evolutionary game theory i: well-mixed populations

19
+R +R +S +T +T +S +P +P Evolutionary game theory I: Well-mixed populations 1 Collisional population dynamics Traditional game theory 0 p D 1 t +

Upload: uriel

Post on 06-Feb-2016

64 views

Category:

Documents


2 download

DESCRIPTION

Evolutionary game theory I: Well-mixed populations. Collisional population dynamics. Traditional game theory. +T. +R. p D. 1. +R. +S. +. +S. +P. +T. +P. t. 0. Collisional population events. Collisional population events. R C. R R. R S. R D. R T. R P. C. +. +. C. D. C. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Evolutionary game theory I: Well-mixed populations

+R

+R +S

+T

+T

+S

+P

+P

Evolutionary game theory I: Well-mixed populations

1

Collisional population dynamics Traditional game theory

0

pD

1

t

+

Page 2: Evolutionary game theory I: Well-mixed populations

2

Collisional population events

Page 3: Evolutionary game theory I: Well-mixed populations

3

C

D

𝐢+𝐷 𝑇[𝑁 ]

β†’

𝐢+2𝐷

𝐢+𝐷 𝑆[𝑁 ]

β†’

2𝐢+𝐷2𝐢 𝑅[𝑁 ]

β†’

3𝐢

2𝐷 𝑃[𝑁 ]

β†’

3𝐷

𝐢 𝑓 0β†’

2𝐢

𝐷 𝑓 0β†’

2𝐷

RC RR RS

RD RT RP

DC C+ +

Collisional population events

Page 4: Evolutionary game theory I: Well-mixed populations

𝑑𝐷𝑑𝑑

= πœ•π·πœ•π‘…π·

𝑑𝑅𝐷

𝑑𝑑+ πœ•π·πœ• 𝑅𝑇

𝑑𝑅𝑇

𝑑𝑑+ πœ•π·πœ•π‘…π‘ƒ

𝑑𝑅𝑃

𝑑𝑑

𝑑𝐢𝑑𝑑

= πœ•πΆπœ•π‘…πΆ

𝑑𝑅𝐢

𝑑𝑑+ πœ•πΆπœ•π‘…π‘…

𝑑𝑅𝑅

𝑑𝑑+ πœ•πΆπœ•π‘…π‘†

𝑑𝑅𝑆

𝑑𝑑

4

Collisional population events

𝐢+𝐷 𝑇[𝑁 ]

β†’

𝐢+2𝐷

𝐢+𝐷 𝑆[𝑁 ]

β†’

2𝐢+𝐷2𝐢 𝑅[𝑁 ]

β†’

3𝐢

2𝐷 𝑃[𝑁 ]

β†’

3𝐷

𝐢 𝑓 0β†’

2𝐢

𝐷 𝑓 0β†’

2𝐷

RC RR RS

RD RT RP

𝑓 0𝐢+1𝑅

[𝑁 ] [𝐢 ]𝐢+1𝑆

[𝑁 ] [𝐷 ]𝐢+1

𝑓 0𝐷+1𝑇

[𝑁 ] [𝐢 ]𝐷+1𝑃

[𝑁 ] [𝐷 ]𝐷+1

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷

Page 5: Evolutionary game theory I: Well-mixed populations

5

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷

𝑑𝑑𝑑

𝑝𝐷=𝑑𝑑𝑑 ( 𝐷

𝐢+𝐷 )=𝑑𝐷𝑑𝑑

(𝐢+𝐷 )βˆ’π· 𝑑𝑑𝑑

(𝐢+𝐷 )

(𝐢+𝐷 )2

𝑑𝑝𝐷

𝑑𝑑=𝑝𝐢𝑝𝐷 [ (𝑇 βˆ’π‘… )𝑝𝐢+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

𝑑𝑝𝐢

𝑑𝑑+𝑑𝑝𝐷

𝑑𝑑=0STOP Check that total

probability is conserved

Evolutionary dynamics of demographics

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷

¿𝐢𝑑𝐷𝑑𝑑

+𝐷𝑑𝐷𝑑𝑑

βˆ’π·π‘‘πΆπ‘‘π‘‘

βˆ’π·π‘‘π·π‘‘π‘‘

(𝐢+𝐷 )2

¿𝐢 ( 𝑓 0+𝑇 𝑝𝐢+𝑃 𝑝𝐷 )π·βˆ’π· ( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢

