evaluation of solid electrolytes for all solid state li-s

28
Evaluation of solid electrolytes for all solid state Li-S batteries X. Judez, H. Zhang, I. Aldalur, M. Piszcz, C. Li, L. Otaegui, J. Zagórski, L. Buannic, A. Llordés,T. Rojo, J. Kilner, M. Armand, Lide.M. Rodriguez-Martinez 2017 2017 © CIC energiGUNE. 2017 All rights reserved London 26th April 2017 Lide.M. Rodriguez-Martinez

Upload: others

Post on 14-Jan-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evaluation of solid electrolytes for all solid state Li-S

Evaluation of solid electrolytes

for all solid state Li-S batteries

X. Judez, H. Zhang, I. Aldalur, M. Piszcz, C. Li, L. Otaegui, J.

Zagórski, L. Buannic, A. Llordés,T. Rojo, J. Kilner, M. Armand,

Lide.M. Rodriguez-Martinez

2017

2017

©C

IC e

nerg

iGU

NE

. 2017 A

ll rights

reserv

ed

London 26th April 2017

Lide.M. Rodriguez-Martinez

Page 2: Evaluation of solid electrolytes for all solid state Li-S

Introduction11

Why solid?22

Results on solid Li-S batteries33

2

Results on solid Li-S batteries33

Conclusions & future work44

Acknowledgements55

Page 3: Evaluation of solid electrolytes for all solid state Li-S

Project launch &

Identification of

Research Areas’

Strategic lines.

Definition of operative

model and talent

recruitment

First industrial collaborations

I Symposium Nabatt

Na batteries re-development

ABAA 8

Launch of LiS activity

Launch of FAULTS

program

Recently created project. Beginning of the research activity in 2011

Introduction CIC = Centre for Cooperative Research in Energy Storage11

4545 6969

Electrochemical testing

lab completed

Organic lab completed

Physicochemical lab

operational

2014201320122008 - 2011 2015

recruitment

1st Edition of Congress

“Power our future – POF”

Na batteries re-development

2nd Edition POF

Launch of

Prototyping line’s 1st Phase

Electrochemical testing lab

1st phase

Highest reported

conductivity in garnet

electrolytes

2016

5th Anniversary and

Prototyping line’s

Inauguration

252522

4545

6060

6969

7777

8383

Launch of platform facilities

(XRD, EM, XPS, ssNMR)

Chemical lab operational

1st patent in Solid hybrid

electrolytes

3

Page 4: Evaluation of solid electrolytes for all solid state Li-S

Electric

traction

Electrical

networksSolar

thermal

power

Consumptio

n

CIC visioning… RVCTI (Basque Science, Technology and Innovation Network)

EnergiBasque 2.0

Strategic framework

Marine

Wind

Industrial

energy

efficiency

Renewable

Primary energy

Consumptio

n

4

Page 5: Evaluation of solid electrolytes for all solid state Li-S

Introduction11

Why solid?22

Results on solid Li-S batteries33

5

Results on solid Li-S batteries33

Conclusions & future work44

Acknowledgements55

Page 6: Evaluation of solid electrolytes for all solid state Li-S

Develop safe, cheap, sustainable and durable novel solid battery concepts

Polymer all solid batteries

Ceramic all solid batteries

� Safe

� Flexible membranes, cheap (upscalable

processing)

� Targets: 10-3 S/cm at 70ºC,

towards increased conductivity

mechanical strength

� Challenges: C-rate, stability, area specific

capacity, dendrite suppression

SAFETY

LIFECOST

22 SOLID BATTERIES

6

Ceramic all solid batteries

Composite concepts

� Safe

� HV stability

� Rigid membranes, complex processing

� Targets: 10-3 S/cm at RT,

dense thin film fabrication

� Challenges: stability, manufacturing

competitive routes,

compatibility, novel

configurations, interfaces,

COST

LIFE

POWERENERGY

DENSITY

COST

APPLICATION

SUSTAINABILITY – LIFE CYCLE

Li & Na metal batteries, HV solid batteries, Li-S solid batteries

Page 7: Evaluation of solid electrolytes for all solid state Li-S

400

600

800

1000

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)

Polymer 10 um

Polymer 40 um

Polymer 100 um

400

600

800

1000

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)

400

600

800

1000

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)Ceramic 10 um

Ceramic 40 um

Threshold of electrolyte thickness

Cathode: 75%S / 20%C / 5% binder, S utilization = 1000 mAh / g

22 SOLID Li-S BATTERIES

0 2 4 6 8 10

0

200

400

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)

