evolutionary computing in the study of bio/chemical mechanisms petr kuzmič, ph.d. biokin, ltd....

52
Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential Evolution (DE) Model selection strategy: "Supermodel Evolution" Example: Inhibition of Lethal Factor protease by curcumin

Upload: shanon-jennings

Post on 28-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Evolutionary Computing

in the Study of Bio/Chemical Mechanisms

Petr Kuzmič, Ph.D.BioKin, Ltd.

Problem: Finding initial parameter estimates

Solution: Differential Evolution (DE)

Model selection strategy: "Supermodel Evolution"

Example: Inhibition of Lethal Factor protease by curcumin

Page 2: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

2

The task of mechanistic enzyme kinetics

SELECT AMONG MULTIPLE CANDIDATE MECHANISMS

concentration

initial rate

computer

Select most plausible model

MODELS

competitive ?

E + S E.S E + P

E + I E.I

uncompetitive ?

mixed type ?

competitive ?

DATA

Page 3: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

3

Most models in bio/chemical kinetics are nonlinear

LINEAR VS. NONLINEAR MODELS

Linear

y = A + k x

Nonlinear

y = A [1 - exp(-k x)]

x

0.0 0.2 0.4 0.6 0.8 1.0

y

0.0

0.5

1.0

1.5

2.0

y = 2 [1 - exp(-5 x)]

x0.0 0.2 0.4 0.6 0.8 1.0

y

1

2

3

4

5

6

7

y = 2 +5 x

Page 4: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

4

We need initial estimates of model parameters

NONLINEAR MODELS REQUIRE INITIAL ESTIMATES OF PARAMETERS

concentration

initial rate

DATA

computer

E + S E.S E + P

E + I E.I

k +1

k -1

k +2

k +3

k -3

k+1 k-1 k+2

k+3 k-3

A GIVEN MODEL

ESTIMATEDPARAMETERS

k+1 k-1 k+2

k+3 k-3

BEST-FITPARAMETERS

Page 5: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

5

Anthrax bacillus

CUTANEOUS AND INHALATION ANTHRAX DISEASE

Page 6: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

6

Lethal Factor (LF) protease from B. anthracis

CLEAVES MITOGEN ACTIVATED PROTEIN KINASE KINASE (MAPKK)

Inhibitor?

Page 7: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

7

Neomycin B: an aminoglycoside inhibitor

A POTENT INHIBITOR OF LF PROTEASE

Streptomyces fradiae

Neomycin B

Page 8: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

8

Neomycin B mechanism: mixed-type noncompetitive

NEOMYCIN B INHIBITION FOLLOWS A COMPLEX MOLECULAR MECHANISM

Kuzmic et al. (2006) FEBS J. 273, 3054-3062.

Page 9: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

9

Curcumin: an natural product inhibitor

INHIBITION MECHANISM UNKNOWN

Cuminum cyminum L.

curcumin

cumin

Page 10: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

10

LF protease inhibition by curcumin: raw data

SUBSTRATE INHIBITION (MAXIMUM ON SUBSTRATE SATURATION CURVE)

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

[I] = 0

[I] = 22 M

[I] = 44 M

[I] = 88 M

substrate concentration

init

ial re

act

ion r

ate

Page 11: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

11

Two separate problems to solve

A PREREQUISITE FOR MODEL DISCRIMINATION = FITTING INDIVIDUAL CANDIDATE MODELS

1. Focus on a single reaction mechanism:

Given a model (rate equation), find the best-fit kinetic constants

2. Focus on multiple reaction mechanisms:

a. Repeat 1. for all candidate models (mechanisms)b. Select the most plausible model

Page 12: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

12

The mixed-type inhibition model

CONTAINS FIVE KINETIC CONSTANTS

DATA

computer

Km = ?Ks = ?Ki = ?Kis = ?

kcat = ?

MODEL

ESTIMATEDPARAMETERS

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

BEST-FITPARAMETERS

Page 13: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

13

First major difficulty: Sensitivity to initial estimates

TRADITIONAL DATA-FITTING: RESULTS DEPEND ON THE INITIAL GUESS

Km = 1Ks = 1Ki = 1Kis = 1

kcat = 1

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

Km =Ks =Ki ~

Kis =kcat =

20000.60.00015100

"uncompetitive" ?

ESTIMATE #1

Page 14: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

14

First major difficulty: Sensitivity to initial estimates

TRADITIONAL DATA-FITTING: RESULTS DEPEND ON THE INITIAL GUESS

Km = 100Ks = 100Ki = 100Kis = 100

kcat = 100

Km <Ks =Ki =

Kis =kcat =

0.0000010.0040.0020.0254000

ESTIMATE #2

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

Page 15: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

15

First major difficulty: Sensitivity to initial estimates

TRADITIONAL DATA-FITTING: RESULTS DEPEND ON THE INITIAL GUESS

Km = 10Ks = 100Ki = 10

Kis = 100kcat = 100

Km =Ks =Ki =

Kis =kcat =

10110401468

mixed-type ?

