL model is a typ i cal equi lib riumcy cle core. The LLCL adopts the same ge om e try andma te rial in for ma tion and var ies only by the core con -fig u ra tion, in which high burnup fuel as sem blies arelo cated on the core pe riph ery to re duce the core leak -age. PLSA model em ploys par tial length shield as sem -blies on the core pe riph ery, in which the fuel rods in the lower sec tions of the fuel as sem bly have been re placed with stain less rods for shield ing.

Source cal cu la tion

The de ter mi na tion of the fis sion neu tron source,which is used as the fixed source in the trans port cal cu -la tions, con sists of the ab so lute source strength with its spa tial-en ergy de pend ency. The multigroup sourcedis tri bu tion can be cal cu lated by

S P Cg gr r r r( ) ( ) ( ) ( )r r r r

= c (6)

where g is the en ergy group in dex, cg – the sourcespec trum, P – the power and C – the power-to-source

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210 205

Page 3: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

con ver sion fac tor. The power dis tri bu tion P( )rr can be

de ter mined by the rel a tive as sem bly power, the ax ialpower dis tri bu tions and the to tal power, which are allpro vided in NUREG/CR-6115.

For a sin gle iso tope, the source spec trum is thefis sion spec trum and the power-to-source con ver sionfac tor can be eval u ated by

Cv

E=

r

(7)

where v de notes the av er age num ber of neu trons emit -ted per fis sion and Er de notes the re cov er able en ergyre leased per fis sion.

Con sid er ing the dif fer ent iso to pic fis sion frac -tions within dif fer ent as sem blies, the de ter mi na tion of cg r( )

r and C( )

rr must ac count for the fact that changes

in iso to pic fis sion frac tions with fuel ex po sure re sultin vari a tions in the fis sion spec tra, the num ber of neu -trons emit ted per fis sion and the re cov er able en ergy

re leased per fis sion. Based on fis sion frac tion av er ag -ing, the equiv a lent C( )

rr and cg r( )

r can be given by

C

F v

F E

j j

jrj

j

j

( )

( )

( )

r

r

rr

r

r=

å

å(8)

and

c

c

g r

r

r( )

( )

( )

r

r

r=å

å

F

F

jgj

j

j

j

(9)

where F j ( )rr re fers to the fis sion frac tion of iso tope j,

which has de pend ency upon the fuel ex po sure at lo ca tion rr. For this bench mark, the fis sion frac tion by iso tope asfunc tion of ex po sure is avail able in NUREG/CR-6115.

In this pa per, the spa tial de pend ency of pa ram e -ters C( )

rr and cg r( )

r is ad dressed by av er ag ing over

each as sem bly. Also, the power dis tri bu tion P( )rr is av -

er aged over each as sem bly for in te rior as sem blies andover each fuel pin for outer three pe riph ery as sem blies.

Trans port cal cu la tion

Af ter de ter min ing the source dis tri bu tion, thetrans port of neu trons from the core to the lo ca tion ofin ter est in the pres sure ves sel, is sim u lated by AREStrans port code.

A multi-group neu tron cross sec tion li brary ispre pared based on the FENDL-3.0 li brary for mix -tures, cor re spond ing to each zones in the mod els. Toeval u ate fast neu tron fluence, the Vi ta min-J en ergystruc ture, which con tains 104 groups from ~0.1 MeVto 19.64 MeV, is em ployed. And P-5 Legendre ex pan -sion of scat ter ing cross-sec tion is used. Be cause of thetrun cated Legendre ex pan sion, a neg a tive scat ter ingsource may be ob tained for some di rec tions. To guar -an tee the positivity of the source, the neg a tive to talsource is set to zero as soon as it ap peared.

To avoid neg a tive neu tron fluxes and ob tain re li ablere sults, EDW spa tial dif fer enc ing scheme is adopted. And a Car te sian struc tured grid con tain ing 520 ́ 322 ́ 58meshes is con structed by GGTM [12]. For an gu lardiscretization, we em ploy Legendre-Chebyshev quad ra ture set, which is de rived by set ting the po lar an gles equal to theroots of the Legendre poly no mial and the az i muthal an glesequal to the roots of Chebyshev poly no mi als. A point-wiseneu tron flux con ver gence of 10–4 is used.

