ewb challenge 2015 report summaries

76
EWB Challenge 2015 Report Summaries Nepal Water for Health (NEWAH)

Upload: vuongthu

Post on 14-Feb-2017

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: EWB Challenge 2015 Report Summaries

 

 

  EWB  Challenge  2015  

Report  Summaries  

Nepal  Water  for  Health  (NEWAH)  

Page 2: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

i  |  P a g e  

 

TABLE  OF  CONTENTS  DESIGN  AREA  1:  HOUSING  AND  CONSTRUCTION  ...............................................................................  1  

Household  ventilation  system  ............................................................................................................  1  

Coventry  University,  Team  4:  Clay  and  bamboo  chimney  or  cooker  hood  system  ........................  1  

De  Montfort  University,  Team  1:  Two  door  latch  window  system  ................................................  2  

De  Montfort  University,  Team  3:  Insect-­‐proof  recycled  windows  .................................................  3  

Weather-­‐proofing  homes  ...................................................................................................................  4  

Durham  University,  Team  2:  Sustainable  housing  solutions  ..........................................................  4  

Portsmouth  University,  Team  1:  Eco-­‐friendly  housing  system  .......................................................  5  

Coventry  University,  Team  5:  Affordable  improved  housing  .........................................................  6  

University  of  Manchester,  Team  1:  Improved  bamboo  housing  design  ........................................  7  

University  of  Portsmouth,  Team  2:  Improved  housing  with  compressed  earth  blocks  .................  8  

University  of  Portsmouth,  Team  3:  Improved  housing  with  earthbags  and  clay  ...........................  9  

University  of  Portsmouth,  Team  4:  Composite  stone,  mud  and  straw  housing  ...........................  10  

University  of  Portsmouth,  Team  5:  Dhajji  dewari  modular  housing  system  ................................  11  

Lighting  for  households  ....................................................................................................................  12  

London  South  Bank  University,  Team  2:  Plastic  bottle  natural  lighting  system  ...........................  12  

Birmingham  University,  Team  2:  Lighting  powered  by  bio-­‐gas  ....................................................  13  

Imperial  College  London,  Team  1:  Solar  water  bottle  bulb  ..........................................................  14  

Nottingham  Trent  University,  Team  3:  ‘Bright  Idea’  solar  lighting  system  ..................................  15  

 

DESIGN  AREA  2:  WASH  ....................................................................................................................  16  

Appropriate  toilet  design  .................................................................................................................  16  

Glasgow  University,  Team  4:  Dry  toilet  design  .............................................................................  16  

Nottingham  Trent,  Team  1:  Self-­‐constructed  improved  sanitation  system  .................................  17  

Sheffield  Hallam  University,  Team  1:  ‘WeeCycle’  toilet  system  ...................................................  18  

Sheffield  Hallam  University,  Team  3:  Community  all-­‐in-­‐one  rainwater  toilet  system  .................  19  

Rainwater  harvesting  systems  ..........................................................................................................  20  

Manchester  University,  Team  3:  Rooftop  rainwater  harvesting  system  ......................................  20  

Birmingham  City  University,  Team  1:  Rainwater  harvesting  system  ............................................  21  

Page 3: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

ii  |  P a g e  

 

Sheffield  University,  Team  1:  Optimised  automatic  first  flush  system  ........................................  23  

Sheffield  Hallam,  Team  4:  “Flow  Reyt”  improved  first  flush  design  .............................................  24  

University  of  Strathclyde,  Team  5:  Automatic  first  flush  system  .................................................  25  

Birmingham  City  University,  Team  2:  Wooden  automated  first  flush  system  .............................  26  

De  Montfort  University,  Team  2:  Water  drum  first  flush  system  .................................................  27  

University  of  Sheffield  Hallam,  Team  5:  Double  downpipe  automatic  first  flush  ........................  28  

University  of  Strathclyde,  Team  2:  Downpipe  automatic  first  flush  .............................................  29  

Coventry  University,  Team  3:  Fog  catcher  and  rainwater  harvesting  with  first  flush  ..................  30  

University  of  Strathclyde,  Team  4:  Terracing  system  for  rainwater  harvesting  ...........................  31  

Coventry  University,  Team  2:  Water  harvesting  trenches  and  charcoal  filter  .............................  32  

University  of  Strathclyde,  Team  3:  Water  soakaway  and  solar  disinfection  ................................  33  

Water  purification  ............................................................................................................................  34  

University  of  Liverpool,  Team  2:  Vortex  and  sediment  water  filtration  system  ...........................  34  

London  South  Bank  University,  Team  5:  Filtration  and  purification  of  harvested  water  .............  35  

Imperial  College  London,  Team  2:  Enzyme  Coated  Polyamide  Water  Filter  ................................  36  

Liverpool  University,  Team  1:  Water  filter  pump  system  .............................................................  37  

University  of  Glasgow,  Team  5:  Clay  water  filter  design  ..............................................................  38  

Glasgow  University,  Team  1:  Slow  sand  and  charcoal  water  filter  ...............................................  39  

Nottingham  Trent  University,  Team  2:  FDSB  water  purifier  ........................................................  40  

Birmingham  University,  Team  5:  Solar  disinfection  system  .........................................................  41  

University  College  Dublin,  Team  2:  Water  purification  by  evaporation  and  condensation  .........  42  

Women’s  health  and  sanitation  .......................................................................................................  43  

Birmingham  University,  Team  1:  Menstrual  hygiene  education  and  improvement  ....................  43  

Multiple  Use  System  (MUS)  .............................................................................................................  44  

Glasgow  University,  Team  3:  Ferro-­‐cement  tank  multiple  use  water  system  ..............................  44  

 

DESIGN  AREA  3:  ENERGY  ...................................................................................................................  45  

Alternative  energy  supply  ................................................................................................................  45  

Heriot  Watt  University,  Team  1:  Micro  hydroelectric  system  ......................................................  45  

Cardiff  University,  Team  2:  Community  solar  energy  system  ......................................................  47  

Edinburgh  University,  Team  1:  Micro-­‐hydro  system  ....................................................................  48  

Imperial  College  London,  Team  4:  Central  biogas  reactor  ...........................................................  49  

Page 4: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

iii  |  P a g e  

 

Nottingham  Trent  University,  Team  4:  Bamboo  and  banana  leaf  wind  turbine  ..........................  50  

Cooking  technologies  .......................................................................................................................  51  

Brighton  University,  Team  1:  Biogas  cooking  system  ...................................................................  51  

Coventry  University,  Team  1:  Improved  biodigester  ....................................................................  52  

London  Southbank  University,  Team  3:  Rocket  stove,  improved  cooking  stove  .........................  53  

London  South  Bank  University,  Team  1:  Rocket  stove  and  smoke  hood  .....................................  54  

Imperial  College  London,  Team  3:  ‘Yak  Pot’  low  smoke  cooker  ...................................................  55  

Energy  supply  for  water  pumping  ....................................................................................................  56  

Durham  University,  Team  1:  Floating  water  wheel  for  water  pumping  .......................................  56  

Water  mill  .........................................................................................................................................  57  

University  of  Manchester,  Team  2:  Integrated  water  mill  and  grinding  wheel  ............................  57  

Edinburgh  University,  Team  4:  Water  Mill  Design  .......................................................................  58  

 

DESIGN  AREA  4:  WASTE  MANAGEMENT  ...........................................................................................  59  

Sludge  management  ........................................................................................................................  59  

London  South  Bank  University,  Team  4:  Multi-­‐purpose  S-­‐Bricks  .................................................  59  

Waste  as  energy  ...............................................................................................................................  60  

University  of  Strathclyde,  Team  1:  Plastic  bottle  greenhouse  .....................................................  60  

 

DESIGN  AREA  5:  TRANSPORT  .............................................................................................................  61  

Vertical  goods  transportation  systems  .............................................................................................  61  

University  of  East  Anglia,  Team  2:  Mule-­‐powered  wooden  rail  system  .......................................  61  

Cardiff  University,  Team  1:  Motorised  ropeway  pulley  system  ...................................................  62  

Birmingham  University,  Team  3:  Oxen  powered  vertical  transport  system  ................................  63  

Edinburgh  University,  Team  2:  Bicycle  powered  vertical  transport  system  .................................  64  

Edinburgh  University,  Team  3:  Block  and  tackle  goods  transportation  system  ...........................  65  

Sheffield  Hallam  University,  Team  2:  ‘Paddy  Pulley’  transportation  system  ...............................  66  

University  of  East  Anglia,  Team  1:  Power-­‐assisted  gravity  ropeway  ............................................  67  

Road  maintenance  and  management  ..............................................................................................  68  

Birmingham  University,  Team  4:  Combined  road  drainage  system  .............................................  68  

 

 

Page 5: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

iv  |  P a g e  

 

DESIGN  AREA  6:  INFORMATION  COMMUNICATIONS  TECHNOLOGY  ................................................  69  

Automated  data  recording  system  ...................................................................................................  69  

Imperial  College  London,  Team  5:  Automated  data  recording  system  ........................................  69  

 

DESIGN  AREA  7:  CLIMATE  CHANGE  ...................................................................................................  70  

Food  security  ....................................................................................................................................  70  

University  College  Dublin,  Team  1:  ‘EnvelHope’  food  dehydration  system  .................................  70  

Fly  and  mosquito  management  ........................................................................................................  71  

University  of  Sheffield,  Team  2:  Mosquito  surveillance  system  ...................................................  71  

 

 

 

Page 6: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

1  |  P a g e  

 

DESIGN  AREA  1:  HOUSING  AND  CONSTRUCTION  

Household  ventilation  system  

Coventry  University,  Team  4:  Clay  and  bamboo  chimney  or  cooker  hood  system  

Proposal:    

A  simple  ventilation  chimney  to  greatly  improve  the  well-­‐being  and  living  conditions  of  the  local  population  

Design:  

Two  different  variations  of  ventilation  chimneys  are  used  for  different  types  of  houses.  The  first  one  is  based  on  a  typical  fireplace  comprising  clay  and  bamboo,  but  with  a  place  just  above  the  fire  where  food  can  be  cooked.  This  design  would  only  be  used  when  the  house’s  walls  are  made  from  materials  that  are  relatively  easy  to  penetrate.  This  is  because  a  large  hole  is  made  in  order  for  the  bottom  half  of  the  chimney  to  be  inside  the  room.  The  second  design  comprises  a  clay  hood  that  sits  directly  above  the  area  where  the  residents  normally  cook.  This  is  connected  to  an  exterior  chimney,  held  to  the  outside  wall  by  steel  braces  and  a  wooden  support.  If  the  residents  already  have  a  place  where  they  are  cooking  and  need  help  getting  rid  of  the  smoke  they  could  use  this  chimney.  There  would  be  a  galvanised  steel  pipe  going  from  the  cooker  to  the  chimney.  This  means  that  only  a  small  hole  will  need  to  be  cut  from  the  wall  as  the  pipe  will  be  relatively  small  in  diameter.  The  top  part  of  the  chimney  is  painted  black  to  significantly  improve  air  flow  through  the  system.  

                 Design  one           Design  two  

Cost:  

Simple  construction  method  using  local  materials  to  keep  costs  low.  No  specific  cost  information  provided  

Environmental  and  social  impacts:  •   Communities  can  build  and  maintain  systems  themselves  after  training.  •   Construction  based  on  traditional  methods.  •   Uses  locally  available,  low-­‐cost  and  environmentally  friendly  materials,  such  as  clay  and  

bamboo.  •   Potential  for  local  business  development  of  clay  brick  production  for  chimney  construction  

and  repairs.  •   Reduction  of  smoke  in  the  household  and  improvement  of  health    

Page 7: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

2  |  P a g e  

 

De  Montfort  University,  Team  1:  Two  door  latch  window  system  

Proposal:    

A  household  system  that  provides  ventilation  (and  prevents  smoke  build-­‐up  from  cooking)  and  natural  lighting  during  the  day,  without  compromising  the  weatherproof  nature  of  the  home.  

Design:    

This  solution  involves  a  window  that  has  two  swinging  doors  that  could  be  locked  together  or  latched  open.  After  installing  the  window  the  roll  down  insulating  curtain  can  be  installed  on  the  inside  of  the  window.  The  roll  itself  is  woven  from  wool  to  a  size  that  equals  the  window  size,  with  a  length  of  material  woven  in  to  the  top  left  and  right.  When  rolled  up,  material  ties  can  be  used  to  secure  the  roll  to  the  rope.  This  curtain  will  be  waterproof/absorbing  and  de-­‐absorbing  fabric  that  could  be  rolled  over  the  closed  window  to  insulate  from  the  cold  weather,  as  is  sometimes  used  in  tents  and  yurts.  There  would  also  be  a  mesh  across  the  inside  of  the  window  that  would  act  as  a  mosquito  net.  If  three  of  these  windows  were  installed  and  opened  in  a  room  the  natural  air  flow  would  clear  smoke  from  the  fireplaces.  If  the  windows  were  closed  and  the  roll  was  let  down  then  the  room  would  be  kept  warm  and  dry.    

Cost:    Material   Base  Cost  (cost  per  house/area)  

Wood  (doors,  window  frame)     £10  per  house  Or  sourced  locally  (black  palm  trees  or  similar)    

Wool  (roll  down  curtain)     £6.15/sq.  m  100mm  thick  to  cover  five  windows  or  £3.70  per  house,  or  sourced  locally  (blue  sheep)    

Tools     ~£0,  assuming  all  tools  are  available  in  the  town    Construction  Materials  (screws,  wood  treatment  etc)    

<£5  per  house    

Mesh     ~£6  per  house  Estimated  cost  per  house  (3  windows)   £24.70  or  3,642.71  NRPs  

Environmental  and  social  impacts:  •   Mostly  constructed  from  locally  available  and  sustainable  materials.  •   Can  be  constructed  and  installed  at  a  low  capital  cost    •   Requires  regular  operation,  but  is  easy  to  operate  by  any  resident  in  the  households,  

including  children  and  the  elderly.  •   Good  natural  lighting  and  ventilation  while  cooking,  but  also  waterproof  and  insulates  

from  cold  at  night.    •   Improved  health  of  household  members  (less  respiratory  problems  and  mosquito  

transmitted  diseases).      

Page 8: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

3  |  P a g e  

 

De  Montfort  University,  Team  3:  Insect-­‐proof  recycled  windows  

Proposal:   An  insect  proof  window  that  protects  household  members  against  insects  and  the  hard  weather  using  recycled  plastic  sheets  with  tiny  perforations.  A  hand-­‐powered  fan  improves  airflow  through  the  windows.  