ESTIMATE #3

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

Page 16: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

16

First major difficulty: Sensitivity to initial estimates

TRADITIONAL DATA-FITTING: RESULTS DEPEND ON THE INITIAL GUESS

Km = 10Ks = 100Ki = 10

Kis = 100kcat = 100

Km =Ks =Ki =

Kis =kcat =

10110401468

ESTIMATE #3

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

Is this the best we can do with the mixed-type model?

?

Page 17: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

17

The crux of the problem: Finding global minima

• Least-squares fitting only goes "downhill"

• How do we know where to start?

MODEL PARAMETER

SUM OF SQUARED DEVIATIONS (data - model)2

global minimum

data - model = "residual"

Page 18: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

18

Charles Darwin to the rescue

BIOLOGICAL EVOLUTION IMITATED IN "DE"

ISBN-10: 3540209506

Charles Darwin (1809-1882)

Page 19: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

19

Biological metaphor: "Gene, allele"

gene

BIOLOGY COMPUTER

...AAGTCG...GTAACCGG...

four-letter alphabet variable length

"keratin"

• sequence of bits representing a number

...01110011000001101101110011...

• two letter alphabet• fixed length (16 or 32 bits)

"KM" "kcat"

Page 20: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

20

"Chromosome, genotype, phenotype"

genotype

BIOLOGY COMPUTER

...AAGTCGGTTCGGAAGTCGGTTTA...

keratin

oncoprotein

phenotype

• particular combination of all model parameters

isMM

M

KKSKS

KSVv

/][/][1

/][2max

011010110110011110011010001111101101

KM=4.56

Vmax=1.23Kis=78.9

full set of parameters

Page 21: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

21

"Organism, fitness"

genotype

BIOLOGY COMPUTER

...AAGTCGGTTCGGAAGTCGGTTTA...

keratin

oncoprotein

• FITNESS: agreement between the data and the model

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

Vmax = 1.3

KM = 9.1

Kis = 137.8

FITNESS:"agreement" with the environment

Page 22: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

22

"Population"

BIOLOGY COMPUTER

low fitness

Vmax KM Kis

mediumfitness Vmax KM Kis

high fitness

Vmax KM Kis

Page 23: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

23

DE Population size in DynaFit

number of population

members per optimizedmodel parameter

number of population

members per order ofmagnitude

Page 24: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

24

"Sexual reproduction, crossover"

BIOLOGY COMPUTER

01101011011001111001101 00011111011

01101011011001111001101 11100011011

mother

father

"sexual mating" probability pcross

01101011011001111001101 11100011011

child

random crossover point

Vmax KM Kis

Page 25: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

25

DE Crossover probability in DynaFit

probability thatchild inheritsfather's genes, notmother's genes

Page 26: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

26

"Mutation, genetic diversity"

BIOLOGY COMPUTER

01101011011 001111001101 11100011011father

Vmax KM Kis

11100111011 001011010101 11001011001mutant father

Vmax(*)

KM(*) Kis

(*)

mutation

Page 27: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

27

"Mutation, genetic diversity"

01101011011 001111001101 11100011011uncle#1

Vmax(1)

KM(1) Kis

(1)

11100111011 001011010101 11001011001uncle#2

Vmax(2)

KM(2) Kis

(2)

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM - STEP 1

Compute difference between two randomly chosen "uncle" phenotypes

subtract

11100111011 001011010101 11001011001

uncle#2 minus uncle #1

Vmax(2)-Vmax

(1)KM

(2)-KM(1) Kis

(2)-Kis(1)

Page 28: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

28

"Mutation, genetic diversity"

01101011011 001111001101 11100011011father

Vmax KM Kis

11100111011 001011010101 11001011001

mutant father

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM - STEP 2

Add weighted difference between two "uncle" phenotypes to "father"

add a fraction of

11100111011 001011010101 11001011001

uncle#2 minus uncle #1

Vmax(2)-Vmax

(2)KM

(2)-KM(1) Kis

(2)-Kis(1)

Vmax*

KM* Kis

*

Page 29: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

29

"Mutation, genetic diversity"

THE "DIFFERENTIAL" IN DIFFERENTIAL EVOLUTION ALGORITHM

KM* = KM + F (KM

(1) KM(2))

EXAMPLE: Michaelis-Menten equationM

max ][

][v

KS

SV

"father" "uncle 1" "uncle 2"

"mutant father"

weight (fraction)mutation rate

Page 30: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

30

DE Mutation rate in DynaFit

fractional differenceused in mutations

KM* = KM + F (KM

(1) KM(2))