In ad di tion, the ef fects of dif fer ent spa tialdiscretization, dif fer ent or der of quad ra ture sets, thefix-up for the neg a tive scat ter ing source and dif fer entho mog e ni za tion lev els of source dis tri bu tion mod el -ing are in ves ti gated in this pa per.

RE SULTS AND DIS CUS SION

In this sec tion, ARES cal cu lated re sults in clud ingfast neu tron fluence rate, fast neu tron spec trum and do -

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...206 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210

Fig ure 1. Ge om e try con fig u ra tion of the pres sur izedwa ter re ac tor model

Page 4: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

sim e try re ac tion rates are pre sented and com pared withref er ence val ues doc u mented in NUREG/CR-6115.

Fast neu tron fluence rate is cal cu lated at a cer tain ra dius as a func tion of az i muth. To re duce the amountof in for ma tion, root mean square (RMS) of the rel a tive er ror was se lected to as sess the over all ac cu racy

RMS i,cal i, ref

i, ref

=-æ

èçç

ö

ø÷÷å

=

12

1N i

N f f

f(10)

where N is the num ber of lo ca tions at a cer tain ra diusand fcal and fref de notes cal cu lated neu tron flux andcor re spond ing ref er ence val ues, re spec tively.

Ta ble 1 sum ma rizes the RMS er ror of fast neu -tron fluence for SCL model. Over all, the max i mumRMS er rors at these lo ca tions are about 23 % com -pared to SN ref er ence val ues and 13 % com pared toMCNP re sults, re spec tively. These dis agree ments areex pected when con sid er ing the fol low ing as pects:

(a) the fact that the ref er ence re sults are based onsyn the sis method and ARES con duct a di rect 3-Dtrans port cal cu la tion. The ref er ence cal cu la tions wereper formed for a ra dial R – q plane, an ax ial plane and a 1-D R ge om e try. Also, a two-step “boot strap” fash ionis used in R – q cal cu la tion,

(b) the dif fer ences be tween the FENDL-3.0 li -brary adopted in ARES and BU GLE-93 li brary em -ployed in ref er ence.

As for de tailed dif fer ences along the az i muth an gle,we com pare the fast neu tron fluence rate (E > 1.0 MeV) atthe in ner wall of the ves sel as a func tion of az i muth an gleand plot the SCL/LLCL re sults at ax ial peak lo ca tion in

fig. 2 and SCL/PLSA re sults at lower weld lo ca tion in fig.3. As ex pected, the LLCL core load ing sig nif i cantly re -duces the ves sel in ner-wall fast neu tron fluence, and thePLSA core de sign dis tinctly re duces the fast neu tronfluence at the lower weld lo ca tion from 0 to ~30 az i muthan gle. For most points se lected, the cal cu la tion to ref er -ence ra tios lie in the scope from 1.1 to 1.3. The ra tios ex -hibit a no tice able de crease near 20 de gree due to the factthat sep a rate cap sule mod els were per formed inNUREG/CR-6115.

With the pur pose of eval u at ing cal cu lated en -ergy-de pend ent neu tron fluxes, we com pare the fast neu -tron spec trum at three cap sule lo ca tions. As il lus trated in fig. 4, good agree ment is ob tained above 1 MeV, whilehigher re sults are ob tained from 0.1 MeV to 1 MeV. Thesedif fer ences in creases as the cap sule lo ca tion is mov ing far -ther from the core cen ter, which may be caused by the dif -fer ent cross-sec tion used in our cal cu la tion.

In or der to in ves ti gate the im pact of the SN nu -meric, we se lected the base case of SCL model, which

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210 207

Fig ure 2. Com par i son of fastneu tron fluence rate on modelSCL/LLCL

Ta ble 1. RMS er ror of fast neu tron fluence

Po si tionRMS er ror of fast neu tron fluence [%]

E > 1.0 MeV E > 0.1 MeV E > 1.0 MeV

Ax ial PV 0T 18.7268 22.4122 13.2808

Peak PV 1/4T 18.2676 19.4015 13.7017

Location PV 1/2T 21.1745 22.5885 /

Lower PV 0T 15.9070 19.0895 9.3166

Weld PV 1/4T 15.4313 15.9136 /

Location PV 1/2T 18.1638 18.7407 /

Down comer 19.6728 23.0537 /

Ref er ence SN results MCNP re sult

Page 5: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

uses the Legendre-Chebyshev S16 quad ra ture set,EDW spa tial discretization, and neg a tive sourceset-zero fix-up. The ef fects of the changes in nu mericwere ex am ined in di vid u ally as fol lows:– (a) spa tial discretization (DZ, TW, DTW),– (b) an gu lar discretization (S8, S24, S32 ofLegendre-Chebyshev quad ra ture sets), and– (c) no scat ter ing source fix-up.