Areal capacity (mAh / cm2

)

0 2 4 6 8 10

0

200

400

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)

Areal capacity (mAh / cm2

)

Liquid E/S = 3

Liquid E/S = 5

Liquid E/S = 10

LIB (ceramic, Li)

0 2 4 6 8 10

0

200

400

Gra

vim

etr

ic E

ne

rgy

De

ns

ity

(W

h /

kg

)

Areal capacity (mAh / cm2

)

Ceramic 100 um

• Liquid Li-S: E/S < 3, there is no big potential for improvement

• Polymer Li-S: Fairly easy to achieve high energy density when separator thickness < 100 µm

• Ceramic Li-S: it is competitive only when the thickness of separator < 40 µm

7 Chunmei. Li et al., Journal of Power Sources, 326 (2016) 1-5.

Page 8: Evaluation of solid electrolytes for all solid state Li-S

Technology

Targets

� Safe, low cost, competitive high

energy density batteriesFirst phase (end 2018)

� Polymer rich systems

� > 2 mAh/cm2 ( 400Wh/kg)

� RT-70ºC

� stable 500 cycles

� S utilisation ≥ 1000 mAh / g

� S loading > 60%

Objective of our work22

Materials and

Processing

Technology

� Scaleable techniques

� Simple processing

� Low cost/reduce expensive materials

� Towards water based formulations

Second phase (end 2019)

� a) Ceramic rich systems

� b) Incorporation of novel RT

polymer conductors

8

Page 9: Evaluation of solid electrolytes for all solid state Li-S

Introduction11

Why solid?22

Results on solid Li-S batteries33

9

Results on solid Li-S batteries33

Conclusions & future work44

Acknowledgements55

Page 10: Evaluation of solid electrolytes for all solid state Li-S

Methodology and approach33

First phase (end 2018)

� Polymer rich systems based on PEO (SPE)

1) Choice of salt

2) Cathode development

3) Electrolyte development

1) PEO + LiFSI* or LiTFSI salts [EO:Li = 20:1]

2) Cathode development

“Simple cathodes”:

S: 30-50%wt

C (KJ600): 15%wt

SPE: balance

3) Electrolyte development

10

* H. Zhang, et al., Solid State Ionics 2014, 256, 61; H. Zhang, et al, Polymer 2014, 55, 3339; H. Zhang, et al., J. Fluorine

Chemistry 2015, 174, 49; H. Kim, et al., Adv. Energy Mater. 2015, DOI: 10.1002/aenm.201401792; Camacho-Forero et al.,

2017. J. Phys. Chem. C 121, 182–194. doi:10.1021/acs.jpcc.6b10774

Total ionic conductivity, Li transference number, 70ºC (this work):

PEO/LiFSI σT: 7.58 × 10–4 S/cm; T+= 0.12

PEO/LiTFSI σT : 7.08 × 10–4 S/cm T+= 0.15

3) Electrolyte development

Effect of salt

Composite electrolytes

Novel materials

Page 11: Evaluation of solid electrolytes for all solid state Li-S

Cyclic voltamperometry

LiTFSI/PEO, 70ºC, C/20 initial cycle

LiFSI/PEO, 70ºC, C/20 initial cycle, 40%S

Effect of salt (LiTFSI vs. LiFSI)33

Xabier Judez et al. J. Phys. Chem. Le�. 2017, 8, 1956−1960

1,0 1,5 2,0 2,5 3,0

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,4

2,42V

1st cycle

3rd cycle

I (m

A)

Ecell [V]