Page 31: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

31

DE Mutation strategies in DynaFit

six different mutationstrategies (1, 2, ... 6)

details in the book:

Page 32: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

32

"Selection"

BIOLOGY COMPUTER

high fitness

more likelyto breed

0110101101100111100110100011111011

Vmax KM Kis

more likelyto be carried to the next generation

low sum of squares

low fitnessless likelyto breed

0000000000111111111111100000000000

Vmax KM Kis

less likelyto be carried to the next generation

high sum of squares

Page 33: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

33

Basic Differential Evolution Algorithm - Summary

1 Randomly create the initial population (size N)

Repeat until almost all population members have very high fitness:

2 Evaluate fitness: sum of squares for all population members

5 Natural selection: keep child in gene pool if more fit than mother

4 Sexual reproduction: random crossover with probability Pcross

3 Mutation: random gene modification (mutate father, weight F)

Page 34: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

34

Application to curcumin: Mixed-type mechanism

THREE EXAMPLES OF POPULATION MEMBERS (POPULATION SIZE n = 845)

Km 65.7630Ks 1.0488e-3Ki 8.7928e-10Kis 8.1374e+20kcat 3760400

POPUL. MEMBER #642POPUL. MEMBER #7

Km 3713600Ks 60218Ki 427880Kis 153.55kcat 918170

POPUL. MEMBER #1

Km 3.3355e-11Ks 7868500Ki 106.99Kis 4.0737e-9kcat 29.783

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

[S]

0 20 40 60 80

v

0

2

4

6

8

10

Page 35: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

35

Application to curcumin: Mixed-type mechanism

INITIAL DISTRIBUTION OF THE MICHAELIS-CONSTANT KM

ESTIMATE #

200 400 600 800

log

10 K

m

-10

-5

0

5

10

24 ordersof magnitude

ESTIMATE #

Page 36: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

36

Application to curcumin: Mixed-type mechanism

INITIAL DISTRIBUTION OF ALL MODEL PARAMETERS

KsKm

log

10 p

aram

eter

-10

-5

0

5

10

Ki Kis kcat

Generation #1

Page 37: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

37

Application to curcumin: Mixed-type mechanism

INTERMEDIATE DISTRIBUTION OF MODEL PARAMETERS (EVOLUTION IS ONGOING)

Generation #20

Km

log

10 p

aram

eter

-10

-5

0

5

10

Ki Ks Kis kcat

Page 38: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

38

Application to curcumin: Mixed-type mechanism

FINAL DISTRIBUTION OF MODEL PARAMETERS (EVOLUTION IS COMPLETED)

Generation #125

Km

log

10 p

aram

eter

-10

-5

0

5

10

Ki Ks Kis kcat

Page 39: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

39

Application to curcumin: Mixed-type mechanism

THE SUPER-ORGANISM

Km =Ks =Ki =

Kis =kcat =

10110401468

[S]

0 20 40 60 80

v

0.0

0.2

0.4

0.6

0.8

1.0

The fittest "phenotype" in generation #125

Yes, this is the best we can do with the mixed-type model!

!

Page 40: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

40

The model selection problem remains

A PREREQUISITE FOR MODEL DISCRIMINATION = FITTING INDIVIDUAL CANDIDATE MODELS

1. Focus on a single reaction mechanism:

Given a model (rate equation), find the best-fit kinetic constants

2. Focus on multiple reaction mechanisms:

a. Repeat 1. for all candidate models (mechanisms)b. Select the most plausible model

?

Page 41: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

41

Model proliferation: CYP450 / reductase example

COMBINATORIAL PROLIFERATION OF POSSIBLE MECHANISMS

Global Analysis of Protein-Protein Interactions Reveals Multiple Cytochrome P450 2E1 / Reductase Complexes

Arvind P. Jamakhandi‡, Petr Kuzmič§, Daniel E. Sanders‡, and Grover P. Miller‡

Journal: Biochemistry Ms# BI-2006-003476.R2 IN PRESS

P PKd2 kcat

product

P2Kd1

P2R

Kd4

P2R2

Kd3

P RP

PR

CYP450 2E1CYP450 Reductase

R

EXAMPLE

Page 42: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

42

Model proliferation: CYP450 / reductase example

COMBINATORIAL PROLIFERATION OF POSSIBLE MECHANISMS

Model# PR P2R PR2 P2R2 P21 A2 A A3 A A4 A A A5 A A6 A A A7 A A A8 A A A A N9 A N10 A A N11 A A N12 A A A N13 A A N14 A A A N15 A A A N16 A A A A N

Complex

P = cytochrome P450 (2E1)R = cytochrome reductase

A = catalytically activeN = inactive

42 separatemechanismswere examined

Page 43: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

43

The "Supermodel" approach

CREATE AN AGGREGATE MODEL ENCOMPASSING ALL POSSIBLE INTERACTIONS

Model# PR P2R PR2 P2R2 P21 A2 A A3 A A4 A A A5 A A6 A A A7 A A A8 A A A A N9 A N10 A A N11 A A N12 A A A N13 A A N14 A A A N15 A A A N16 A A A A N