Design: The  design  requires  cutting  rectangular  sheets  out  of  larger  (2  litre  minimum)  plastic  bottles,  the  rectangular  sheets  are  flattened  and  micro  holes  are  punched  in  them  in  a  basic  geometric  pattern.  To  allow  these  sheets  to  fit  in  the  size  of  the  windows,  the  sheets  can  be  bound  at  the  edges  by  fibre  string  known  as  ‘Sisal’,  nylon  based  fishing  wire  or  hot  melt  pine  resin.  The  holes  that  would  be  put  into  the  plastic  sheets  would  be  at  a  maximum  of  2mm  diameter.  As  an  example,  on  a  sheet  that  is  161  x  87mm  (approx.  )  in  the  pattern  arranged  with  1mm  holes  that  are  3mm  apart  in  each  double  column  and  then  each  double  column  is  spaced  6mm  apart  that  means  there  are  850  holes  on  a  single  sheet.  The  ventilation  sheet  with  perforations  would  be  permanently  fixed  to  the  outside  of  the  house,  most  likely  by  bolting  the  sheet  to  the  wall,  and  then  on  the  inside  a  removable  solid  sheet  of  plastic  would  be  in  place  in  parallel  with  the  gap  where  the  window  would  sit  to  provide  insulation  in  colder  weather.  Simple  ‘U’  brackets  are  installed  to  the  inside  walls  of  the  house,  one  on  each  side  of  the  window  to  hold  the  second  solid  plastic  sheets  in  place  when  needed.  

Another  addition  that  can  be  added  to  the  design  to  aid  ventilation  capabilities  in  the  household  is  by  adding  a  crank/  belt  driven  fan.  This  fan  would  be  simple  to  make  out  of  mainly  out  of  wood  with  exception  to  the  belt  pulleys  which  will  have  to  most  likely  be  made  from  either  aluminium  or  steel,  and  the  belt  itself  which  would  have  to  be  made  from  vulcanised  rubber  much  like  a  car  transmission  belt.  

Cost: As  it  stands  costs  for  this  project  are  not  necessarily  predictable  as  it  is  a  slightly  irregular  approach,  the  only  cost  that  could  logically  be  estimated  would  be  prices  for  whole  large  sheets  of  PET  material,  which  for  a  2mm  thick,  1m  by  1m  sheet  is  roughly  £80  GBP.  

Environmental  and  social  impacts: •   Simple,  affordable  designing  using  locally  available  materials,  many  of  which  are  waste  

products.  •   Reduction  of  waste  materials  in  community,  which  may  improve  health.  •   Can  be  constructed  and  maintained  by  community.  •   Increase  in  health  as  removes  smoke  from  house  during  cooking  with  assistance  of  a  fan.  •   Limited  amount  of  ventilation  without  use  of  fan  to  drive  air  flow.    

Page 9: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

4  |  P a g e  

 

Chimney  design  for  ventilation  

Weather-­‐proofing  homes  

Durham  University,  Team  2:  Sustainable  housing  solutions  

Proposal:    

A  sustainable  housing  solution  for  the  rural  village  communities  of  Nepal  

Design:    

The  design  solution  comprises  four  components:  

Weather-­‐proofing:  A  removable,  roll-­‐up,  composite  wall  consisting  of  bamboo  and  wool  is  suggested.  Bamboo  needed  is  1  year  old,  16mm  diameter,  2.1m  tall.  50mm  of  wool  in  a  fabric  case  will  be  sewn  into  the  back  of  the  bamboo  and  60mm  diameter  bamboo  supports  will  be  attached  at  either  end  and  will  slot  into  pre-­‐placed  wooden  wall  brackets.  The  bamboo  will  be  tied  together  with  long  strands  of  string  allowing  it  to  be  rolled  up  and  stored  when  necessary.    

Ventilation:  An  optimised  wall  chimney  constructed  from  fired  clay  bricks  and  lined  with  slate  would  generate  sufficient  oxygen  flow  for  fires  to  burn  efficiently,  without  allowing  the  fire’s  heat  to  leave  the  room  via  the  chimney.  It  would  also  ensure  that  no  smoke  or  other  harmful  gases  created  by  the  fire  would  enter  the  room  containing  the  fireplace.    

Lighting:  Plastic  bottles  in  the  roof  were  chosen  for  a  daytime  solution,  while  LEDs  were  selected  for  night-­‐time.  The  bottles  refract  the  sun  light  into  the  room  in  all  directions,  giving  an  even  distribution  of  useable  light  around  the  bottle.  One  bottle  can  provide  approximately  as  much  light  as  a  standard  55  Watt  bulb.  

Windows:  Shutters  are  already  used  in  some  houses  in  Sandikhola  so  it  is  recommended  that  houses  not  currently  using  shutters  look  into  the  possibility  of  implementing  them.  

Cost:    Item   Cost  in  NR   Cost  in  GBP  

Lighting   809  NR   £5.40  Ventilation   24,445  NR   £163.00  Weather-­‐proofing   32,875  NR   £219.17  Windows   Not  specified   Not  specified  

Total     78,129  NR   £387.57  

Social  and  environmental  impacts:  

•   Uses  low-­‐cost  locally  available  and  recycled  materials  •   Easy  construction  that  is  similar  to  traditional  methods  and  can  be  done  by  the  local  

community  themselves  •   Improved  living  standard  of  community  •   Proposed  designs  have  the  same  lifespan  as  a  typical  house    

Page 10: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

5  |  P a g e  

 

Portsmouth  University,  Team  1:  Eco-­‐friendly  housing  system  

Proposal:    

Construction  of  a  cheap,  sustainable,  eco-­‐friendly  housing  system  to  suit  the  needs  of  those  living  in  Sandikhola.  

Design:  

The  design  utilises  cheap  and  sustainable  rammed-­‐  earth  walls  on  the  ground  floor  and  light  timber  cladding  on  the  first  floor.  Due  to  the  building’s  substantial  ground  floor  and  light  first  floor  it  is  predicted  that  it  would  perform  well  under  seismic  conditions.  The  timber  framework  provides  a  skeleton  on  which  the  simple  construction  is  based.  The  large  surface  area  of  the  roof  lends  itself  well  to  rainwater  harvesting.  The  rainwater  harvesting  system  is  designed  to  source  the  purest  possible  water,  due  to  the  implemented  first  flush  system.  The  overhang  of  the  roof  protects  and  preserves  the  earth  rammed  walls  and  provides  a  suitable  area  to  store  the  rainwater  harvesting  system.  The  innovative  passive  ventilation  system  ensures  sufficient  ventilation  throughout  the  house  regardless  of  the  weather.  The  refractive  bottle  and  shutter  system  allows  light  into  the  building  even  when  the  shutters  are  closed  due  to  poor  weather.  Plastic  or  glass  windows  can  be  retrofitted,  dependant  on  the  occupant’s  preferences  and  budget.  

Cost:  

 

Environmental  and  social  impacts:  

•   Bringing  a  “standardised”  design  into  a  community  with  large  variation  in  incomes  may  cause  an  unwanted  design  

•   Simple  design  that  can  be  constructed  easily  by  community  members  (if  affordable).  •   Replanting  of  trees  necessary  to  prevent  deforestation  due  to  heavy  reliance  on  timber.    

Item: Cost  (NPR) Cost  (£)Ground  Levelling  &  Retaining  Wall 58,834.34       £392.23Foundations 52,530.00       £350.20Timber  Framework  and  Cladding 40,865.57       £272.44Earth  Compacted  Walls  +  Rendering 39,280.00       £261.86Roof  System 75,772.80       £505.15Rainwater  Harvesting  System 6,130.00             £40.87Chimney 20,080.00       £133.87Expendable  Tools 7,722.77             £51.49Apportioned  Tools 9,937.34             £66.25Transport  Costs 29,000.00       £193.33

Total  =   340,152.81   £2,267.68

Page 11: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

6  |  P a g e  

 

Coventry  University,  Team  5:  Affordable  improved  housing  

Proposal:   Increase  living  standards  of  the  community  with  an  affordable  improved  housing  design.  

Design: The  house  will  be  elevated  using  four  columns  made  of  concrete  and  local  stones  to  avoid  flooding  and  keep  the  house  safe.  The  house  will  have  just  one  level  because  of  the  earthquakes  that  usually  happen  in  the  village.  The  house  is  made  using  local  materials.  The  base  of  the  floor  will  be  made  by  timber  covered  with  slurry  made  from  cow  dung.  The  walls  will  be  made  by  using  concrete  and  local  stones,  with  windows  to  provide  a  good  ventilation  system.  Windows  will  be  in  the  kitchen  and  in  each  room  to  recycle  the  air  also  provide  lighting  during  the  day.  The  windows  will  be  made  of  timber  and  glass.  The  ceiling  of  the  house  will  be  made  of  bamboo  tied  to  one  to  another  with  rope.  The  roof  will  be  also  made  of  bamboo  tied  to  one  to  another,  but  then  covered  by  leaves.  The  bathroom  will  be  placed  outside  the  house  and  water  for  washing  harvested  from  the  roof.  Water  will  be  collected  from  the  rain  using  a  plastic  guttering  leading  the  water  to  a  storage  tank.  This  water  can  be  used  for  domestic  uses,  helping  the  population  to  have  more  water  for  use.  

Cost:

Environmental  and  social  impacts:

•   Design  uses  locally  available,  durable  and  low-­‐cost  materials.  •   Houses  can  be  constructed  by  communities  as  design  is  simple.  •   Construction  ensures  house  less  likely  to  be  affected  by  floods  and  earthquakes.  •   Rainwater  harvesting  provides  additional  clean  water  at  household  level.  •   Windows  provide  light  and  ventilation,  reducing  smoke  inside  the  house.  •   Increased  well-­‐being  due  to  improved  housing.    

Page 12: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

7  |  P a g e  

 

University  of  Manchester,  Team  1:  Improved  bamboo  housing  design  

Proposal:    

Improved  housing  that  is  strong  and  made  from  cheap  renewable  materials  that  can  be  sourced  locally.  

Design:  

The  improved  housing  design  consists  of  foundations,  roof,  walls,  ventilation  chimney  and  heater.  Each  house  will  have  its  own  foundations  offset  0.5m  from  edge  going  all  the  way  around  the  house.  Workers  will  have  to  line  the  edge  of  the  trench  with  wood,  bamboo  or  bricks  and  then  fill  the  area  with  limestone  mortar.  Setting  up  a  framework  of  bamboo  is  the  first  step  in  construction  of  the  walls  and  roof.  This  Bamboo  Grid  is  then  erected  onto  the  foundation  using  a  bamboo  column.  Straw  bales  are  then  assembled  around  the  bamboo  grid.  This  is  then  held  in  place  by  a  bamboo  mashing  and  is  then  plastered  using  the  lime  mortar.  In  order  to  prevent  any  accumulation  of  precipitation,  the  roof  design  has  a  slope.  All  bamboo  is  treated  against  insects  before  being  used.  There  is  a  ventilation  chimney  positioned  in  the  centre  of  the  house.  The  chimney  is  made  from  (mainly)  clay  bricks  that  are  fired  in  a  homemade  kiln.  A  mixture  of  clay,  mud  and  cow  dung  is  used  to  hold  the  bricks  together.  A  masonry  heater  protrudes  1m  into  the  house  and  is  connected  to  the  central  chimney.  The  clay  bricks  used  in  the  masonry  heater  absorbs  a  lot  of  heat  and  releases  this  heat  back  into  the  house  over  the  next  6-­‐12  hours.    

                               Overall  design                                Ventilation  chimney  and  heater  

Cost:  

Nails:   £1.28  Bamboo:  £9.57  

Coconut  fibre:   £1.91  Cost  of  transport  can  be  ignored.  

 

Environmental  and  social  impacts:  

•   Uses  low-­‐cost  sustainable  locally  available  materials.  •   Reduction  of  smoke  in  the  household  •   Resilient  to  extreme  weather  conditions.    

Page 13: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

8  |  P a g e  

 

University  of  Portsmouth,  Team  2:  Improved  housing  with  compressed  earth  blocks  

Proposal:    

An  effective  and  sustainable  “standardised”  housing  system  with  improved  ventilation,  weatherproofing  and  lighting.  

Design:  

The  design  used  is  similar  to  traditional  houses  in  the  region,  with  incorporation  of  several  improvements.  A  gravel  trench  foundation,  as  this  system  is  suitable  for  the  hilly  terrain  as  a  stepped  strip  foundation  can  be  utilised.  The  walls  comprise  compressed  stabilised  earth  blocks  (CSEB),  which  consist  of  clay,  sand  and  around  8%  cement  with  a  small  amount  of  water,  mechanically  compressed  in  a  block  press.  These  blocks  can  be  dry  stacked  with  a  small  amount  of  grout  cast  into  the  holes  and  also  have  provisions  for  reinforcement.  The  structural  skeleton  of  the  house,  including  the  roof,  is  made  from  timber.  Corrugated  bitumen  sheets  are  placed  on  top  of  the  roof  structure.  A  cavity  wall  of  two  skins  of  CSEB’s  as  well  as  a  roof  overhang  ensures  weatherproofing.  Natural  lighting  within  the  house  will  be  provided  primarily  through  acrylic  window  blocks  on  both  the  first  and  second  floor  and  secondly  by  the  PVC  sheet  skylights.  An  improved  cooking  system  will  push  hot  air  up  and  out  of  a  chimney  made  from  CSEBs.  A  simple  guttering  system  collects  rainwater  which  will  be  stored  in  a  plastic  lined  tank.  A  composting  ‘Ecosan’  toilet  will  also  be  provided  with  each  house.  Finally,  a  retaining  wall  comprising  stone  filled  gabions  will  be  constructed  on  steep  terrain  to  reduce  the  risk  of  damage  to  homes  via  landslides.    

Cost:  Item   Cost  (GBP)  

Housing  structure  (timber,  stone,  cement,  windows  etc)   2,566  Cooking  system   50  Toilet   80  Water  harvesting  system   250  Retaining  wall   100  

Total  cost:   3,046  GBP  

Environmental  and  social  impacts:  

•   Design  reflects  traditional  housing  construction  methods  used  in  the  region.  •   Uses  primarily  low-­‐cost  and  locally-­‐sourced  materials.  •   Improved  health  due  to  weatherproofing  and  ventilation  in  house.  •   Reduction  in  money  spent  on  lighting  with  increased  natural  lighting.  •   Increase  in  availability  of  clean  water  at  household  level.  •   Reduction  in  risk  of  structural  damage  and  human  injury  landslides.    

Page 14: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

9  |  P a g e  

 

University  of  Portsmouth,  Team  3:  Improved  housing  with  earthbags  and  clay  

Proposal:    

A  housing  system  that  offers  a  long  term  solution  to  the  current  housing  deterioration  problem  in  the  community.  

Design:  

The  design  comprises  nine  key  components:  terracing,  foundations,  structure,  roofing,  ventilation,  electricity  and  lighting,  sanitation  and  water  harvesting.  Terracing  with  gabion  reinforcement  will  reduce  the  risk  of  landslides  and  soil  removed  can  be  used  in  the  earth  bags  for  construction.  For  the  foundations,  a  trench  will  be  dug  and  part-­‐filled  with  gravel,  with  three  earthbags  to  bring  the  foundation  up  to  ground  level.  The  main  structure  of  the  house  is  two  stories  high  and  comprises  earthbags  with  a  clay  render  cladding  and  timber  used  for  structural  elements  and  flooring.  The  room  partitions  throughout  the  building  are  going  to  be  made  out  of  bamboo.  The  single-­‐pitched  roof  comprises  a  sheet  of  corrugated  galvanised  iron  with  an  overhang  to  protect  against  water  ingress.  The  use  of  shutters  will  help  provide  light  and  ventilation  during  the  daytime  in  particular.  Electricity  will  be  supplied  by  the  national  grid,  with  LED  lightbulbs  used  as  a  source  of  light  in  the  households.  A  VIP  latrine  will  provide  sanitation  for  the  household,  inside  the  new  house  structure.  The  rainwater  harvesting  system  will  collect  water  from  the  roof  and  gabions,  to  be  stored  in  a  ferro-­‐cement  water  tank  with  first  flush  filtration  system.    