Cyclic voltamperometry

Li/ SPE/ 30%S Cathode, 70ºC

2,48V

2,25V

2,05V

11

Page 12: Evaluation of solid electrolytes for all solid state Li-S

Al CC in LiTFSI/PEO based Li-S cell

Effect of salt (LiTFSI vs. LiFSI)33

Li/SPE(LiFSI or LiTFSI)/Li

symmetric cell at 70ºC,

collected after several static

standing periods of time

12Xabier Judez et al. J. Phys. Chem. Le�. 2017, 8, 1956−1960

Page 13: Evaluation of solid electrolytes for all solid state Li-S

PEO/LiFSI PEO/LiTFSI

PS dissolved in

polymer electrolyte

Effect of salt (LiTFSI vs. LiFSI)33

Xabier Judez et al. J. Phys. Chem. Le�. 2017, 8, 1956−196013

Page 14: Evaluation of solid electrolytes for all solid state Li-S

Effect of S% and thickness in the cathode for LiFSI/PEO cells

Cathode effect in LiFSI LiS cells33

50% S, C/20C/20

14Xabier Judez et al. J. Phys. Chem. Le�. 2017, 8, 1956−1960

Page 15: Evaluation of solid electrolytes for all solid state Li-S

Long term stability, optimized 40%S cathode, running experiments

33 Cathode effect in LiFSI LiS cells

LiFSI/PEO, 40%S, @70ºC LiFSI/PEO, 40%S, @70ºC

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Dis

. C

ap

/ m

Ah

cm-2

C/20

C/10

200

400

600

800

Dis. cap.

Dis

. C

ap

/ m

Ah

g-1

80

90

100

110

Coulomb. ef

Co

ulo

mb

. e

f./

%

C/10

C/20

0 100 200 300 400 500 600

0

200

400

600

800

1000

Dis

. C

ap

/ m

Ah

g-1

Cycle/ Cycle n.

Dis. Cap.

Columbic ef.

70

80

90

100

110

C/20

C/10

Co

ulu

mb

. e

f. / %

C/2

C/5

C/10

30%S, LiFSI, 70ºC, Reference cell. C rate test

15

0 50 100 150 200 250 300 350 4000,0

0,1

Dis. cap.

Cycle/ Cycle no.

0 50 100 150 200 250 300 350 4000

Cycle/ Cycle no.

70

Page 16: Evaluation of solid electrolytes for all solid state Li-S

Approaches to improve S utilisation and areal capacity, based on electrolyte

Composite electrolyte concepts33

16

Al2O3

Ohara, LICGCTM

Garnet LGLZO

Page 17: Evaluation of solid electrolytes for all solid state Li-S

Ionic conductivity

Composite electrolyte concepts33

17

Sample TLi+

[1] Sample TLi+

[1]

FSI 0,13 FSI 0,13

3.1 v% Ohara FSI 0,19 3,1 v% Al2O3

FSI 0,15

10 v% Ohara FSI 0,19 10 v% Al2O3

FSI 0,14

20 v% Ohara FSI 0,1620 v% Al

2O3

FSI0,11

[1] Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer 1987, 28, 2324-2328. Watanabe et al. Solid State Ionics

1988, 28, 911-917.

Page 18: Evaluation of solid electrolytes for all solid state Li-S

Stability vs. Li (Li/SPE/Li tests, 70ºC, 0.1 mA/cm2)

Composite electrolyte concepts33

Static Li/SPE/Li test, 70ºC, EIS measurements every 4 hours

18

PEO/LiTFSI

PEO/LiFSI

PEO/LiFSI 10%vol Ohara

PEO/LiFSI 10%vol Al2O3

PEO/LiFSI 3.1%vol Al2O3

Page 19: Evaluation of solid electrolytes for all solid state Li-S

Effect of filler nature

600

800

1000

1200

Ref. Cell

3.1 v% Ohara

3.1 v% Al2O3

Dis

. C

ap

/ m

Ah

g-1

40

60

80

100

C/10

C/5

Co

ulo

mb

. e

f./

%

C/10

C/20

0,6

0,8

1,0

1,2

1,4 Ref. Cell

3.1 v% Ohara

3.1 v% Al2O3

Dis

. C

ap

/ m

Ah

cm

-2

C/20

C/10

C/5C/10

Composite electrolyte concepts33

19

0 10 20 30 40 500

200

400

Dis

. C

ap

Cycle/ Cycle no.

0

20

40

C/2 Co

ulo

mb

. e

f./

%

0 10 20 30 40 500,0

0,2

0,4

Dis

. C

ap

Cycle/ Cycle no.

C/2

Page 20: Evaluation of solid electrolytes for all solid state Li-S

Composite electrolyte concepts33

Lithium anode

PEO+3.1v% Al2O3

Sulfur cathode

PEO+3.1v% Ohara

1,0

1,2

3.1 v% Ohara

3.1 v% Al2O3

C/20110

Sandwich configuration

1,0

1,2Comparison

Reference

3.1 v% Sandwich

110

20

0 10 20 30 40 500,0

0,2

0,4

0,6

0,8

1,0 3.1 v% Al2O3

Dis

. C

ap

/ m

Ah

cm-2

Cycle/ Cycle no.

C/10

C/5

C/2

C/10

70

80

90

100

Co

ulo

mb

. ef.