The re sults are de picted in fig. 5. The TW(q ==.0.0) spa tial discretization causes ~2.5 % ef fect,while other schemes pres ent ~1 % ef fect based on thefine enough grids. Few ef fects are ob served when in -creas ing the or der of quad ra ture sets from S16, ex ceptfor the cav ity po si tion, in which the cal cu lated re sultsare in flu enced by neu tron stream ing ef fects in thelow-den sity ma te ri als. The ef fect of neg a tive scat ter -

ing source fix-up can be neg li gent when cal cu lat ingfast neu tron fluence.

In or der to in ves ti gate the ef fect of sourcestrength dis tri bu tion, cal cu la tions with dif fer entsource ho mog e ni za tion lev els were per formed. Fig ure 6 shows as sem bly-wise power dis tri bu tion and pe -riph eral as sem blies pin-wise power dis tri bu tion, re -spec tively. Com pared to the re sults ob tained withpin-wise source dis tri bu tion in three pe riph eral as sem -bly lay ers, the de vi a tion of dif fer ent lay ers of pin-wisesource dis tri bu tion is listed in tab. 2. The re sults in di -cate that the strong ra dial power gra di ents in the pe -riph eral as sem blies should not be ne glected be causethe pe riph eral as sem bly con trib utes most to the ves selfast neu tron fluence.

Ta ble 3 pres ents a com par i son of ARES cal cu -lated re ac tion rates and NUREG ref er ence val ues for

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...208 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210

Fig ure 4. Com par i son of fast neu tron spec trum atdif fer ent cap sule po si tions

Fig ure 5. Ef fects of SN nu meric on fast neu tronfluence cal cu la tion

Fig ure 3. Com par i son of fastneu tron fluence rate for modelSCL/PLSA

Page 6: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

SCL and LLCL mod els. For all the re ac tion rates con -sid ered, an over es ti mate of 10 %~30 % was ob tained,ex cept for 65Cu (n, 2n) re ac tion. It is note wor thy thatthe re sponse range of 65Cu (n, 2n) is higher than 10.5MeV. Above 10.5 MeV, there are 15 groups in Vi ta -min-J en ergy struc ture while only 3 groups are em -ployed in ref er ence cal cu la tion. The sig nif i cantly dif -fer ent en ergy struc ture causes the higher de vi a tion.Over all, the cal cu lated re sults lie in a sat is fac tory agree -ment with the ref er ence val ues.

CON CLU SION

In this pa per, the pres sure ves sel fast neu tronfluence pre dic tion ca pa bil ity of ARES trans port codeis ver i fied by eval u at ing PWR pres sure ves sel fast

neu tron fluence benchmarks from NUREG/CR-6115.Con sid er ing the dif fer ent li brar ies em ployed and dif -fer ent trans port cal cu la tion meth ods con ducted, thecal cu lated fast neu tron fluence at the in ner wall ofpres sure ves sel lies in sat is fac tory agree ment with theref er ence val ues doc u mented in NUREG/CR-6115.

Ad di tion ally, the ef fects of SN nu meric and source mod el ing were in ves ti gated. Based on the fine enoughgrids adopted, the dif fer ent spa tial discretizationschemes in tro duces a de vi a tion less than 3 %, and dif -fer ent or der of quad ra ture sets give a dis crep ancy lessthan 1 % ex cept for cav ity re gion, while neg a tive source fix-up causes no no tice able ef fects. How ever, the ac cu -rate cal cu la tion and mod el ing of the source dis tri bu tion, es pe cially for the pe riph eral as sem bly, is es sen tial tocal cu late the pres sure ves sel fast neu tron fluence withhigh ac cu racy.

All these re sults dem on strate that the AREStrans port code is ca pa ble of per form ing neu tron trans -port cal cu la tions for eval u at ing PWR pres sure ves selfast neu tron fluence.