Cost:  Item   Cost  (NPRs)  

Materials   352,181.99  Tools   56,395.85  Labour   75,400.00  Transport   63,000.00  

Total  cost:   546,977.84  NPRs  

Environmental  and  social  impacts:  

•   Design  includes  aspects  of  traditional  housing  in  the  region.  •   Uses  primarily  low-­‐cost  and  locally-­‐sourced  materials.  •   Improved  health  due  to  increased  ventilation  in  house.  •   Increase  in  availability  of  clean  water  at  household  level.  •   Reduction  in  risk  of  structural  damage  and  human  injury  landslides.    

Page 15: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

10  |  P a g e  

 

University  of  Portsmouth,  Team  4:  Composite  stone,  mud  and  straw  housing  

Proposal:    

An  adaptable  housing  system  that  can  be  built  anywhere  in  the  Gorkha  region,  is  sensitive  to  the  environmental,  social  and  economic  situation,  and  thus  increases  the  wellbeing  of  the  occupants.  

Design:  

The  design  utilizes  a  strip  foundation  and  low  level  stone  wall  built  from  a  composite  of  stone,  mortar  that  resists  ingress  of  water  and  moisture  with  an  added  steel  reinforcement.  The  next  layer  above  the  stone  consists  of  compacted  mud  with  available  fibrous  material  mixed  in  that  is  applied  up  until  the  first  floor.  The  final  remaining  wall  above  the  compacted  mud  is  straw  bale  with  an  uppermost  ring  beam  on  top  to  support  the  rafters.  The  stone,  mud  and  straw  wall  materials  are  separated  by  wooden  ring  beams.  The  ring  beams  are  all  interlinked  with  a  tensioned  twisted  wire  running  horizontally  and  vertically  that  are  clasped  through  the  ring  beams  that  continue  from  the  rebar  at  the  base  to  the  final  ring  beam  supporting  the  roof.  The  roof  is  a  simple  low  mono  pitched  design  that  has  a  large  overhang.  All  internal,  external  surfaces  and  woven  bamboo  dividing  walls  are  plastered  with  non-­‐erodible  mud  slurry.  Incorporated  into  the  design  as  standard  are:  rainwater  harvesting  system,  a  twin  pit  Ventilated  Improved  Pit  (VIP)  toilet,  a  flued  hearth  and  Cholo  stove.  There  are  also  windows  with  shutters,  a  number  of  wall  mounted  light  tubes  to  provide  natural  light  and  a  solar  lighting  system  for  the  night  time.  

 

Cost:  Item   Cost  (GBP)  

Stage  1   2,850  Stage  2   3,980  Stage  3   4,750  

Total  cost:   11,580  GBP  

Environmental  and  social  impacts:  

•   Designed  to  withstand  weather  conditions  and  natural  hazards,  particularly  earthquakes.  •   Primary  materials  are  cheap,  sustainable  and  available  locally.  •   Simple  design  can  be  easily  modified  by  inhabitants  to  meet  specific  needs.    •   Improved  health  due  to  ventilation,  heating,  lighting  and  clean  water.  •   Design  reflects  the  lifestyle  and  traditions  of  the  community.  •   Potential  for  local  employment  in  construction  of  houses.    

Page 16: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

11  |  P a g e  

 

University  of  Portsmouth,  Team  5:  Dhajji  dewari  modular  housing  system  

Proposal:    

A  standardised  modular,  scalable  structural  system  that  is  flexible  and  can  meet  the  needs  of  individual  families  in  the  community.  

Design:  

The  house  structure  itself  uses  a  “Dhajji  dewari”  system,  which  consists  of  a  stone  masonry  foundation,  supporting  a  timber  frame  constructed  using  nails  and  simple  joinery.  Gaps  in  the  timber  frame  are  filled  with  roughhewn  stone  in  mud  mortar  to  produce  walls.  The  walls  are  finished  with  a  mud  render,  applied  over  chicken  wire;  the  levelled  surface  may  then  be  whitewashed  with  lime.  For  heating,  a  clay  brick  hearth  is  constructed  spanning  a  wall  between  the  kitchen  and  living  space,  thereby  allowing  for  fires  to  heat  both  rooms.  This  hearth  also  conducts  smoke  produced  during  cooking  into  a  pig  iron  flue,  which  extends  out  through  the  roof.  Natural  lighting  is  provided,  without  compromising  warmth,  through  the  use  of  clear  PVC  panels  in  the  roof  and  walls.  An  off-­‐the-­‐shelf  solar  system  provides  a  source  of  cheap  electricity  for  lighting  and  phone  charging,  independent  of  the  national  grid.  For  sanitation,  there  is  a  ‘fossa  alterna’  composting  latrine  with  two  pits,  which  also  provides  a  source  of  fertiliser.  Finally,  a  rainwater  harvesting  system  collects  water  from  the  roof  using  guttering,  which  then  flows  through  an  automatic  floating  ball  flush  system  and  is  stored  in  a  ferro-­‐cement  tank.      

Cost:  Item   Cost  (USD)  

Local  materials   733.50  Kathmandu  materials   2,545.50  Labour   1,200.00  Transport   1,550.00  

Total  cost:   6,029.00  USD  

Environmental  and  social  impacts:  

•   Designed  to  withstand  weather  conditions  and  natural  hazards,  particularly  earthquakes.  •   Primary  materials  are  cheap,  sustainable  and  available  locally.  •   Simple  design  can  be  constructed,  maintained  and  modified  by  community.    •   Improved  well-­‐being  due  to  increased  light  and  heat,  reduction  in  smoke  pollution  and  

provision  of  clean  water.  •   Makes  productive  use  of  waste  materials  via  composting  toilets  (fertiliser).    

Page 17: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

12  |  P a g e  

 

Lighting  for  households  

London  South  Bank  University,  Team  2:  Plastic  bottle  natural  lighting  system  

Proposal:    

A  modular  roof  fitting  that  used  recycled  plastic  bottles  to  deliver  either  a  natural  lighting  or  ventilation  solution  as  required.  

Design:  

The  modular  design  requires  re-­‐used  plastic  bottles,  a  sheet  of  galvanised  iron  steel  and  minimal  tools  to  create  a  lighting  and  ventilation  solution.  The  lighting  solution  consists  of  a  waste  plastic  bottle  filled  with  water  and  a  small  amount  of  bleach,  mounted  in  to  a  sheet  of  steel  which  could  then  be  installed  into  the  roof  structure.  It  would  enable  sunlight  to  be  refracted  throughout  the  room.  The  ventilation  system  consists  of  a  waste  plastic  bottle,  mosquito  netting  and  the  steel  sheet.  With  a  few  cuts  and  a  few  simple  steps  the  bottle  provides  a  path  for  hot  air  and  smoke  to  escape  out  of  the  dwelling  whilst  remaining  weather  proof  and  keeping  unwanted  insects  or  debris  out  of  the  living  space.  

 

Cost:  

 Total  cost:  18,  623.08  NPRs  

Environmental  and  social  impacts:  

•   Uses  sustainable  locally  sourced  low-­‐cost  materials,  including  waste  products.  •   Simple  design  can  be  constructed,  installed  and  maintained  by  community.  •   Improved  well-­‐being  and  reduced  electricity  costs  due  to  increased  natural  lighting.    •   Potential  for  local  employment  via  production  of  the  lighting/ventilation  system.  •   Improved  health  due  to  reduced  smoke  pollution  in  households  (if  also  used  for  ventilation).  •   Only  provides  additional  light  in  the  daytime.    

Page 18: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

13  |  P a g e  

 

Birmingham  University,  Team  2:  Lighting  powered  by  bio-­‐gas  

Proposal:    

Alternative  lighting  for  both  day  and  night  in  Sandikhola,  providing  self-­‐sufficient  light  so  that  local  people  will  not  rely  on  expensive  mains  electricity.  

Design:  

Light  in  the  daytime  is  provided  via  windows  that  will  be  installed  in  the  roof  of  houses.  Light  at  night  is  fuelled  by  a  small-­‐scale  biogas  plant.  The  daylight  solution  consists  of  plastic  window  panels  sealed  within  the  roof  of  houses.  The  windows  comprise  plastic  bottles,  adjusted  by  hand  to  one  square  metre  sheets.  To  ensure  privacy  there  are  several  options  depending  on  the  roof  design,  a  window  covering  can  easily  be  made  to  allow  cloth  to  be  hung  as  a  curtain.  The  plastic  windows  have  a  curved  surface  allowing  the  rain  water  to  run  off  and  light  to  spread.  An  outwardly  curved  surface  will  allow  light  to  come  in  at  different  angles  as  used  within  flat  roof  skylights.  Lights  at  night  are  powered  by  a  small-­‐scale  biogas  plant  built  immediately  next  to  the  houses.  Each  plant  accommodates  up  to  3  houses  and  is  made  of  a  large  underground  container,  lined  with  bricks  to  hold  the  decomposing  matter.  Residents  feed  in  agricultural  

waste  to  the  plant  as  well  as  organic  household  waste.  The  methane  gas  that  is  created  is  used  as  fuel  for  gas  lamps.  Gas  will  be  fed  through  plastic  pipes  into  houses,  which  will  allow  for  hanging  lights.  

Cost:  Item   Cost  (NRP)  

Windows   Negligible  Digester   111,455.00  Labour   600.00  Plant   18837.47  Equipment   2353.68  

Total  for  the  system  (NPR)   133,246.15  Total  for  the  system  (GBP)   880.66  

Environmental  and  social  impacts:  

•   Windows  are  low-­‐cost  design  and  can  be  constructed/maintained  by  community  •   Design  makes  use  of  waste  materials  readily  available  locally  •   Improved  quality  of  life  (especially  for  the  elderly  and  children)due  to  additional  light  in  both  

day  and  night,  but  risk  of  fire  from  use  of  gas  lamps.  •   By-­‐products  of  fuel  for  night  lighting  not  harmful  to  environment  •   Sustainable  cycle  for  fuel  and  crop  production  (bio-­‐gas  by  product  can  be  used  as  fertiliser).    

Page 19: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

14  |  P a g e  

 

Imperial  College  London,  Team  1:  Solar  water  bottle  bulb  

Proposal:    

Make  use  of  waste  glass  bottles  to  make  alternative  lighting  in  houses  and  facilitate  the  creation  of  more  jobs,  as  bottle  collectors  would  be  needed.  

Design:  

The  glass  bottle  bulb  is  assembled  and  then  fitted  into  the  roof  of  the  house.  The  bulbs  are  made  by  placing  a  glass  bottle  two  thirds  of  the  way  into  a  round  hole  within  a  galvanised  steel  sheet,  secured  with  sealant.  The  bottle  is  then  filled  with  filtered  water  and  about  10ml  of  bleach  and  covered  with  a  cap.  To  install  the  bulb,  a  circular  hole  is  cut  in  the  house’s  roof  and  the  bottle  is  secured  in  place  using  rivet.  Sealant  is  place  around  the  bottle  and  the  steel  sheet  to  prevent  water  leaking  into  the  house.  The  Solar  Water  Bottle  Bulbs  used  in  the  Philippines,  PET  plastic  bottles,  have  been  estimated  to  provide  a  luminosity  equivalent  to  a  55-­‐watt  incandescent  light  bulb.  

 

 

Cost:  

The  capital  required  for  start-­‐up,  includes  tools  for  construction,  materials  for  developing  the  sealant,  and  transport  vehicles  to  deliver  the  product  in  bulk.  In  the  Philippines,  it  costs  $2-­‐3  to  build  and  install  a  solar  bottle  bulb  in  homes.  It  would  cost  approximately  the  same  to  carry  the  same  initiative  in  Sandikhola.  Costs  could  be  lowered  further  by  reusing  unwanted  glass  bottles  and  iron  sheets.  One  solar  bottle  bulb  is  able  to  last  for  up  to  5  years.  

 

Environmental  and  social  impacts:  

•   Simple  design  uses  low-­‐cost,  locally  available  materials.  •   Improvements  in  local  environment  due  to  reduction  in  waste  bottles.  •   Potential  for  local  employment  in  manufacture  of  the  light  bulbs.  •   Not  suitable  for  houses  with  thatch  roofs.  •   Improved  lighting  in  household  during  daytime  hours  only.    

Page 20: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

15  |  P a g e  

 

Nottingham  Trent  University,  Team  3:  ‘Bright  Idea’  solar  lighting  system  

Proposal:    

A  lighting  system  based  on  the  ‘Liter  of  light’  project  that  provides  natural  light  to  households  in  the  daytime  and  electrical  light  at  night.  

Design:  

The  design  involves  using  a  2L  plastic  bottle,  filled  with  water  and  bleach  (to  stop  the  growth  of  algae)  surrounded  by  four  solar  panels.  To  install  the  product,  a  circular  hole  is  cut  in  the  roof,  and  then  a  square  corrugated  panel  with  a  hole  in,  is  glued  around  the  bottle.  A  PVC  pyramid  casing  is  then  secured  around  the  bottle  and  solar  panels  are  attached.  The  pyramid  casing  is  designed  so  that  the  solar  panels  are  at  an  optimum  angle  for  gathering  solar  energy.  During  the  daytime,  light  shines  through  the  bottle  and  acts  as  a  light  bulb,  providing  lighting  to  the  house.  Once  no  more  natural  light  is  coming  through  the  bottle,  solar  energy  stored  in  a  battery  encased  in  the  pyramid  structure  powers  LED  lights.  

 

                               

 

Cost:  

Considering  pyramid  casing,  LEDs,  batteries  and  solar  panels,  the  total  estimated  cost  is:  14.60  GBP  

 

Environmental  and  social  impacts:  

•   Uses  sustainable  and  in  some  cases  waste  materials  (plastic  bottles).  •   Improved  lighting  in  both  daytime  and  night.  •   Clean  electricity  source  that  does  not  pollute  environment.  •   Cheaper  lighting  alternative  compared  to  traditional  light  bulbs.  •   Design  can  be  integrated  into  existing  housing.  •   Construction  process  needs  to  be  done  in  Kathmandu  where  appropriate  facilities  are  

available.  •   Potential  local  employment  in  installation  of  the  system.    

Page 21: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

16  |  P a g e  

 

DESIGN  AREA  2:  WASH  

Appropriate  toilet  design  

Glasgow  University,  Team  4:  Dry  toilet  design  

Proposal:    

A  dry  toilet  with  virtually  100%  of  its  waste  reused  and  converted  into  useful  by-­‐products.  