/%

0 10 20 30 40 500,0

0,2

0,4

0,6

0,8

1,0

C/10

C/2

C/5

C/10

Dis

. C

ap

/ m

Ah

cm-2

Cycle/ Cycle n.

3.1 v% Sandwich

C/20

70

80

90

100

Co

ulo

mb

. e

f. /

%

Page 21: Evaluation of solid electrolytes for all solid state Li-S

Composite electrolyte concepts33

Back to LiTFSI…. 40% S cathode, 70ºC

First cycle, C/20

21

Page 22: Evaluation of solid electrolytes for all solid state Li-S

Approaches to improve S utilisation and areal capacity, based on electrolyte

Novel electrolyte materials33

22

PEOJeffamine based

SIC hybrids

Garnets

Page 23: Evaluation of solid electrolytes for all solid state Li-S

Highly conductive Jeffamine® based polymer electrolytes

-5,0

-4,5

-4,0

-3,5

-3,0

-2,5

Jeff2k:LiFSI (20:1)

Jeff2k:LiFSI (15:1)

Jeff2k:LiFSI (10:1)

Jeff2k:LiTFSI(20:1)

log

s

-5

-4

-3

Jeff1k(20:1)

Jeff1k(15:1) Jeff1k(10:1)

Jeff2k(20:1)

Jeff2k(15:1)

log σ

(S

·cm

-1)

60ºC

70ºC 25ºCEffect of Jeffamine Mw, LiTFSI

Novel electrolyte materials33

Itziar Aldalur et al. Journal of Power Sources 347 (2017) 37-46

2,6 2,7 2,8 2,9 3,0 3,1 3,2 3,3 3,4

-6,5

-6,0

-5,5 Jeff2k:LiTFSI(20:1)

Jeff2k:LiTFSI(15:1)

Jeff2k:LiTFSI(10:1)

PEO:LiTFSI(20:1)

PEO:LiFSI (20:1)

1000/T

2,6 2,8 3,0 3,2 3,4

-6

Jeff2k(15:1)

Jeff2k(10:1) Jeff600(20:1)

PEO(20:1)

1000/T(K)

I. Aldalur et al. To be published

Compound Salt composition

[EO:TFSI]

T+

Jeffamine M-2070

20:1 0.16

15:1 0.25

10:1 0.38

Jeffamine M-1000

20:1 0.21

15:1 0.17

10:1 0.27

Effect of salt (LiTFSI vs. LiFSI)

23

Page 24: Evaluation of solid electrolytes for all solid state Li-S

Nanohybrid polymer electrolytes –pure anion and solvating

segments

SiO2

(10 nm)

Al2O3

(10 nm)

Al2O3

(5 nm)

Novel electrolyte materials33

N. Lago, O. Garcia-Calvo, J.M. Lopez del Amo,T. Rojo and Michel Armand, ChemSusChem, 10.1002/cssc.201500783

M. Armand, I. Villaluenga; T. Rojo; WO 2014/012679 A124

Page 25: Evaluation of solid electrolytes for all solid state Li-S

Novel electrolyte materials33

Li7-3x

Gax□2x

La3Zr

2O

12

GARNETS LLZO

25 Lucienne Buannic, et al., Chem. Mater, 29, 4, (2017)

The dual

substitution

strategy leads to an

increase in σLi+and

a decrease in

activation energy

Page 26: Evaluation of solid electrolytes for all solid state Li-S

• LiFSI/PEO is a path towards stable polymer Li-S cells with a simple &

low cost configuration

• Ohara as filler enhances initial areal capacity and S utilisation.

Al2O

3stabilises Li metal-electrolyte interface

Sandwich configuration improves Coulombic efficiency

• Nature and size of inorganic fillers plays a significant role yet to be

understood.

Conclusions44

26

Future work

• Ongoing work to increase S content in solid cathodes

• Detailed analysis of interactions & interfaces in process

• Processing optimisation

• Better polymers for fast cycling towards RT operation

Page 27: Evaluation of solid electrolytes for all solid state Li-S

Acknowledgements55

Basque Government (PhD grant

X. Judez, Berrikertu, Elkartek16)

Spanish Government (MINECO

RETOS Ref: ENE2015-64907-C2-

1-R, Juan de la Cierva C. Li)

CIC team (missing many)!

27

Prof. Zibin Zhou

Prof. Jose Antonio Gonzalez Marcos

Page 28: Evaluation of solid electrolytes for all solid state Li-S

Thank you!

Muchas gracias!

Eskerrik asko!!!

28