AC KNOWL EDGE MENT

This work was sup ported by Na tional Nat u ralSci ence Foun da tion of China (11505059, 11575061)and the Fun da men tal Re search Funds for the Cen tralUni ver si ties (2016MS59)

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210 209

Ta ble 3. Re ac tion rates com par i son re sults for cap sules in SCL/LLCL mod els

De tec tor ma te rialSCL LLCL

Thermal shieldcap sule

Pres sure ves selcap sule Cav ity cap sule Ther mal shield

cap sulePres sure ves sel

cap sule Cav ity cap sule

27Al(n, a) 1.2014 1.1263 1.2233 1.1943 1.1157 1.241532S (n, p) 1.1639 1.1175 1.3241 1.1136 1.0780 1.2955

46Ti (n, p) 1.1168 1.0787 1.2041 1.0976 1.0596 1.206854Fe (n, p) 1.1342 1.0953 1.2629 1.0897 1.0591 1.239956Fe (n, p) 1.2508 1.1812 1.2893 1.2379 1.1652 1.301658Ni (n, p) 1.1406 1.1032 1.2875 1.0930 1.0654 1.259763Cu (n, a) 1.1789 1.1172 1.2196 1.1646 1.1008 1.2296

65Cu (n, 2n) 1.2827 0.1228* 1.3958 1.3286 1.2652 1.4749

Average 1.1811 1.1171 1.2758 1.1649 1.1136 1.2812

*Ref er ence val ues doc u mented in NUREG/CR-6115 are sus pected

Fig ure 6. (a) As sem bly-wiseand (b) pin-wise powerdis tri bu tion for pe riph eralas sem blies

Ta ble 2. Ef fect of source dis tri bu tion mod el ing

Po si tionNum ber of pe riph eral as sem bly lay ers with

pin-wise source dis tri bu tion

2 1 0

Downcomer 0.1284 % 2.2606 % 22.3161 %

PV 0T 0.1303 % 2.1511 % 21.0520 %

PV 1/4T 0.1137 % 2.0805 % 20.8615 %

PV 1/2T 0.1213 % 2.0511 % 20.6989 %

PV 3/4T 0.1125 % 1.9846 % 20.5755 %

PV Outer T 0.0946 % 1.8239 % 20.4069 %

Cav ity 0.0520 % 1.3729 % 19.9704 %

Page 7: EVALUATION OF PWR PRES SURE VES SEL FAST NEU TRON …

AU THORS' CON TRI BU TIONS

Un der the Y. Chen's guid ance, L. Zhang and B.Zhang con structed the bench mark mod els and cal cu -lated the fast neu tron fluence re sults with ARES trans -port code. C. Liu cal cu lated the Legendre-Chebyshevquad ra ture sets. All the au thors con trib uted to the de -vel op ment of ARES trans port code, an a lyzed and dis -cussed the re sults. The manu script was pre pared andwrit ten by L. Zhang.

REF ER ENCES

[1] ***, U. S. Nu clear Reg u la tory Com mis sion, Reg u la -tory Guide 1.190, Calculational and Do sim e try Meth -ods for De ter min ing Pres sure Ves sel Neu tronFluence, U.S. Nu clear Reg u la tory Com mis sion,Wash ing ton, D. C., USA, 2001

[2] Carew, J. F., et al., PWR and BWR Pres sure Ves selFluence Cal cu la tion Bench mark Prob lems and So lu -tions, NUREG/CR-6115, Wash ing ton, D. C., USA,2001

[3] Rhosdes, W. A., The TORSED Method for Con struc -tion of TORT Bound ary Sources from Ex ter nal DORT Flux Files, ORNL/TM-12359, Oak Ridge Na tionalLab o ra tory, Tenn., USA, 1993

[4] Azmy, Y. Y., Ap pli ca tions of the Dis crete Or di natesof Oak Ridge Sys tem (DOORSE) Pack age to Nu clearEn gi neer ing Prob lems, XV SNM An nual Meet ingand XXII SMSR An nual Meet ing, Cancun, Q. R.,Mex ico, 2004

[5] Petrovi}, B. G., Haghighat, A., Ef fects of SN MethodNumerics on Pres sure Ves sel Neu tron Fluence Cal cu -la tions, Nu clear Sci ence and En gi neer ing, 122 (1996),2, pp. 167-193