Design:  

The  toilet  comprises  a  toilet  bowl  structure  split  into  two  halves  –  one  used  for  collection  of  urine  (the  smaller  hole  towards  the  front)  and  the  other  for  collection  of  faeces  (the  larger  hole  at  the  rear).  The  system  is  waterless  and  there  is  no  need  to  flush.  Each  hole  leads  to  a  different  collection  chamber  –  one  for  liquid  waste  and  the  other  for  dry  waste.  The  chambers  are  relatively  simple  boxes  made  from  plastic;  making  them  light,  inexpensive  and  easy  to  clean  out.  The  bottom  edge  of  the  toilet  bowl  lies  in  line  with  ground  level,  so  the  collection  chambers  remain  underground.  There  is  a  hinge  between  the  lids  of  the  chambers,  so  when  they  need  emptied  the  lid  can  be  opened  and  the  chambers  removed.  Urine  is  naturally  sterile  and  acts  as  a  fertiliser  that  can  be  used  directly  on  crops.  The  faeces  must  be  left  to  compost  in  an  open-­‐air  environment  with  good  access  so  it  can  be  easily  managed  and  maintained.  The  toilet  housing  is  constructed  out  of  bamboo.  

Cost:  Materials   Concrete   Piping   Locks   Squat  

Toilet  Totals  

Material  Cost  (NPR)   247,744   6,016   10,880   32,000   296,640  Transport  Cost  (NPR)   408,750   22,000   N/A   54,000   484,750  

Total  cost:   781,390  NPR  

Environmental  and  social  impacts:  

•   Can  be  constructed  and  maintained  by  community  themselves.  •   Uses  low-­‐cost,  locally  available  materials.  •   Education  required  for  community  to  accept  use  of  faeces  as  fertiliser  once  composted.  •   Potential  for  local  employment  for  collection  of  waste  and  distribution  of  compost.  •   Reduces  ground  contamination  and  reduces  risk  of  disease,  improving  health.  •   Generates  useful  by-­‐product  that  may  increase  crop  yields  and  hence  income.    

Page 22: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

17  |  P a g e  

 

Nottingham  Trent,  Team  1:  Self-­‐constructed  improved  sanitation  system  

Proposal:    

A  system  intended  to  reduce  the  spread  of  disease  by  improving  sanitation  through  education  and  the  implementation  of  human  centred  design.  

Design:    

The  system  comprises  several  interventions:  an  improved  toilet  structure,  teaching  soap-­‐making  using  banana  leaves,  training  on  how  to  implement  and  use  a  wash  station  (within  the  new  toilet  structure),  and  use  banana  leaves  as  ‘toilet  paper’.  

Toilet  unit  and  wash  station:  The  walls  and  roof  of  the  unit  are  constructed  from  prefabricated  corrugated  bamboo  panels  nailed  to  the  pine  posts  situated  a  meter  underground  ensuring  rigidity.  The  layout  of  the  unit  is  designed  in  a  ‘maze’  format  to  eliminate  contact  with  door  handles  and  surfaces.  Below  the  unit  a  cavity  is  cut  away  where  a  wheelbarrow/  bucket  collects  the  waste  from  the  users.  This  waste  will  be  transported  daily  to  a  compost  heap  by  a  villager  assigned  to  the  role.  Inside  the  unit  is  a  wash  station  that  utilises  the  collected  water  from  the  sloped  roof  to  make  the  most  of  limited  supply  and  is  designed  to  keep  the  spread  of  germs  to  a  minimum.  Villagers  will  be  trained  in  how  to  make  hand  soap  from  the  ashes  of  banana  leaves  to  be  used  in  the  wash  station.  

Banana  leaf  toilet  paper:  locals  will  be  encouraged  to  use  cut  up  banana  leafs  over  their  hand  as  toilet  paper.  These  leaves  will  then  feed  into  the  waste  management  cycle  (see  diagram).  

Cost:  

The  total  estimated  cost  of  toilet  unit  and  wash  station  is:  

Item   Cost  Transportation   £1.57  Materials   £19.75  Labour   £10.24  Tools   £0.24  

Total   £31.80  

Social  and  environmental  impacts:  

•   Cheap  and  easy  to  construct  and  maintain  by  community,  supported  by  instruction  guidelines.  •   Opportunity  for  local  employment  in  construction  and  maintenance  •   Uses  primarily  locally  sourced  sustainable  materials  •   Improved  sanitation  and  hence  improved  health  •   Transforms  waste  into  fertiliser  for  banana  plantations    

Page 23: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

18  |  P a g e  

 

Sheffield  Hallam  University,  Team  1:  ‘WeeCycle’  toilet  system  

Proposal:    

The  WeeCycle  toilet  system  utilizes  evaporation  techniques  and  fermentation  to  turn  urine  and  faeces  into  usable  products,  such  as  water  and  fertiliser.  

Design:  

The  design  comprises  a  hut  on  stilts  made  from  locally  sourced  wood  (Neem)  and  a  plumbing  system  to  process  the  urine  and  faeces  surrounded  by  a  greenhouse.  Urine  and  faeces  enter  their  relevant  funnels  at  point  1.  The  faeces  are  deposited  into  the  plastic  bin,  which  is  later  taken  off  to  a  compost  pit  further  away.  The  urine  travels  down  a  plastic  pipe,  entering  the  solar  distillation  chamber  at  point  3.  Once  the  urine  has  entered  the  chamber,  the  plastic  greenhouse  catalyses  the  process  (point  8)  and  the  evaporation  of  the  water  from  the  urine  is  quickened.  Once  the  urine  evaporates,  it  hits  a  metal  

panel  which  condenses  the  water  and  funnels  it  into  a  plastic  storage  tank  at  point  6.  Once  the  water  has  been  stored  in  the  tank,  it  can  be  abstracted  by  the  pump  at  point  7.  This  hand  pump  can  then  be  operated  by  the  user  and  used  to  provide  water  for  cleaning  whilst  using  the  toilet.  Points  4  and  5  act  as  an  overflow  and  make  sure  that  the  tank  of  safe  clean  water  does  not  become  contaminated.    

 

Cost:  Item   Cost  (NPRs)  

Materials   25,525.00  Labour   8,000.00  Transport   29,000.00  

Total  cost:   63,800  NPRs  

Environmental  and  social  impacts:  

•   Low-­‐cost  and  sustainable  solution.    •   Wood  is  available  locally,  but  all  other  materials  must  be  sourced  from  outside  the  

community.  •   System  produces  useful  products  from  waste  materials  (water  and  fertiliser).    •   Design  takes  cultural  sanitation  practices  into  consideration.  •   Possibility  for  local  employment  in  construction.    

Page 24: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

19  |  P a g e  

 

Sheffield  Hallam  University,  Team  3:  Community  all-­‐in-­‐one  rainwater  toilet  system  

Proposal:    

The  community  all-­‐in-­‐one  rainwater  toilet  system  reduces  water  demand  by  recycling  and  reusing  rain  water  for  showers  and  then  using  the  grey  water  to  flush  the  toilet.  

Design:  

The  rainwater  toilet  system  will  be  housed  in  a  structure  made  of  bamboo  and  cement.  A  slanted  roof  on  the  structure  collects  rainwater  and  causes  it  to  flow  into  guttering  along  the  lower  roof  edge.  The  roof  would  be  made  of  corrugated  iron  sheeting  and  the  guttering  would  be  PVC  covered  by  a  mosquito  net  to  avoid  any  debris  entering  the  system.  From  here  the  water  flows  down  PVC  pipes  and  into  a  plastic  storage  tank  that  holds  100  litres  of  water.  The  water  then  flows  to  the  sink  and/or  shower  head.  The  shower  head  consists  of  a  hose  pipe  end  and  a  water  bottle  with  small  holes  in  the  base.  The  flow  of  water  through  the  showerhead  is  controlled  through  the  use  of  an  insert  that  can  be  pushed  in  or  pulled  out.  Grey  water  from  the  sink  will  be  used  to  flush  the  toilet.  The  toilet  would  not  have  a  conventional  flushing  mechanism  because  the  villages  do  not  have  plumbing  but  instead  would  work  by  using  gravity  to  make  the  water  remove  the  waste.  Finally  another  PVC  pipe  would  allow  the  waste  water  from  the  toilet  and  shower  to  be  taken  away  from  the  system  and  placed  in  an  appropriate  area.  

                     Cost:  

Item   Cost  (NPRs)  Materials   5,697.65  Manufacturing   1,059.04  Transport   Zero  Labour   Zero  

Total  cost:   6,756.70  NPRs*                  *cost  assumes  placement  of  system  in  a  pre-­‐existing  structure  

Environmental  and  social  impacts:  

•   Uses  a  mixture  of  locally  and  externally  sourced  materials.  •   Improved  health  du  e  to  better  sanitation.  •   Reduced  demand  on  drinking  water  sources  due  to  increased  use  of  rainwater.  •   Simple  maintenance  can  be  easily  conducted  by  community.  •   No  method  of  treating/reusing  wastewater  from  toilet  and  shower.    

Page 25: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

20  |  P a g e  

 

Rainwater  harvesting  systems  

Manchester  University,  Team  3:  Rooftop  rainwater  harvesting  system  

Proposal:  

A  rainwater  harvesting  system  with  an  automatic  first  flush  system  that  provides  the  cleanest  water  with  locally  sourced  materials.    

Design:    

The  design  consists  of  first  flush  system  to  remove  the  dirt  and  contaminants  from  the  roof  and  a  filter  to  further  purify  the  water.  Water  will  run  off  the  roof  and  into  bamboo  gutters.  Bamboo  should  be  treated  to  prevent  problems  of  fungi  and  decay,  using  for  example:    protection  by  design,  clump  curing,  or  fixing  type  preservatives.  Water  flows  along  the  gutters  and  into  the  first  flush  system  pipes.  A  small  hole  of  approximately  2cm  will  be  made  at  the  bottom  of  the  three  first  flush  system  pipes  to  divert  the  contaminants  into  the  container  below,  where  they  can  be  reused  for  purposes  such  as  gardening.  Once  the  dirt  and  contaminants  have  been  filtered  through  the  first  flush  system,  the  bottles  in  the  first  flush  system  will  block  the  entry  and  the  filtered  cleaner  water  will  be  able  to  flow  through  the  gutters  into  the  tank.  A  water  bottle  is  cut  in  half  and  filled  with  coarse  sand  which  is  positioned  at  the  entry  of  the  tank  to  filter  the  water  as  it  enters  the  tank.  Only  coarse  sand  and  cotton  are  used  so  that  the  time  taken  to  filter  the  water  into  the  tank  is  reduced.  Another  four  bottles  containing  fine  sand  and  cotton  are  also  placed  inside  the  tank  to  further  filter  and  clean  the  water,  to  ensure  that  it  is  clean  enough  to  be  drinkable.    

Cost:    

Materials  are  locally  sourced  as  the  gutter  system  is  mainly  made  of  bamboo  and  reusable  materials  like  water  bottles  are  used  for  the  first  flush  system.  Hence,  it  is  obvious  that  this  design  is  cheaper  than  the  alternative  of  using  PVC  pipes  and  guttering.  

Social/Environmental  Impacts  

•   Contaminants  on  catchment  areas  can  impose  health  risks  to  water  consumers,  but  risk  minimised  by  good  hygiene  in  catchment  areas  and  presence  of  filters.  

•   Increases  availability  of  potable  water,  as  well  as  for  other  purposes,  such  as  agriculture.  •   Most  materials  are  locally  sourced,  which  keeps  costs  low  and  is  sustainable.  •   Low-­‐cost  design  does  not  require  any  expertise  and  so  easily  constructed  by  locals.    

Page 26: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

21  |  P a g e  

 

Birmingham  City  University,  Team  1:  Rainwater  harvesting  system  

Proposal:  

A  water  harvesting  system  to  help  the  collection  of  water  for  drinking.  

Design:    

The  tower  system  extracts  moisture  from  the  atmosphere,  condensing  the  water  and  making  it  drip  through  the  mesh.  The  droplets  then  are  pushed  by  gravity  and  slowly  go  to  the  fitted  pipe  at  the  bottom  of  the  structure,  which  transports  the  water  to  a  water  storage  tank.  The  skeleton  structure  consisting  of  bamboo  poles  divided  into  3  parts  are  grouped  as  a  hollow  cylindrical  shape,  utilizing  hemp  wires  to  tie  the  bamboo  together.  Within  the  cylinder  of  bamboo  poles  is  the  cotton  mesh  connected  with  chicken  wire.  Designed  to  absorb  the  moisture  from  the  air,  the  chicken  wire  increases  the  rate  of  condensation  due  to  the  cold  surface  of  the  wire  and  as  well  as  supports  the  structure  of  the  tower  due  to  its  strength.  The  mesh  is  connected  to  the  bamboo  structure  by  the  wire  in  an  inclined  direction,  so  due  to  gravity  the  moisture  only  enters  the  mesh  and  does  not  leave  it.  The  water  collected  from  the  atmosphere  then  travels  downwards  (towards  the  pipe)  and  eventually  into  the  water  storage  tank.  In  addition  to  this,  heavy  rocks  are  connected  to  the  bamboo  structure,  being  used  for  anchoring  and  stabilizing  the  tower,  potentially  avoiding  the  tower  from  collapsing  due  to  environmental  issues  such  as  wind  and  earthquakes.  

Cost:  

Dimensions  and  Quantity     US  Dollars  ($)  (NPR/100)  

Chicken  Wire     350  

Cotton     465  

Bamboo     760  

PVC  Pipes     25  

Total     1,600  

Social  and  Environmental  impacts:  

•   Combination  of  skilled  labourers  and  community  members  can  construct  and  install  the  system.  

•   All  the  materials  used  in  the  tower  are  available  locally  and  mostly  renewable  resources.  •   Will  not  contaminate  the  water  collected,  or  the  environment.  •   Increases  availability  of  clean  drinking  water  at  community  level,  which  also  improves  health.  

Page 27: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

22  |  P a g e  

 

•   Relatively  expensive  for  the  community  considering  low  income  levels.    

Page 28: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

23  |  P a g e  

 

 Final  design  of  automatic  first  flush  system  

Sheffield  University,  Team  1:  Optimised  automatic  first  flush  system  

Proposal:    

The  proposed  solution  for  the  optimization  of  the  manual  rainwater  harvesting  system  is  a  rearrangement  of  pipes  to  design  an  automatic  first-­‐flush  system  with  the  addition  of  T-­‐shaped  connections  and  filters  to  collect  a  larger  amount  of  cleaner  water,  especially  during  the  dry  season.  

Design:    

An  existing  gutter  pipe  directs  contaminated  water  from  the  roof  into  our  system.  Water  flows  into  the  first  path  (yellow):  the  biggest  sediments  are  partially  gathered  in  the  lowest  part  of  the  T  connection  (green)  because  of  their  higher  density  compared  to  the  density  of  water.  The  latter  is  then  completely  filtered  by  the  first  filter  (red).    

During  light  rains,  water  does  not  fill  any  chamber  and  could  be  in  this  way  filtered  and  efficiently  exploited.  During  heavy  rains,  it  is  considered  that  the  sediments  and  contaminants  are  completely  removed  from  the  roof  and  this  effect  could  cause  a  blockage  in  filtering.  In  case  of  a  blockage  in  the  first  filter  due  to  a  large  amount  of  sediments  or  a  lack  of  maintenance,  the  design  would  work  as  a  traditional  constant  volume  system,  redirecting  water  into  the  second  path  (blue),  designed  to  effectively  deal  with  this  issue.  It  allows  water  to  circulate  in  the  system  and  avoids  a  not  controlled  increase  in  pressure.  

