evolution of intermediate-mass starsweiss/stellar... · evolution of 5m⊙-star core helium...

12
Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and radiative envelope CNO-cycle; ǫ nuc ρXZ CNO T 18 rapid transition from MS to RGB (Hertzsprung- gap) Helium-core non-degenerate quiet He-ignition after core helium burning: degenerate C/O-core and two nuclear shells (H and He)

Upload: others

Post on 03-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Evolution of Intermediate-Mass Stars

General properties:

• mass range: 2.5<∼M/M⊙

<∼8

• early evolution differs from M/M⊙<∼1.3 stars; for

1.3<∼M/M⊙

<∼2.5 properties of both mass ranges

• MS: convective core and radiative envelope

• CNO-cycle; ǫnuc ∝ ρXZCNOT 18

• rapid transition from MS to RGB (Hertzsprung-gap)

• Helium-core non-degenerate → quiet He-ignition

• after core helium burning: degenerate C/O-coreand two nuclear shells (H and He)

Page 2: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Main-sequence phase

• convective core burning: mixing and burning mainlyat central temperature

→ gradual exhaustion of convective core // (Fig:5M⊙ star)

• development of off-center H-burning shell (withinformer H-burning core!)

Page 3: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Schonberg-Chandrasekhar mass:

• with increasing mass of exhausted core the idealgas pressure alone can no longer sustain pressureof (massive) envelope

• critical core mass is (Mc/M)SC = 0.37(µe/µc)2

• core contracts on thermal timescale (fast), whileenvelope expands → fast crossing of HRD to gi-ants ⇒ low probability to observe such star →

Hertzsprung-gap

• at RGB further expansion at constant Teff

• evolution stopped when core becomes degenerateor helium ignites

• core is not isothermal (due to contraction energy)

Page 4: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Evolution of 5M⊙-star ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Core helium burning:

• non-degenerate ignition; longer lifetime → clump

of stars next to RGB

• loops through Cepheid-instability strip, details de-pending on internal chemical structure

• at exhaustion of He-core → He-shell develops arounddegenerate C/O-core

• asymptotic return to RGB: Asymptotic Giant Branch

evolution

Page 5: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

The AGB-Phase

• double-shell burning phase, most important forintermediate mass stars

• special features: thermal pulses (TP), nucleosyn-thesis of rare-earth elements (Ba, Sr, . . . ) throughslow neutron capture chains (s-process); strongmass loss removing up to 90% of stellar masswithin 105 years, returning synthesized elementsto interstellar medium

• Thermal pulses:

– runaway events in helium shell

– duration: few hundred years

– interpulse time: few thousand years

– strong luminosity variations in shell

– variable convective zones

– mixing between He- and H-burning regionsand envelope (3rd dredge-up)

Page 6: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Luminosity variations during TPs in a 2.5M⊙ star:

805 806 8073

3.5

4

4.5

Interior structure changes in a 2M⊙ star:

Page 7: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Chemical profile in the 2M⊙ star:

Page 8: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Nucleosynthesis and mixing due to convection:

the convective mixing between He-shell and envelopeleads to

• enrichment of envelope with carbon → formationof carbon stars

• entrainment of protons into hot C-rich regions,which results in production of neutrons:

12C(p, γ)13N(β+ν)13C → (p, γ)14Nor (α, n)16O

• alternatively, C and O converted in H-shell to 14Nand then

14N(α, γ)18F(β+ν)18O(α, γ)22Ne(α, n)25Mg

(C-13 and Ne-22 neutron sources)

• neutrons start neutron-capture nucleosynthesis

• more likely for: later pulses, lower metallicity,lower stellar mass, more mixing efficiency

Page 9: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

s-process neutron capture nucleosynthesis

• The s-process is a sequence of neutron captures

and β−- (electron-) decays, in which the formerhappen slower than the latter ones (there is alsoa r(apid)-process in the opposite case).

• It begins on seed nuclei at the Fe-group elementsand creates rare-earth elements

Path of the s-process through cadmium (Cd), indium (In),

antimony (Sb); for stable isotopes the isotop-fraction is

given, for those that decay by β-decay the half-life time

• Other s-process elements are Ba, Bi (last β-stableelement), Pb, Ag, In, . . .

• the abundances of such elements in meteoritesand on Earth can partially be explained with thisstellar source

Page 10: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

After the AGB:

• envelope lost quickly by superwind with M ≈ 10−5 M⊙/yr(radiation pressure on dust grain)

• if almost all envelope is lost → star crosses HRDto hot Teff

• may illuminate former envelope, now expandingshell → Planetary Nebula

• then former stellar He-core cools to White Dwarf

Page 11: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Evolution of Massive Stars

• M >∼8M⊙; upper mass limit (stability limit) around

100M⊙

• large convective cores on main-sequence (up to80% or more of M)

• effect of convective overshooting very important:

– larger convective cores

– extends lifetime on main-sequence

– leads to higher luminosity and broader MS

• radiation pressure and electron scattering domi-nant

• strong mass loss on main-sequence due to radiation-

driven winds from hot and luminous surface

• both convection and mass loss decisive for evolu-tion

• e.g. can uncover H-burning or He-burning regions(Wolf-Rayet stars)

• central evolution up to Fe

• then Supernova of type II because of collapse ofcore and formation of central neutron star

Page 12: Evolution of Intermediate-Mass Starsweiss/Stellar... · Evolution of 5M⊙-star Core helium burning: • non-degenerate ignition; longer lifetime → clump of stars next to RGB •

Sample evolution up to end of H-burning includingsome overshooting and large mass loss

Note: evolution quite uncertain because of lack ofphysical knowledge about mass loss and convection(overshooting and other effects), the influence of ro-tation (an active area of research), instabilities in theatmospheres and more as well as due to the low num-ber of objects that can be observed (initial final massfunction and short lifetimes).