Complex

1. Consider only the most complex model

2. Evolve all parameters using "DE"

3. Identify redundant parameters by examining the final distribution of fittest phenotypes

4. Eliminate redundant parameters thereby reducing the model ("small is beautiful")

the most complex (realistic) model

Page 44: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

44

The "Supermodel" for LF inhibition by curcumin

COMPILE AN AGGREGATE OF ALL POSSIBLE MOLECULAR INTERACTIONS

• Substrate can bind with 1:1 or 2:1 stoichiometry• Inhibitor can bind with 1:1 or 2:1 stoichiometry• Substrate and inhibitor can bind at the same time• Any enzyme-substrate complex can have catalytic activity

ASSUMPTIONS

EKs

ES

Kss

ES2

EIKi

Kii

EI2

Ksi

ESI

E + Pkp

EI + Pkip

ES + Pksp

Page 45: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

45

The "Supermodel" includes all standard mechanisms

STANDARD MECHANISMS DIFFER ONLY BY VALUES OF KINETIC CONSTANTS IN THE "SUPERMODEL"

"Competitive" mechanism

is a subset of the "Supermodel"

Ksi

ESI EI + Pkip

Kii

EI2

Kss

ES2 ES + Pksp

Kii Kss

ksp = 0

Ksi

kip = 0

EKs

ES E + Pkp

EIKi

Page 46: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

46

The "Supermodel" includes all standard mechanisms

STANDARD MECHANISMS DIFFER ONLY BY VALUES OF KINETIC CONSTANTS IN THE "SUPERMODEL"

"Uncompetitive" mechanism

is a subset of the "Supermodel"

Kss

ES2 ES + Pksp

Kii Kss

ksp = 0

Ki

kip = 0

EKs

ES E + Pkp

Ksi

ESI EI + Pkip

EIKi

Kii

EI2

Page 47: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

47

"Supermodel" evolution: Curcumin inhibition of LF

INITIAL DISTRIBUTION OF MODEL PARAMETERS (POPULATION SIZE = 1355)

Ks

log

10 p

aram

eter

-10

-5

0

5

10

Ki Kss Kii Ksi kpkipksp

total stability constants

Page 48: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

48

"Supermodel" evolution: Curcumin inhibition of LF

FINAL DISTRIBUTION OF MODEL PARAMETERS

Ks

log

10 p

aram

eter

-10

-5

0

5

10

Ki Kss Kii Ksi kp ksp kip

10-12 ZERO

ES2 ES + Pksp

Page 49: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

49

Curcumin inhibition of LF: Confidence intervals

ARE ALL PARAMETERS NECESSARY?

EKs

ES E + P

Kss

kp

ES2

EI

Ksi

ESI

Ki

Kii

EI2

EI + Pkip

ES + Pksp

logarithm of parameter

sum

of

square

s

kp

Kii

95% likelihood

Page 50: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

50

Curcumin inhibition of LF: Final model

FULLY EVOLVED "SUPERMODEL"

ES + Pksp

EKs

ES E + P

Kss

kp

ES2

EI

Ksi

ESI

Ki

EI + Pkip

Kii

EI2

Parameter Best Fit Low HighKs 0.091 0.071 0.118Ki 0.030 0.023 0.039Kss 0.00085 0.00077 0.00094Ksi 0.0029 0.0024 0.0036ks 70.5 63.4 79.4ksi 9.2 6.7 11.4

"Partial Mixed-Type Noncompetitive"

"With Substrate Inhibition"

Page 51: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

51

Summary and Conclusions

DIFFERENTIAL EVOLUTION HAS PROVED USEFUL IN BIO/CHEMICAL KINETICS

• Given a particular model,we can always find globally optimal parameters:

DE avoids false minima and other pathologies in nonlinear data fitting

• Given a set of possible bio/chemical processes,we can "evolve" the most plausible model:

- 1. Evolve a "Supermodel"- 2. Exclude redundant reaction steps- 3. Check confidence intervals

Page 52: Evolutionary Computing in the Study of Bio/Chemical Mechanisms Petr Kuzmič, Ph.D. BioKin, Ltd. Problem: Finding initial parameter estimates Solution: Differential

Supermodel Evolution in Bio/Chemical Kinetics

52

Acknowledgements: Lethal Factor protease work

Hawaii Biotechcurrently

Panthera BioPharma

Mark GoldmanSheri Millis

Lynne Cregar

Aiea, Island of Oahu, Hawaii

National Institutes of HealthGrant No. R43 AI52587-02

U.S. Army Medical Research and Materials CommandContract No. V549P-6073