Cost:    

Since  a  rainwater  harvesting  system  already  exists  in  the  village,  few  materials  need  to  be  purchased  and  the  overall  cost  is  low.  T-­‐shaped  tubes  may  need  to  be  bought  to  allow  junctions  in  the  systems:  prices  start  from  $0.48/each.  The  cloth  filter  is  free  as  almost  any  household  cloth  material  can  be  used.  Plastic  filters  do  have  a  small  cost  but  some  are  already  used  in  Sandikhola  to  filter  water  entering  existing  storage  tanks  and  therefore  many  more  may  not  need  to  be  purchased.  

Social  and  environmental  impacts:  

•   Design  is  effective  and  simple,  does  not  require  drastic  changes  to  present  infrastructure.  •   Easily  installed  and  maintained  by  community.  •   Many  of  the  materials  required  are  already  in  use  by  the  community  and  others  are  

cheap/free  to  access  locally.  •   Materials  are  not  biodegradable,  but  are  durable  and  have  a  long  lifespan.  •   Scope  for  involvement  of  community  in  design  development.  •   Increases  availability  of  safe  drinking  water  at  household  level.    

Page 29: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

24  |  P a g e  

 

Sheffield  Hallam,  Team  4:  “Flow  Reyt”  improved  first  flush  design  

Proposal:    

Create  an  automatic  first  flush  system  using  equipment  and  components  easily  available  at  the  local  level.  

Design:    

Water  flows  into  a  drainage  pipe  which  houses  the  first  flush  system  and  allows  the  flow  of  water.  A  funnel  at  the  inlet  is  sufficient  to  allow  enough  water  to  flow  through  at  high  rates,  but  small  enough  to  allow  it  to  be  easily  blocked  to  divert  flow  after  the  first  flush  is  complete.  The  funnel  comprises  the  top  half  of  a  2  litre  drinks  bottle.  The  bottom  half  of  the  bottle  allows  slow  water  flow  so  that  the  device  still  fills  up  but  also  drains  dirty  water.    

A  table  tennis  ball  (or  similar  floating  object)  is  placed  in  the  chamber  formed  by  the  two  halves  of  the  2  litre  bottle  and  stops  the  flow  of  dirty  water  through  the  funnel  inlet  once  the  chamber  beneath  is  full.  This  allows  clean  water  to  flow  over  the  top  of  the  chamber  and  into  the  clean  water  system.  Clay  is  used  for  sealing  and  joining  the  two  halves  of  the  bottle  to  the  inside  of  the  pipe  as  well  as  holding  the  base  and  the  entire  weight  of  the  water.    

Cost:    

Low-­‐cost  as  uses  locally  available  materials  and  waste  products.  

Social  and  environmental  impact:  

•   Simple  construction  and  installation  that  can  be  done  by  community  •   Manual  produced  to  assist  construction  and  installation  •   Low  cost  as  uses  locally  available  materials  •   Increases  availability  of  safe  drinking  water  at  household  level    

Page 30: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

25  |  P a g e  

 

University  of  Strathclyde,  Team  5:  Automatic  first  flush  system  

Proposal:    

An  automatic  first  flush  system  that  improves  separation  of  dirty  water  from  clean  water  in  rainwater  harvesting  systems.  

Design:    

The  final  design  takes  the  form  of  an  automatically  sealing  first  flush  system.  A  running  outlet  section  is  connected  to  guttering.  Running  outlets  are  produced  in  a  variety  of  sizes  so  the  diameter  size  of  the  guttering  in  Sandikhola  would  dictate  the  size  of  the  running  outlet  required.  A  rubber  head  from  a  plunger  is  then  used  as  the  rubber  seal,  with  a  hole  cut  in  the  centre  of  the  rubber  to  attach  to  the  outlet.  This  rubber  seal  is  glued  onto  the  pipe.  The  bottom  3cm  of  a  2  litre  plastic  bottle  is  then  cut  off,  a  plastic  ball  (>60mm  diameter)  is  inserted  into  this  plastic  bottle,  and  then  the  bottle  pushed  up  onto  the  rubber  seal.  

Cost:  

Material   Cost  

Running  Outlet  Section   £2  -­‐  £2.50  

Plastic  Ball   £0.03  -­‐  £0.10  

Rubber  (Sourced  from  plunger)   £1.50  -­‐  £2.00  

Plastic  Bottle   £0.00  (Sourced  from  village  waste)  

Total  Cost  Per  System   £3.53  -­‐  £4.60  

Social  and  environmental  impacts:  

•   Simple  and  low-­‐cost  construction  and  maintenance  that  can  be  conducted  by  the  community  

•   Uses  locally  available  and  in  some  cases  recycled  materials  •   Makes  productive  use  of  first  flush  water  (eg.  via  Irrigation)  •   Increased  availability  of  clean  drinking  water  and  hence  improved  health  •   Easily  adaptable  to  individual  household  guttering  systems    

Page 31: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

26  |  P a g e  

 

Birmingham  City  University,  Team  2:  Wooden  automated  first  flush  system  

Proposal:    

A  first-­‐flush  system  that  allows  for  the  capture  of  an  initial  volume  of  rain  water  that  would  be  highly  contaminated  with  dirt  from  roofs  and  guttering.  

 

Design:  

The  initial  volume  of  rainwater  (contaminated  water)  will  run  from  the  guttering  and  into  the  first  flush  device.  The  contaminated  water  will  enter  the  wooden  container,  where  a  square  wooden  float  will  be  raised.  As  more  and  more  contaminated  water  fills  the  container,  the  wooden  float  will  ascend  until  it  reaches  the  top  of  the  wooden  container.  The  wooden  float  will  block  the  hole  so  to  allow  fresh  rainwater  to  be  redirected  to  another  tank  for  the  purposes  of  storage.  Both  the  wooden  float  and  container  cap  have  chamfered  edges  to  allow  for  a  tight  fit  between  the  two  surfaces  so  to  prevent  mixing  of  contaminated  water  and  clean  water.  A  tap  located  on  the  wooden  container  is  to  allow  for  the  removal  of  contaminated  water  when  the  first  flush  device  is  not  being  used.  The  location  of  the  tap  (located  as  close  to  the  bottom  surface  as  possible)  means  that  almost  all  the  contaminated  water  can  be  removed.  To  reset  the  system,  the  user  would  just  need  to  drain  away  the  contaminated  water  so  that  the  wooden  float  is  located  at  the  bottom  of  container.  

 

Cost:  

 

 

Environmental  and  social  impacts:  

•   Materials  are  low  cost  and  locally-­‐sourced.  •   Careful  management  of  tree-­‐felling  for  timber  needed  to  minimise  potential  for  floods  due  to  

tree  removal.  •   Construction  and  maintenance  can  be  conducted  by  local  community.  •   Reduced  extraction  of  water  from  springs  and  less  time  spent  transporting  water.  •   Increased  health  due  to  provision  of  clean  water.  •   Potential  for  business  through  trading  of  clean  water  with  neighbouring  communities.    

Page 32: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

27  |  P a g e  

 

De  Montfort  University,  Team  2:  Water  drum  first  flush  system  

Proposal:    

A  wall/ground-­‐mounted  automatic  first  flush  system  that  can  be  retrofitted  onto  existing  rainwater  harvesting  guttering  and  tanks.  

Design:  

The  device  consists  of  standard  90mm  of  polyvinyl  chloride  (PVC)  downpipe,  which  gravity  directs  water  collected  from  a  leaf  box  filter.  The  leaf  box  filter  is  angled  to  allow  solid  debris  to  run  off,  and  allow  water  to  pass  through  freely.  The  pipework  feeds  water  through  a  piece  of  110mm  PVC  piping,  connected  to  the  90mm  piping  via  a  reducer  coupling.  The  110mm  piping  (diverter)  is  slotted  along  its  length  to  allow  water  to  ingress  and  the  floatation  ball  is  placed  inside.  The  diverter  is  placed  inside  a  standard  UN  55  gallon  drum  and  is  sealed  around  the  diameter  using  PVC  solvent  cement.  The  end  of  the  pipework  protruding  from  the  bottom  of  the  drum  is  capped  with  a  standard  PVC  screw-­‐on  end  cap,  which  is  drilled  and  threaded  to  allow  a  variable  bleed  valve  to  be  inserted,  from  which  a  hose  may  be  attached  for  waste  water.  As  the  water  level  in  the  diverter  chamber  rises  the  ball  floats,  and  once  the  chamber  is  full,  the  ball  rests  on  a  seat  inside  the  diverter  chamber  preventing  any  further  water  entering  the  diverter.  The  subsequent  flow  of  water  is  then  automatically  directed  along  the  pipe  system  to  the  tank.  

 

Cost:  

Estimated  unit  production  cost,  excluding  installation:  £29.49.  

 

 

Environmental  and  social  impacts:  

•   Simple  design  using  low-­‐cost,  locally  available  and  culturally  appropriate  components.  •   Systems  can  be  assembled  and  maintained  by  community.  •   Increased  availability  of  clean  water,  which  reduces  water  transport  and  treatment  costs.  •   Makes  uses  of  an  abundant  natural  resource  in  the  community  –  rainwater  –  including  water  

collected  in  first  flush.  •   System  does  not  involve  use  of  any  potentially  hazardous  chemicals.  •   Easily  connects  to  existing  rainwater  harvesting  systems.      

Page 33: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

28  |  P a g e  

 

University  of  Sheffield  Hallam,  Team  5:  Double  downpipe  automatic  first  flush  

Proposal:    

An  automatic  first  flush  device  and  separates  dirty  water  to  ensure  only  clean  water  enters  the  household  rainwater  storage  tank  tanks.  

Design:  

The  automatic  first  flush  design  comprises  of  two  HDPE  downpipes,  the  primary  pipe  has  a  height  of  6m  and  the  secondary  has  a  height  of  4m  which  is  enough  the  make  up  the  necessary  storage  volume.  The  downpipes  are  connected  by  a  single  horizontal  pipe  at  the  bottom,  which  is  sealed  at  one  end  and  capped  at  the  other.  The  first  flush  water  will  flow  into  the  longer  downpipe  first,  then  through  the  horizontal  connecting  pipe  and  into  the  second  downpipe.  A  small  floating  ball  in  the  smaller  pipe  rises  with  the  water  level  and  eventually  seals  it  off  at  the  top.  As  water  backs  up  in  the  horizontal  connecting  pipe,  the  larger  downpipe  then  fills  with  water  and  becomes  sealed  in  the  same  way.  The  downpipes  both  have  a  reducer  at  each  end  to  ensure  the  ball  is  held  within  them  when  the  pipes  are  empty  or  full.  When  both  downpipes  are  full  water  will  be  diverted  into  another  pipe  and  flow  into  a  

storage  tank.  When  the  rain  stops,  the  cap  in  the  horizontal  pipe  allows  for  the  removal  of  the  dirty  water  collected  in  the  downpipes.  To  keep  the  device  in  place,  it  should  be  braced  against  a  building  or  the  storage  tank  in  a  similar  way  to  existing  pipes.  To  prevent  larger  debris  from  entering  the  system  and  potentially  causing  a  blockage  filters  would  be  installed  before  the  water  enters  the  system,  in  a  location  that  allows  them  to  be  accessed  and  maintained  easily.  

Cost:  

 

Environmental  and  social  impacts:  

•   Uses  materials  available  within  the  local  region.  •   Simple  construction  and  maintenance  that  can  be  done  by  community.  •   System  can  be  modified  as  housing  size  changes  and  more  runoff  is  collected.  •   Limited  impact  on  environment,  primarily  through  transport  of  pipes  to  village.    

Page 34: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

29  |  P a g e  

 

University  of  Strathclyde,  Team  2:  Downpipe  automatic  first  flush  

Proposal:    

Development  of  a  water  harvesting  system  with  an  automatic  first  flush  device  that  will  greatly  reduce  the  need  for  other  water  sources  and  the  requirement  to  travel  long  distances  for  collection.  

Design:  

The  system  consists  of  four  main  components:  guttering,  the  automatic  first  flush  device,  pipes  and  storage  tank.  Rainfall  lands  on  the  roof  and  runs  into  the  gutters,  along  with  any  debris  on  the  roof.  The  first  flush  device  separates  the  water  and  debris  as  there  is  a  large  difference  in  relative  diameter  of  the  ball  to  the  pipe  to  ensure  acceptable  clearance  for  debris  to  bypass  the  ball.  A  pipe  reducer  is  installed  as  a  mechanism  to  stop  the  ball  at  the  top  of  the  foul  flush  reservoir.  The  system  then  diverts  the  “cleaned”  water,  which  flows  through  the  pipes  into  the  storage  tank.  The  device  is  designed  to  have  a  1m  clearance  above  the  ground  to  allow  the  owner  to  empty  the  foul  flow  into  a  container.  

 

Cost:  

The  cost  of  a  single  first  flush  device  installed  into  existing  infrastructure  is  £10.  The  overall  cost  of  each  household  rainwater  harvesting  system  is  estimated  to  be  £1,766.51.  

Environmental  and  social  impacts:  

•   Can  be  incorporated  into  existing  rainwater  harvesting  infrastructure.  •   Simple  design  that  communities  construct  and  maintain  (potentially  in  phases).  •   Can  be  adapted  to  specific  water  needs  of  household.  •   Improved  health  due  to  removal  of  contaminants  in  water  stored.  •   Increase  in  availability  of  clean  drinking  water  reduces  stress  on  other  water  sources  and  time  

spent  collecting  water.    

Page 35: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

30  |  P a g e  

 

Coventry  University,  Team  3:  Fog  catcher  and  rainwater  harvesting  with  first  flush  

Proposal:    

The  provision  of  potable  water  using  community  fog  collection  nets  and  household  rainwater  harvesting  systems.  

Design:  

The  design  consists  of  a  central  fog  harvesting  scheme,  household  level  rainwater  harvesting  system  and  educational  scheme.  The  fog  harvesting  site  is  situated  high  up  the  hill  to  maximise  the  amount  of  fog  colliding  with  the  nets.  A  plastic  trough  to  collect  the  water  from  the  mesh  runs  underneath  with  a  pipe  to  move  the  water  from  the  trough  to  the  reservoir  or  cistern.  Surrounding  the  central  storage  container  is  a  plantation  of  bamboo  which  is  sustainably  harvested  for  replacement  components  of  the  network  of  pipes.  This  protects  the  storage  container  from  direct  sunlight  which  can  encourage  the  growth  of  bacteria.  In  addition  to  fog  catchers,  each  household  has  an  individual  rainwater  collection  system.  The  system  essentially  involves  guttering,  a  first  flush  device  and  storage.  The  first  flush  device  is  based  on  a  constant  volume  system.  The  proposed  storage  solution  is  Thai  Jars.  The  jars  are  made  of  Ferro  cement,  which  comprises  cement  poured  around  a  steel  mesh  to  increase  strength  the  sourcing  of  this  material  should  be  relatively  easy.  The  educational  scheme  will  inform  the  villagers  on  how  to  use  the  harvested  rain  and  fog  water  efficiently.  

Cost:  

 

Environmental  and  social  impacts:  

•   Rainwater  harvesting  is  a  simple,  low-­‐cost  technology,  but  materials  for  fog-­‐catchers  are  difficult  to  source  locally.  