[6] Haghighat, A., Veerasingam, R., Trans port Anal y sisof Sev eral Cross-Sec tion Li brar ies Used for Re ac torPres sure Ves sel Fluence Cal cu la tions, Nu clear Tech -nol ogy, 101 (1993), 2, pp. 237-243

[7] Petrovi}, B. G., et al., Eval u a tion of Ani so tropy Ef -fects in Pres sure Ves sel Fluence Cal cu la tions Us ingBU GLE-93 Li brary, Trans ac tions of the Amer i canNu clear So ci ety, 71 (1994), pp. 388-391

[8] Haghighat, A., Mahgerefteh, M., Eval u a tion of theUn cer tain ties in the Source Dis tri bu tion for Pres sureVes sel Neu tron Fluence Cal cu la tions, Nu clear Tech -nol ogy, 109 (1995), 1, pp. 54-75

[9] Chen, Y., et al., ARES: A Par al lel Dis crete Or di natesTrans port Code for Ra di a tion Shield ing Ap pli ca tionsand Re ac tor Phys ics Anal y sis, Sci ence and Tech nol ogy of Nu clear In stal la tions, 2017 (2017), ID 2596727

[10] Lewis, E. E., Jr. Miller, W. F., Com pu ta tional Meth ods of Neu tron Trans port, Amer i can Nu clear So ci ety, LaGrange Park, Ill., USA, 1993

[11] Sjoden, G. E., PENTRAN: A Par al lel 3-D SN Trans -port Code with Com plete Phase Space De com po si -tion, Adap tive Dif fer enc ing and It er a tive So lu tionMeth ods, Ph. D. thesis, The Penn syl va nia State Uni -ver sity, Penn., USA, 1997

[12] Orsi, R., BOT3P: Bo lo gna Ra di a tion Trans port Anal -y sis Pre-Post-Pro ces sors Ver sion 4.0, Nu clear Sci -ence and En gi neer ing, 150 (2005), 3, pp. 368-373

Re ceived on March 27, 2017Ac cepted on July 12, 2017

L. Zhang, et al.: Eval u a tion of PWR Pres sure Ves sel Fast Neu tron Fluence ...210 Nu clear Tech nol ogy & Ra di a tion Pro tec tion: Year 2017, Vol. 32, No. 3, pp. 204-210

Ljang XANG, Bin XANG, Cung QU, Jisjue ^EN

OCENA ARES TRANSPORTNIM KODOM REFERENTNIHFLUENSA BRZIH NEUTRONA U SUDU POD PRITISKOM PWR

REAKTORA IZ VODI^A NUREG/CR-6115

Ta~na procena fluensa brzih neutrona u sudu pod pritiskom PWR reaktora odsu{tinskog je zna~aja za osigurawe integriteta suda tokom projektorvanog ̀ ivotnog veka. Metodadiskretnih ordinata jedna je od glavnih metoda za tretirawe takvih problema. U ovom raduizvr{ene su ocene za tri PRW referentna slu~aja opisana u vodi~u NUREG/CR-6115, koriste}i seARES transportnim kodom. Izra~unati rezultati upore|eni su sa referentnim vrednostima idobijeno je zadovoqavaju}e slagawe. Pored toga, ispitani su efekti numeri~kih modela imodelovawa raspodele izvora u sudu pod pritiskom na fluens brzih neutronal. Na osnovu usvojenih dovoqno finih mre`a, razli~ita prostorna i ugona diskretizacija uvoda derivacije mawe od 3 %, a popravqawe negatinog izovra rasejawa ne uzrokuje zna~ajne efekte pri izra~unavawu fluensabrzih neutrona u sudu pod pritiskom. Me|utim, neusagla{enost modela izvora, sklopa i {tapa, zaperiferne sklopove dosti`e ~20 %, {to ukuzuje na to da je model {tapa perifernih sklopova odsu{tinskog zna~aja. Ovi rezultati obezbe|uju smernice za izra~unavawe fluensa brzih neutronasuda pod pritiskom i pokazuju da je ARES transportni kod sposoban za izvo|ewe prora~unatransporta neutrona radi procene fluensa brzih neutrona PWR suda pod pritiskom.

Kqu~ne re~i: diskretna odrinata, NUREG/CR-6115, reaktorski sud pod pritiskom, fluens..........................brzih neutrona, transportni prora~un