(𝐢+𝐷 )2

Page 6: Evolutionary game theory I: Well-mixed populations

6

Evolutionary dynamics of demographics

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷𝑑𝑝𝐷

𝑑𝑑=𝑝𝐢𝑝𝐷 [ (𝑇 βˆ’π‘… )𝑝𝐢+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

Consider the example T > R > P > S

𝑑𝑝𝐷

𝑑𝑑=𝑝𝐷 (1βˆ’π‘π· ) [ (𝑇 βˆ’π‘… ) (1βˆ’π‘π· )+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

> 0

> 0

> 0

> 0> 0

0

pD

1.0

0.5

t4321

Page 7: Evolutionary game theory I: Well-mixed populations

7

Evolutionary dynamics of demographics

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷𝑑𝑝𝐷

𝑑𝑑=𝑝𝐢𝑝𝐷 [ (𝑇 βˆ’π‘… )𝑝𝐢+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

Consider the example T > R > P > S

𝑑𝑝𝐷

𝑑𝑑=𝑝𝐷 (1βˆ’π‘π· ) [ (𝑇 βˆ’π‘… ) (1βˆ’π‘π· )+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

> 0

> 0

> 0

> 0> 0

0

pD

1.0

0.5

t4321

Stable

Unstable

Page 8: Evolutionary game theory I: Well-mixed populations

8

Evolutionary dynamics of demographics

𝑑𝐢𝑑𝑑

=( 𝑓 0+𝑅𝑝𝐢+𝑆𝑝𝐷 )𝐢 𝑑𝐷𝑑𝑑

=( 𝑓 0+𝑇 𝑝𝐢+𝑃𝑝𝐷 )𝐷

𝑑𝑝𝐷

𝑑𝑑=𝑝𝐢𝑝𝐷 [ (𝑇 βˆ’π‘… )𝑝𝐢+(π‘ƒβˆ’π‘† )𝑝𝐷 ]

Consider the example T > R > P > S

0

pD

1.0

0.5

t4321

Stable

Unstable

1. Enrichment in D because D is more fit than C (T > R and P > S)2. Loss of fitness of D (and of C) owing to enrichment in D (T > P and R > S)3. The fittest cells prevail, reducing their own fitness

Fitness of C Fitness of D

Page 9: Evolutionary game theory I: Well-mixed populations

+R

+R +S

+T

+T

+S

+P

+P

Evolutionary game theory I: Well-mixed populations

9

Collisional population dynamics Traditional game theory

0

pD

1

t

+

Page 10: Evolutionary game theory I: Well-mixed populations

?CD

10

Self-consistent quantity maximization

?

+?

+?

Page 11: Evolutionary game theory I: Well-mixed populations

?DCC

11

Self-consistent quantity maximization

C

D

?

? C D?

?

?

+?

+?

C+R

+R +S

+T

??

??

DC

+T

+S D D

+P

+P

Page 12: Evolutionary game theory I: Well-mixed populations

12

Self-consistent quantity maximization

C

D

?

? C D?

?

+R

+R +S

+T

+T+S

+P+P

Page 13: Evolutionary game theory I: Well-mixed populations

13

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

Page 14: Evolutionary game theory I: Well-mixed populations

14

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

Page 15: Evolutionary game theory I: Well-mixed populations

15

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

Page 16: Evolutionary game theory I: Well-mixed populations

16

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

Page 17: Evolutionary game theory I: Well-mixed populations

17

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

D-vs.-D is a stable strategy pair in that neither agent can increase payoff through unilateral strategy change

Page 18: Evolutionary game theory I: Well-mixed populations

18

Self-consistent quantity maximization

C

D

+R+R +S

+T

+T+S

+P+P

C D Consider the example T > R > P > S

Individuals attempt to maximize payoff by adjusting strategy

D-vs.-D is a stable strategy pair in that neither agent can increase payoff through unilateral strategy change

Guided to solution D-vs.-D because T > R and P > S

Each individual obtains less-than-maximum payoff (P < T)owing to the other individual’s adoption of strategy D

Page 19: Evolutionary game theory I: Well-mixed populations

19

+R+R +S

+T

+T+S

+P+P

Consider example T > R > P > S

Agents try to maximize payoff

Solution := no agent can increase payoff through unilateral change of strategy. E.g., D-vs.-D (T > R and P > S).

Each agent obtains less-than-maximum payoff (P < T) owing to other agent’s adoption of strategy D

Rationality

Nash equilibrium

0

pD

1

t

Consider example T > R > P > S

T, R, P, and S are cell-replication coefficients associated with pairwise collisions

Stable homogeneous steady state, i.e. pD β†’ 1 because T > R and P > S.

Enriching in D reduces fitness of both cell types (because T > P and R > S)

Replicators with fitness

ESS

Evolutionary dynamics providing insight into a related game theory model

Game theory

Prisoner’s dilemma

Evolutionary game theory

Fortune cookie