•   Amount  of  water  collected  is  weather-­‐dependant.  •   Scheme  can  be  maintained  by  local  community  after  training.  •   Possibility  of  employment  due  to  bamboo  cultivation.  •   Increase  in  availability  of  clean  drinking  water,  which  improves  health  and  reduces  time  spent  

collecting  water    

Page 36: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

31  |  P a g e  

 

University  of  Strathclyde,  Team  4:  Terracing  system  for  rainwater  harvesting  

Proposal:    

A  system  of  terraces  that  capture,  transport  and  filter  rainwater,  discharging  it  at  the  foot  of  the  system  via  a  spring  box.  

Design:  

Rainfall  runoff  flows  into  the  system  from  the  slopes  immediately  above.  This  water  flows  through  a  series  of  terraces  in  series  before  reaching  the  spring  box  below.  The  terraces  are  supported  by  stone  and  mortar  walls  and  act  to  slow  runoff  and  encourage  infiltration  of  rainfall.  The  supporting  walls  are  impermeable  and  have  gravel  channels  on  the  upstream  edge  of  their  base.  Water  that  has  infiltrated  into  the  top  of  the  terrace  seeps  down  the  slope  through  the  soil  until  it  reaches  the  nearest  gravel  channel.  As  the  channel  fills  up,  water  flows  to  one  end  of  the  channel  and  eventually  overtops  it,  flowing  into  the  terrace  below.  The  infiltration  and  transportation  process  is  repeated  at  this  and  subsequent  terraces  in  the  system.  The  series  of  terraces  and  channels  transports  water  into  a  larger  channel  at  the  base  of  the  system.  This  larger  channel  then  carries  the  water  to  the  spring  box  where  it  can  be  abstracted  and  used  for  drinking.  In  cases  of  high  rainfall  when  capacities  of  the  terrace  system  and  spring  box  are  exceeded,  water  flows  into  an  overflow  channel  and  into  an  irrigation  system.    

Cost  Item   Cost  (NPRs)  

Tools   14,528.35  Materials   305,455.19  Transport   679,000.00  Labour   100,609.17  

Total  cost:   1,099,399.11  NPRs*  *Not  including  soil  investigation  needed  to  identify  potential  system  location  

Environmental  and  social  impacts:  

•   Based  on  traditional  terracing  system  used  for  crop  production.    •   Design  is  simple  and  uses  locally  available  materials.  •   Increase  in  availability  of  clean  drinking  water.  •   Construction  method  uses  locally  available  skills,  but  requires  significant  earthworks.  •   System  can  easily  be  maintained  by  community.  •   Requires  careful  placement  in  area  with  suitable  soil  properties  to  function  effectively.    

Page 37: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

32  |  P a g e  

 

Coventry  University,  Team  2:  Water  harvesting  trenches  and  charcoal  filter  

Proposal:    

A  water  purification  system  and  a  rainwater  harvesting  system,  which  addresses  the  most  significant  issue  faced  by  the  community:  lack  of  clean  drinking  water.  

Design:    

The  system  has  the  capability  of  mass  water  collection  when  it  rains.  Having  three  containers  for  water  increases  the  overall  potential  volume  of  runoff  that  can  be  collected  and  stored  and  the  capacity  for  larger  amounts  of  water.  It  also  has  the  advantage  of  a  combination  of  two  water  purification  systems.  Surface  run  off  is  collected.  In  the  trench  at  the  top  end  of  the  system;  the  reeds  in  the  trench  remove  any  contaminants  in  the  water  just  leaving  solids  and  mycobacterial  in  the  water.  Water  then  flows  through  pipes  and  into  the  sump,  which  removes  all  the  solid  partials  from  the  water  and  the  char  collects  all  the  mycobacteria.  This  result  is  clean  water  that  safe  to  drink,  which  flows  to  and  is  stored  in  a  concrete  lined  underground  reservoir.  No  pumps  are  used  in  the  system,  instead  it  uses  the  potential  that  the  water  has  to  build  and  the  pressure  in  the  system.  

The  regular  intervals  in  the  water  harvesting  and  purification  system  also  provide  the  village  a  level  of  protection  from  landslide  debris.  If  they  wanted  to  further  protect  the  structure  from  potential  damage,  they  could  construct  barriers  using  horizontal  walls  of  bamboo  along  the  hillside  between  the  sections.    

Cost:    

The  whole  system  should  cost  very  little  to  build  in  comparison  to  most  systems  and  would  need  minimal  maintenance.  

Social  and  environmental  impacts:  

•   Increases  availability  of  clean  drinking  water,  which  improves  health  and  hence  productivity.  •   Reduces  risk  of  landslide  and  associated  reconstruction  costs  •   Simple  and  relatively  cheap  system  maintenance,  although  access  to  additional  water-­‐

purifying  plants  may  be  difficult  for  community.  •   Local  employment  opportunities  during  construction  and  maintenance.  •   Relies  on  char  produced  by  current  cooking  methods,  which  may  change  in  the  future.  •   Potential  environmental  impact  of  large-­‐scale  excavation  and  collection  of  runoff.    

Page 38: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

33  |  P a g e  

 

University  of  Strathclyde,  Team  3:  Water  soakaway  and  solar  disinfection  

Proposal:    

A  soakaway  water  collection  and  storage  system  which  incorporates  sand  filtration  and  solar  disinfection  to  provide  clean  water  at  household  level.  

Design:  

Filtration  ditches  would  be  dug  at  the  inside  edge  of  the  road  or  above  pathways/tracks  located  higher  on  the  hillside  from  village,  to  a  maximum  depth  of  1m.  A  perforated  drainage  pipe  would  then  be  laid  to  run  the  length  of  the  ditch,  before  the  ditch  is  re-­‐filled  with  increasing  sizes  of  aggregates.  The  end  of  this  pipe  would  be  connected  to  an  underground  non-­‐perforated  pipe  network  that  would  lead  to  a  storage  tank  located  within  the  village.  Rainfall  and  the  subsequent  surface  runoff  would  infiltrate  through  the  varying  layers  of  aggregate  acting  as  a  pre-­‐filter  against  larger  particles,  before  entering  the  filtration  pipe  at  the  bottom  of  the  ditch.  The  water  will  then  flow  under  the  force  of  gravity  along  the  pipework  to  the  storage  tank  where  it  remains  until  required  in  the  dry  season.  Before  collection  and  use  by  household  members,  a  tap  will  be  opened  and  the  stored  water  will  be  gravity  fed  into,  and  through,  a  much  smaller  filtration  tank  to  remove  particles  and  reduce  turbidity.  Once  collected  from  the  filter  tank,  households  will  disinfect  water  using  the  solar  disinfection  (SODIS).  Plastic  bottles  will  be  placed  on  bamboo  cradles  lined  with  crisp  packets,  placed  with  their  reflective  interior  facing  upwards.  

Cost:  Item   Cost  (NPRs)  

Collection  and  storage  tank   152,100  Filtration  tank   77,400  Tools  and  materials   39,317.85  Transportation   149,000  

Total  cost:   417,817.85  NPRs  

Environmental  and  social  impacts:  

•   Simple  low-­‐cost  system  that  uses  locally  available  materials.  •   Easy  to  construct  and  minimal  maintenance  required.  •   Improved  health  and  reduction  in  time  spent  collecting  water  (particularly  in  the  dry  season)  

due  to  proximity  of  tank  to  village.  •   Potential  reduction  in  soil  erosion  and  landslides  due  to  reduction  in  runoff.  •   Reduction  in  waste  due  to  use  of  plastic  bottle  for  SODIS.    

Page 39: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

34  |  P a g e  

 

Water  purification  

University  of  Liverpool,  Team  2:  Vortex  and  sediment  water  filtration  system  

Proposal:    

A  filtration  system  to  turn  rainwater  into  a  safe  alternate  water  source,  which  can  supplement  existing  sources  (springs,  rivers  etc.)  and  alleviate  the  pressure  upon  them,  in  a  cheap  and  cost  effective  manner.  

 

Design:  

The  final  design  is  a  system  comprising  two  interconnected  filters.  The  first  filter  (vortex  filter)  is  intended  to  remove  relatively  large  solid  particulates  from  the  rainwater.  The  vortex  filter  is  made  from  PVC  and  comprises  a  lid,  filter  piece  with  conical  inlet,  seals,  casing  and  mounting  brackets.  The  vortex  filter  uses  the  centrifugal  force  to  pass  water  through  a  vertical  filtration  element.  It  diverts  and  filters  a  portion  of  the  water  passing  through  it  into  the  provided  storage  tank  and  diverts  the  rest  for  agricultural  use.  After  passing  through  this  filter,  the  water  goes  on  to  be  purified  by  the  second  filter  (sediment  filter),  after  which  it      can  be  used  as  drinking  water.    The  sediment  filter  consists  of  multiple  components,  its  housing  (Tank  and  Lid),  the  filter,  a  steel  support  frame,  an  anti-­‐turbulence  inlet  fitting  and  an  outlet  pipe.  The  housing  is  made  from  rotation  moulded  HDPE  and  is  used  to  store  the  filtered  drinking  water  (for  relatively  short  periods  of  time)  before  use.  The  filter  itself  is  a  steel  cylinder,  which  holds  the  sand  and  gravel  that  filters  the  water.  The  filter  has  two  handles  which  are  welded  onto  it  to  aid  in  the  maintenance  of  the  filter  within.  

Vortex  filter                              Sediment  filter  

Cost:  

No  information  provided.  

Environmental  and  social  impacts:  

•   Low-­‐cost  and  makes  use  of  some  locally  available  materials  (sand  and  gravel),  although  many  parts  need  to  be  sourced  externally.  

•   Simple  design  can  be  assembled,  installed  and  maintained  by  community  one  parts  obtained.  •   Increase  in  available  drinking  water  reduces  demand  from  other  sources.    

Page 40: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

35  |  P a g e  

 

London  South  Bank  University,  Team  5:  Filtration  and  purification  of  harvested  water  

Proposal:    

A  rainwater  harvesting  system  that  purifies  and  filters  water  for  drinking  and  sanitation  purposes.  

Design:  

The  concept  is  to  harvest  the  rainwater  that  falls  onto  the  house  rooftops.  This  rainwater  would  be  fed  through  a  number  of  water  filters  and  stored  for  drinking  and  satiation  purposes.  A  guttering  system  will  be  created  using  bamboo  that  is  cut  in  half,  length  ways.  The  guttering  will  be  secured  to  the  roof  using  natural  vines.  A  whole  piece  of  bamboo  will  be  attached  to  the  end  of  the  guttering  system,  used  as  a  pipe  for  the  water  to  flow  down,  again  the  pipe  will  be  attached  to  the  guttering  and  house  wall  using  vines.  The  water  would  be  stored  in  water  bottles  for  use  and  consumption  at  a  later  date.  Alternatively,  a  large  storage  tank  other  than  a  plastic  bottle  could  be  manufactured  using  local  cement.  The  bottle/storage  tank  will  need  to  be  positioned  at  a  height  above  the  ground  to  increase  the  gravitational  potential  energy  helping  the  water  to  flow  through  the  system.  The  large  bottle  will  therefore  be  supported  from  the  ground  with  a  structure  constructed  out  of  bamboo.  Beneath  the  large  bottle  will  be  a  smaller  plastic  water  bottle,  cut  in  half  and  attached  upside  down  to  the  end  of  the  large  storage  bottle.  This  smaller  bottle  will  be  the  filter  bottle,  filled  with  charcoal,  stones  and  grass.  Beneath  this  filter  bottle  will  be  another  piece  of  bamboo  used  as  a  pipe  to  transport  the  filtered  water  to  a  storage  bottle  situated  on  the  ground.  The  filtered  water  within  the  smaller  bottles  can  be  laid  down  outside  in  the  sunlight  on  a  piece  of  corrugated  black  sheet  metal  to  heat  the  water,  killing  some  of  the  bacteria.  

Cost:  

The  tools  that  are  required  are  a  hammer,  blade  totalling  less  than  600  NPR.  Bamboo  is  not  grown  in  the  region  Sandikhola,  however  it  can  be  purchased  locally  for  60  NPR  per  metre.  

Environmental  and  social  impacts:  

•   Uses  low-­‐cost  sustainable  locally  sourced  materials,  which  in  some  cases  would  otherwise  be  waste.  

•   Simple  design  that  can  be  conducted  and  maintained  by  community.  •   Improved  health  due  to  greater  availability  of  clean  drinking  water.  •   Reduction  in  time  to  collect  water  increases  free-­‐time,  but  reduces  socialising  potential  for  

women.    

Page 41: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

36  |  P a g e  

 

Imperial  College  London,  Team  2:  Enzyme  Coated  Polyamide  Water  Filter  

Proposal:    

A  low-­‐cost  water  purification  system  for  local  communities  to  reduce  regional-­‐specific  biological  (e.g.  bacteria)  and  chemical  (e.g.  arsenic)  contamination  to  meet  WHO  guideline.    

Design:    

Traditional  use  of  diffuser  plate  (cloth  supported  by  wooden/bamboo  sticks)  and  coarse  sand  for  removing  turbidity  forms  the  upmost  section  in  a  wooden  basin  (with  the  bottom  replaced  with  the  same  material  as  diffuser  plate  to  allow  water  flow),  followed  by  a  layer  filled  with  rusty  nails  or  other  readily  available  small  rusty  metal  parts;  these  have  excellent  arsenic  adsorption  ability,  against  both  arsenite  or  arsenate.  Below  the  rusty  nail  layer,  a  dense  web  built  from  enzyme-­‐coated  polymer  (ECP)  sticks  is  designed  to  disinfect  the  water.  Ends  of  each  polymer  stick  are  stuck  into  the  gaps  in  each  of  the  two  sheets  of  bamboo  mat  above  and  below  the  layer  for  stabilisation.  Both  rusty  nail  and  ECP  layers  are  contained  in  a  wooden  basin.  A  coarse  sand  layer  is  below  the  ECP  layer,  in  the  third  modular  basin,  to  avoid  any  debris  escaped  from  the  upper  sand  layer  to  flow  through  and  to  remove  iron.  The  bottom  is  filled  with  gravels  to  prevent  the  passage  of  any  sand  leaked  from  the  upper  layer.    

The  three  modular  wooden  basins  are  stacked  upon  each  other  and  contained  in  a  large  recycled  plastic  bucket  properly  sterilised  to  prevent  water  leakage.  A  pipe  connecting  the  water  flow  from  bottom  of  gravel  layer  extends  to  a  tap,  attached  to  the  outer  surface  of  the  plastic  container.  

Cost:    

Based  on  a  price  sourced  in  China,  1cm2  (double-­‐sided)  of  ZymeDeal  prototype  costs  about  £0.035.  For  a  household  of  4  people,  the  drinking  water  consumption  will  be  20  litres  (estimated).  Assuming  a  bacteria  concentration  of  up  to  1200  c.f.u./100ml  ,  100cm2  per  system  of  polymer  (costs  £3)  would  be  sufficient  for  disinfection.  Thus  replacement  of  the  layer  each  year  (cost  £35  for  10  years)  is  still  cost-­‐effective.  Rough  estimate  of  cost  per  model:  £15.  

Social  and  environmental  impacts:  

•   Increased  availability  of  safe  drinking  water  and  hence  improved  health  and  productivity,  particularly  for  women  and  children  

•   Combination  of  traditional  and  novel  methods  •   Collaboration  with  local  institutions  (VDC  and  WSUC)  for  project  support  and  training  •   Simple  maintenance  that  can  be  conducted  by  the  local  community  themselves  •   Slow  flow  rate  may  not  be  suitable  for  household  needs    

Page 42: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

37  |  P a g e  

 

Liverpool  University,  Team  1:  Water  filter  pump  system  

Proposal:    

A  cylindrical  water  extraction  and  filtration  system  that  takes  the  form  of  a  large  bicycle  pump  to  establish  a  source  of  clean  drinking  water.    

Design:    

The  water  pump  filter  contains  13  different  types  of  parts:  the  handle,  the  cap,  the  cylinder  body,  the  pump  assembly,  the  hose  connectors  and  hoses,  the  hose  filter,  the  series  of  cartridges  and  wire  meshes,  the  base  and  the  base  stands.    

Unfiltered  water  enters  via  a  hose  from  the  top  inlet  port  and  is  pumped  through  the  filter  with  a  round  pump  handle  in  a  pumping  motion.  As  the  handle  is  pushed  down,  the  piston  moves  down,  the  valves  on  the  piston  will  close  due  to  the  increased  pressure  in  the  section  below  and  decreased  pressure  above  and  the  unfiltered  water  starts  enter  the  cylinder  from  the  top  inlet.  As  the  handle  is  pulled  up,  the  piston  moves  up,  the  valves  will  open  due  to  the  increased  pressure  in  the  section  above  and  decreased  pressure  below,  and  the  unfiltered  water  flows  through  the  valves  to  the  filtration  system.  The  filtration  system  comprises  three  or  more  cartridges  that  connect  directly  by  screw-­‐thread  design.  There  is  a  piece  of  wire  mesh  between  the  cylinder  and  each  cartridge.  The  cartridges  house  the  activated  carbon/charcoal  filter,  which  works  by  the  chemical  process  of  adsorption  or  chemical  reaction.  After  being  pumped  through  the  three  layers  of  filtration,  drinkable  water  is  dispensed  out  of  a  hose  attached  to  the  base  outlet.  

   

Cost:    

Materials  and  manufacturing  methods  chosen  to  keep  production,  transport  and  maintenance  costs  as  low  as  possible.  

Social  and  environmental  impacts:  •   Increased  availability  of  clean  drinking  water,  and  hence  improvements  in  health  and  well-­‐

being  of  community,  particularly  through  time  saving  •   Locally  sourced  materials  used  where  possible,  but  some  manufactured  plastic  parts  required  •   Low  cost,  simple  and  portable  devise  •   Provided  in  the  form  of  a  kit  that  can  be  easily  constructed  by  community  members  •   Removable  water  filter  must  be  replaced  every  250  litres    

Page 43: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

38  |  P a g e  

 

University  of  Glasgow,  Team  5:  Clay  water  filter  design  

Proposal:    

To  provide  clean,  drinking  water  that  is  free  from  disease  and  water-­‐borne  viruses,  water  for  livestock  and  irrigation  if  necessary  and  supply  the  village  with  water  they  can  use  regardless  of  the  time  of  year.  

Design:    

The  system  fits  into  a  pre-­‐drilled  hole  at  the  bottom  of  the  larger  pre-­‐existing  water  tanks.  The  design  works  as  a  simple  water  filter  but  with  the  ability  to  be  incorporated  into  a  wide  variety  of  systems  and  can  be  adapted  and  tailored  to  fit  a  household’s  specific  needs.  The  water  from  the  main  tank  flows  into  a  pipe  with  a  valve  so  that  the  water  can  be  shut  off  for  cleaning  and  maintenance  purposes.  In  normal  operation,  this  valve  will  remain  open.  Once  the  water  has  passed  through  this  valve,  it  flows  into  a  clay  filter.  The  water  flows  into  the  main  filter  chamber  from  above  and  then  slowly  filters  through  the  base  into  the  smaller  secondary  tank.  This  tank  is  smaller  so  that  the  clean  water  that  has  been  filtered  already  will  not  sit  around  for  too  long  in  the  sunshine  heating  up  and  possibly  becoming  unsafe  to  drink  due  to  the  growth  of  bacteria  or  algae.  At  the  bottom  of  this  tank  is  a  tap  from  which  the  villagers  can  access  the  clean  water.  

Costs:  

 Total  cost  per  household  system:                      5473.87  NPRs          54.98  USD  

Social  and  environmental  impacts:  

•   Provides  clean  water,  which  will  extend  life  expectancies,  reduce  poverty  and  improve  quality  of  life.  

•   Uses  low-­‐cost  locally  sourced  materials  •   Employment  opportunities  for  local  people  during  construction  •   Simple  maintenance  that  can  be  conducted  by  households  using  the  systems  •   Minimal  impact  on  the  surrounding  environment,  including  streams,  flora  and  fauna.    

Page 44: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

39  |  P a g e  

 

Glasgow  University,  Team  1:  Slow  sand  and  charcoal  water  filter  

Proposal:    

A  water  purification  device  that  will  solve  the  problem  of  inadequate  access  to  safe  drinking  water,  reducing  the  threat  of  diarrhoea  and  waterborne  diseases.  

 

Design:  

The  final  design  is  composed  of  three  main  sections  which  fit  together.  The  clay  sections  are  designed  to  be  securely  slotted  together  and  can  be  stacked.  There  is  a  flat  and  circular  shaped  clay  piece  at  the  top  of  the  filter  which  can  be  pulled  out  via  handle.  This  allows  water  stored  in  the  top  container  to  be  either  held  in  the  top  container  until  use  or  allowed  to  pass  through  the  filter  below.  The  middle  section  of  the  design  holds  gravel  and  sand.  Small  ventilation  holes  are  situated  at  the  top  end  of  the  middle  container  to  provide  ventilation  for  the  formation  of  the  Schmutzdecke  layer.  A  clay  mesh  fitted  in  the  top  of  the  middle  container,  removes  the  larger  particles  from  the  water  and  it  is  easily  removed  to  ensure  that  any  large  particles  will  not  get  stuck  in  the  system.  The  small  canister  stored  inside  a  cut  out  section  on  the  bottom  of  the  middle  container  stores  the  charcoal  for  the  final  stage  of  purification.  After  the  water  has  travelled  through  the  small  canister  of  charcoal  it  will  reach  the  final  stage  and  flow  down  into  the  reservoir.  The  red  clay  material  should  keep  the  water  reasonably  cool.  A  hand  pump  is  attached  to  the  bottom  of  the  structure,  on  the  reservoir,  so  that  the  water  can  be  extracted  for  drinking.  The  reservoir  is  estimated  to  hold  56.5  litres  of  water  

 

Cost:  

It  is  estimated  that  the  cost  of  one  of  these  filters  would  be  a  maximum  of  £70  (or  10,392  Nepalese  Rupees)  

 

Environmental  and  social  impacts:  

•   Low-­‐cost  design  using  locally  available  materials.  •   Improved  health  due  to  increased  provision  of  clean  drinking  water.  •   Minimal  impact  on  surrounding  environment.  •   Simple  design  that  can  be  maintained  and  repaired  by  community.  •   Relatively  quick  flow  rate  to  allow  adequate  access  to  purified  water  for  household  needs.  •   Potential  local  employment  opportunities  for  production  and  sale  of  filters  (potters).    

Page 45: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

40  |  P a g e  

 

Nottingham  Trent  University,  Team  2:  FDSB  water  purifier  

Proposal:    

A  household  level  filtration  system  that  uses  both  a  ceramic  filter  and  distillation  to  create  clean  drinking  water.  

Design:  

The  design  consists  of  five  parts:  ceramic  filter  with  biocide,  polypropylene  baseplate,  plastic  film,  bamboo  charcoal  and  stone.  Four  methods  are  applied  to  purify  the  water  -­‐  filtration,  distillation,  solar  disinfection  (SODIS)  and  bamboo  charcoal  –  to  ensure  that  the  water  is  safe  to  drink,  cook  and  wash.  Ceramic  filtration  uses  fired  clay  to  filter  impurities  and  bacteria  from  the  water.  As  the  ceramic  filter  is  a  good  thermal  insulator,  heat  energy  from  strong  sunlight  is  absorbed  by  the  water  and  a  distillation  process  occurs.  Water  heats  up,  evaporates  and  condenses  on  the  plastic  film  above,  the  droplets  then  flow  to  the  tip  and  drop  into  the  container.  Solar  disinfection  uses  UV-­‐A  rays  and  increased  water  temperature  to  disinfect  the  low-­‐turbidity  water.  The  water  needs  to  be  placed  outdoor  for  6  hours  if  sunny  or  2  days  if  cloudy.  Finally,  there  is  a  potential  risk  of  recontamination  of  water  through  unsafe  filter  handling  and  water  storage  practices,  so  charcoal  is  used  in  the  container  to  reduce  this  risk.  

 

Cost:  

Item   Cost  (GBP)  Ceramic  filter   3.50  Baseplate   3.00  Charcoal   0.63  

Total  cost:   7.13  GBP  

 

Environmental  and  social  impacts:  

•   Uses  primarily  locally  available  materials.  •   Potential  for  creation  of  new  business  in  production  of  bamboo  charcoal.  •   Improved  quality  of  life  due  to  increased  availability  of  clean  water  at  household  level.  •   Household  water  purification  system  may  promote  uptake  of  water  harvesting  and  further  

increase  water  availability  at  household  level.  •   Compatible  with  existing  water  infrastructure.    

Page 46: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

41  |  P a g e  

 

Birmingham  University,  Team  5:  Solar  disinfection  system  

Proposal:    

A  solar  disinfection  system  as  a  sustainable,  practical  method  of  providing  clean  drinking  water  to  the  community.  

Design:    

The  system  consists  of  a  bamboo  frame  sloped  at  30°,  with  the  incline  chosen  because  of  Nepal’s  latitude  in  order  to  present  the  water  at  the  optimum  angle.  The  frame  includes  cross  bracing  to  resist  lateral  wind-­‐loading.  Fourteen  10  litre  water  containers  are  held  in  place  on  the  frame  using  “S-­‐hooks”  made  of  steel  wire.  This  gives  a  total  water  capacity  of  140  litres,  which  is  enough  to  have  2  days  of  water  purifying  at  the  same  time  for  one  household  (assuming  average  need  of  70  litres/household/day),  although  the  design  can  be  easily  modified  to  cater  for  different  capacities.  A  sheet  of  galvanised  corrugated  iron/steel  is  placed  over  the  bamboo  frame  in  order  to  create  a  reflective  surface,  enhancing  the  efficiency  of  the  disinfection  process.  Water  is  left  in  the  sun  for  two  days  before  it  is  fully  purified  and  ready  to  drink.  

 

Cost:    

Each  household  will  construct  their  own  frames  to  meet  their  individual  needs  at  an  individual  cost  of  $9.29.  

Social  and  environmental  impacts:  

•   Simple  kit  construction  and  installation  by  individuals  at  household  level.  •   Local  WUSC  involved  in  community  training  and  construction.  •   Uses  low-­‐cost  and  locally  available  materials.  •   Potential  depletion  of  bamboo  trees  due  to  use  in  construction.  •   Plastic  bottles  need  to  be  replaced  every  6  months  and  high  cost  of  transport  to  recycling  

depots.  •   Old  bamboo  can  be  used  as  kindling  when  replacements  are  required.  •   Range  of  potential  social/cultural  barriers  to  using  solar  disinfection  technique.    

Page 47: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

42  |  P a g e  

 

University  College  Dublin,  Team  2:  Water  purification  by  evaporation  and  condensation  

Proposal:    

A  system  based  on  distillation  as  a  form  of  purification  to  provide  clean  drinking  water.  

Design:  

The  design  consists  of  an  inlet/fill  tank,  two  galvanised  iron  coiled  pipes  and  a  tap.  Water  flows  into  the  system  via  the  inlet  of  the  first  pipe  (ideally  connected  to  an  infill  tank).  This  first  pipe  coils  into  a  conical  shape,  in  order  to  facilitate  its  placement  over  a  fire.  Whilst  within  this  coil,  the  water  is  heated  by  fire  and  boiled  to  form  pure  steam.  The  particles  from  the  dirty  water  are  left  behind  in  the  coil  and  the  bacteria  killed  through  the  process  of  boiling.  This  steam  rises  through  the  coil  and  passes  through  a  reducer  into  the  condensing  coil.  The  second  pipe  is  also  coiled  into  a  cylindrical  shape,  but  is  kept  in  a  cool  environment,  for  example  in  wet  sand.  The  difference  in  temperature  between  the  two  coils  causes  the  water  vapour  to  condense.  The  clean,  safe  condensation  can  then  be  collected  from  the  bottom  of  the  second  coil  by  means  of  a  tap.  

 

Cost  Item   Cost  (NPRs)  

Primary  coil   987.18  Reducer   137.86  Secondary  coil   63.30  Transportation   22,000.00  

Total  cost:   23,188.34  NPRs  

Environmental  and  social  impacts:  

•   Uses  low-­‐cost  and  locally  available  (within  Nepal)  materials.  •   Fabrication  of  coiled  pipes  required  skilled  labour.  •   Improved  in  health  and  hence  productivity  due  to  increase  in  availability  of  clean  water.  •   Use  of  system  can  easily  be  incorporated  into  existing  household  cooking  practices.    •   Potential  for  job  creation  in  production  and  distribution  of  the  system  across  Nepal.    

Page 48: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

43  |  P a g e  

 

Women’s  health  and  sanitation  

Birmingham  University,  Team  1:  Menstrual  hygiene  education  and  improvement  

Proposal:    

A  three-­‐part  solution  that  would  better  women’s  health  and  sanitation  during  menstruation  and  improve  the  community’s  attitude  towards  menstruating  females.  

Design:  

The  design  solution  comprises  three  separate  parts:  

Education  scheme  -­‐  Talks  initiated  with  the  community  to  get  to  know  their  situation  and  what  sort  of  solution  the  want/would  be  best  for  them.  Education  started  by  talking  to  the  village  women  Education  about  menstruation  and  sanitation  extended  via  implementation  in  the  local  school.    

Hand  warmers:  These  are  used  to  dry  the  cloths  used  by  women  during  menstruation  in  the  time  until  they  are  able  to  make  alternative  sanitary  towels  using  the  proposed  machine  outlined  below.  A  hand  warmer  placed  underneath  the  cloth  provides  a  source  of  heat  that  gradually  dries  it.  A  sponge  place  immediately  on  top  of  the  cloth  absorbs  water  as  it  evaporates,  drawing  it  away  from  the  cloth.  

Machine  for  making  sanitary  towels  -­‐  The  sanitary  towel  press  has  three  layers  of  wood:  the  base  slab,  a  wooden  frame  to  keep  the  cotton  in  place  and  show  the  outline  for  the  wood  pulp  being  added,  and  the  top  slab  with  an  aluminium  plate.  Once  the  wood  pulp  has  been  added,  a  simple  hinge  mechanism  is  used  to  push  the  piece  of  metal  onto  the  towel  in  order  to  flatten  the  wood  pulp.  The  aim  is  that  this  machine  will  allow  women  to  start  up  a  business  producing  and  selling  sanitary  towels.    

Cost:  

Item   Cost  (NPRs)  Hand  warmers  (for  all  women)   4,726.50  Sanitary  towel  machine   3,207.35  Sanitary  towels  (per  month  for  all  women)   2,140.00  

Environmental  and  social  impacts:  

•   Sanitary  towel  machine  is  a  simple  design  and  can  be  easily  operated  by  women  in  the  community.  

•   Potential  to  make  all  aspects  of  the  scheme  using  locally-­‐sourced  materials.  •   Potential  to  reduce  social  exclusion  of  women  and  girls  during  menstruation,  although  this  

may  take  a  long  period  of  time.  •   Improved  hygiene  for  women  and  girls  during  menstruation.  •   Possibility  of  replication  across  neighbouring  villages,  the  region  and  eventually,  the  nation.    

Page 49: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

44  |  P a g e  

 

Multiple  Use  System  (MUS)  

Glasgow  University,  Team  3:  Ferro-­‐cement  tank  multiple  use  water  system  

Proposal:    

Develop  a  Multiple  Use  System  (MUS),  comprising  two  connected  ferro-­‐cement  tanks,  to  improve  water,  sanitation  and  health  conditions  in  the  village.  

Design:  

A  secondary  ferro-­‐cement  water  tank  will  be  constructed,  connected  with  the  already  existent  one.  The  first  tank,  which  receives  the  water  inlet,  would  be  for  productive  usage,  while  the  second  –domestic–tank  would  receive  water  from  the  first  one  via  a  pipe.  The  productive  tank  starts  to  receive  water  once  the  volume  of  water  in  the  domestic  water  tank  (the  new  tank)  reaches  a  certain  level.  This  level  can  be  determined  through  discussion  with  the  community  prior  to  discussion.  A  sand  and  gravel  filter  can  be  installed  in  the  pipe  that  connects  the  two  tanks  so  that  the  domestic  use  water  is  filtered.  

 

Cost:  Item   Cost  

Material   245,000  NPR.  Labour   896,000  NPR.  Transportation   652,000  NPR  

Total  cost:   1,793,000  NPR  (£11,860)  

Environmental  and  social  impacts:  

•   Design  builds  on  existing  infrastructure  in  community  to  reduce  costs  and  improve  ease  of  construction.  

•   Materials  low-­‐cost  and  locally  available  •   Local  employment  opportunities  during  construction  and  maintenance.  •   Improvement  in  several  livelihood  aspects  due  to  increase  in  water  for  both  domestic  and  

productive  uses.  •   Potential  for  deforestation  as  more  land  is  cleared  for  agricultural  use.    

Page 50: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

45  |  P a g e  

 

DESIGN  AREA  3:  ENERGY  

Alternative  energy  supply  

Heriot  Watt  University,  Team  1:  Micro  hydroelectric  system  

Proposal:    

A  suitable  micro  hydroelectric  system  to  provide  a  reliable  and  renewable  source  of  energy  for  the  village  that  can  be  active  24  hours  a  day  throughout  the  entire  year.  

Design:    

The  micro  hydro  system  uses  a  Pelton  wheel  in  order  to  generate  power  from  water  source.  The  intake  at  the  water  source  will  direct  a  portion  of  the  river  into  a  canal  (dug  by  local  villagers).  The  canal  will  channel  the  water  into  a  forebay  tank.  The  forebay  will  hold  the  water  and  allow  

sedimentation,  preventing  debris  from  entering  the  penstock.  A  sluice  (made  using  Sal  wood)  will  also  be  in  place  at  the  entrance  to  the  penstock  to  prevent  any  larger  debris  gaining  access  to  the  pipe.  The  penstock  pipe  made  from  unplasticized  polyvinylchloride  (uPVC)  pipe,  which  is  cheap  and  lightweight,  runs  from  the  forebay  tank  and  delivers  the  water  to  the  Pelton  turbine,  held  within  the  power  house.  The  water  flows  through  a  nozzle  which  forms  a  water  jet  which  will  infringe  on  the  Pelton  buckets.  The  Pelton  wheel  then  rotates  and  turns  a  shaft  which  powers  a  generator.  Once  the  water  has  infringed  on  the  turbine,  it  will  settle  and  then  be  directed  back  to  the  river  further  down  the  hillside.  

Cost:  Item   Cost  

uPVC  pipe   £1,712  Pelton  wheel   £27,000.  Sluice  gate  in  Sal  wood   £0.55.  Labours  and  tools   £10.06.  Transportation   Unknown  cost  of  transportation  for  Pelton  

wheel  and  uPVC  pipe  from  UK  to  Nepal  Total  estimated  cost   £28,722.53  (not  incl.  transport)  

Environmental  and  social  impacts:  

•   Renewable  energy  source,  no  pollutants  emitted  and  reduced  deforestation  due  to  potential  replacement  of  firewood  for  cooking.  

•   Will  encourage  community  to  find  alternative  cooking  methods  that  will  improve  (respiratory)  health.    

•   Potential  negative  impact  of  the  forebay  and  powerhouse  on  the  natural  environment.  •   Improved  access  to  electricity  will  improve  education  (via  lighting)  and  provide  greater  

business  opportunities  to  the  community  (eg.  use  of  surplus  energy  for  grinding  mills).  

Page 51: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

46  |  P a g e  

 

•   Community  involvement  in  design  and  construction.    

Page 52: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

47  |  P a g e  

 

Cardiff  University,  Team  2:  Community  solar  energy  system  

Proposal:    

A  single,  homogenous  solar  energy  system  as  an  alternative  power  supply  to  provide  electricity  to  the  village.  

Design:  

There  is  a  bank  of  60  solar  panels  that  will  generate  electricity.  The  electricity  will  be  put  through  a  charge  controller  and  stored  in  an  adjacent  battery  bank  of  29  12v  batteries.  Each  battery  is  able  to  store  2.64  kWh  of  power  and  has  a  depth  of  discharge  of  50%  so  that  the  system  can  function  for  two  days,  while  maintenance  or  weather  conditions  stop  the  charging  process  for  example.  When  electricity  is  needed,  the  batteries  send  electricity  to  the  charge  controller  which  in  turn  feeds  it  to  an  inverter  which  puts  the  power  in  a  form  to  be  distributed  by  the  grid.  The  power  distributed  needs  to  satisfy  the  demand.  There  are  66  houses  and  it  is  assumed  they  need  to  have  power  for  lighting,  mobile  phone  charging  and  watching  TV.  Based  on  calculations,  this  means  the  average  power  usage  for  the  village  is  per  day  is  36.28  kWh.  It  is  hoped  that  many  of  the  villagers  in  the  community  will  volunteer  to  be  trained  and  later  assist  with  transportation  and  construction  of  the  system.  

 

Cost:  

 

Environmental  and  social  impacts:  

•   Renewable  energy  source  that  does  not  create  any  environmental  pollution  once  functioning.  •   Community  can  construct  and  maintain  system  with  minimal  assistance  after  training.  •   Low  level  damage  to  environment  during  installation,  but  potential  long-­‐term  visual  pollution  

from  overhead  distribution  cables.  •   Replacement  batteries  and  solar  panels  will  be  needed  during  the  design’s  lifetime.  •   Potential  for  damage  to  system  during  natural  disasters  (particularly  flooding).  •   Reduces  need  for  kerosene  or  other  electricity-­‐related  costs.    

Page 53: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

48  |  P a g e  

 

Edinburgh  University,  Team  1:  Micro-­‐hydro  system  

Proposal:    

To  harness  a  sustainable  energy  supply  to  produce  electricity  for  hilltop  communities  using  a  micro-­‐hydro  system,  involving  use  of  a  waterwheel.  

Design:  

Land  clearing  is  required  to  ensure  the  5.5m  stretch  where  the  channel  is  to  be  installed  is  free  from  shrubbery  and  other  obstacles  that  may  impede  the  installation  of  the  struts  and  canal.  The  ground  should  also  be  flattened  in  the  area  where  wheel  supports  and  generator  system  are  to  be  installed.  A  steady  supply  of  water  enters  the  bamboo  channel  system  and  is  directed  towards  a  rotating  waterwheel.  The  channel  system  consists  of  a  canal  and  supporting  struts.  The  canal  is  constructed  from  three  5.5m  bamboo  columns  that  are  joined  in  parallel  and  fixed  horizontally  by  supporting  bamboo  struts.  The  canal  is  fixed  at  a  5°  angle  of  declination  to  maintain  constant  fluid  flow.  Due  to  both  gravitational  potential  and  kinetic  energies  of  the  running  water,  a  torque  is  created  and  causes  the  wheel  to  rotate.  The  wheel  has  a  diameter  of  2m  and  is  0.6m  wide  and  water  is  captured  by  eight  curved  fins  constructed  from  32cm  PVC  pipes.  The  rotational  motion  of  the  wheel  is  then  translated  to  a  generator  via  a  gearing  system,  where  electricity  is  generated.  Cabling  connects  the  electricity  supply  to  the  mains  in  Sandikhola,  with  excess  power  being  stored  in  a  battery.  

 

Cost:  

The  total  cost  consists  of  materials,  transportation  and  labour.  A  summary  of  the  cost  of  each  part  is  presented  in  the  report,  but  the  total  estimated  cost  for  the  installed  system  is  about  159,850  NPRs  (3,026  GBPs).  

Environmental  and  social  impacts:  

•   Uses  low-­‐cost,  locally  sourced  and  sustainable  materials.  •   Simple  design  be  constructed,  operated  and  maintained  by  community.  •   Increased  productivity  and  education  due  to  installation  of  electric  lights.  •   Potential  for  installation  of  electric-­‐powered  stoves,  which  would  reduce  smoke  in  house  and  

improve  health.  •   No  detrimental  impact  to  local  environment.    

Page 54: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

49  |  P a g e  

 

Imperial  College  London,  Team  4:  Central  biogas  reactor  

Proposal:    

A  community  biogas  reactor  that  generates  gases,  such  as  methane,  that  can  be  burned  for  cooking  or  for  generating  electricity.  

Design:  

The  bioreactor  is  a  sealed  container  that  promotes  the  anaerobic  decomposition  of  waste  to  produce  methane.  Animal  or  plant  waste  is  brought  in  by  local  farmers  or  road  clearing  teams,  and  emptied  into  the  input  chute.  Waste  will  flow  from  here  into  a  central  digester.  The  waste  is  kept  in  the  digester  and  microorganisms  help  to  break  down  these  compounds.  The  bacteria  that  decompose  the  organic  manner  will  do  this  via  an  anaerobic  process  (without  oxygen).  The  product  of  this  process  will  include  gases  such  as  methane,  which  can  be  used  for  many  different  things.  Once  the  bioreactor  has  produced  the  gas,  it  is  removed  by  operating  the  ‘bicycle’  attachment,  which  operates  the  manual  compressor.  This  will  pump  gas  into  the  attached  bottle,  ready  for  removal  and  use  by  the  local  community.  Local  farmers  will  collect  waste  product  (slurry)  from  the  output  chute  for  use  as  manure  on  farms  and  crops.  

 Cost:  

Total  cost  for  a  biogas  plant,  including  all  essential  installations  but  not  including  land,  is  between  50-­‐75  US  Dollars  per  m3  capacity,  therefore  for  a  10m3  capacity  reactor  proposed  the  estimated  cost  is  595  USD,  plus  30  USD  for  land  excavation.  

Environmental  and  social  impacts:  

•   Makes  productive  use  of  waste  materials  •   Provides  a  renewable  energy  source  that  will  not  contribute  to  climate  change.  •   Majority  of  materials  (except  compressor)  can  be  sourced  locally  (within  Nepal).  •   Potential  for  local  employment  in  construction,  maintenance  and  operation.    •   Improved  health  due  to  reduction  of  smoke  level  in  households.  •   Increase  in  disposable  income  due  to  reduction  in  money  spent  on  fuel  by  households.  •   Gives  potential  for  electric  lighting  in  households      

Page 55: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

50  |  P a g e  

 

Nottingham  Trent  University,  Team  4:  Bamboo  and  banana  leaf  wind  turbine  

Proposal:    

A  sustainable  and  locally  constructed  wind  turbine  to  produce  energy  for  household  use.  

Design:  

The  proposed  wind  turbine  is  to  be  built  from  locally  sourced  materials  assembled  by  locals.  Bamboo  and  banana  leaves  will  be  used  for  the  framework  and  blades.  The  turbine  will  be  10  metres  tall  and  have  two  blades.  A  bamboo  frame  with  banana  leaves  will  be  used  in  order  to  make  the  blades  of  the  turbine,  each  of  which  will  be  2  metres  in  length.  The  banana  leaves  will  be  used  to  weave  the  blade  surface  and  are  relatively  strong  so  they  will  be  able  to  help  generate  propellers  spinning.  Bamboo  leaves  can  also  be  dried  and  used  In  order  to  bind  the  bamboo  together.  An  alternator  will  be  bought  in,  potentially  provided  by  charity,  dependant  on  available  funding.  Energy  will  be  distributed  by  the  locals  charging  a  car  battery  and  powering  their  home  from  this,  as  this  is  how  the  community  power  their  appliances  already.  The  number  of  turbines  needed  to  provide  electricity  for  the  entire  village  at  maximum  consumption  of  60kWh/month  would  be  15.  

 

Cost:  

An  estimation  of  the  parts  for  the  wind  turbine  is  around  5,981  NPRs  (40  GBP),  allowing  for  cost  of  bamboo,  alternator  and  wire  for  electricity  distribution.  The  estimated  cost  per  household  nis  1,329  NPRs  (8.99  GBP).  

Environmental  and  social  impacts:  

•   Use  low-­‐cost  sustainable  and  locally  available  materials,  except  for  the  alternator.  •   Simple  construction  and  maintenance  that  can  be  done  by  locals.  •   Can  be  integrated  into  existing  system  used  for  energy  storage  in  households.  •   Clean  source  of  energy  and  adoption  will  reduce  pollution  caused  by  kerosene  lamps.  •   Potential  for  local  employment  in  provision  and  distribution  of  charged  batteries    

Page 56: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

51  |  P a g e  

 

Cooking  technologies  

Brighton  University,  Team  1:  Biogas  cooking  system  

Proposal:  To  catalyse  the  permeation  of  biogas  deeper  into  the  heart  of  the  community  by  the  incorporation  of  a  biogas  system  to  provide  fuel  to  be  used  for  cooking.  

Design:  The  first  step  of  this  system  would  be  a  digester  where  residents  could  deposit  their  waste  for  the  digester.  The  amount  of  biomass  a  household  provides  determines  how  much  biogas  they  receive.  Withdrawn  gas  would  be  transported  to  a  residence  via  an  airtight  sack  (such  as  are  currently  available  for  this  purpose),  and  deposited  to  a  low-­‐pressure  storage  system  manufactured  from  plastic  barrels.  

The  final  part  of  the  system  is  a  two-­‐burner  biogas  stove  (attached  to  the  low  pressure  storage  system)  made  from  locally  found  materials  in  keeping  with  traditional  cooking  equipment,  hand  moulded  clay  and  earth  form  the  base  of  the  stove  and  the  manifold  is  constructed  from  an  aluminium  can.  

 

Cost:  

Size  of  the  plant  kept  small  and  materials  gained  from  local  sources  to  keep  costs  low.  

Social  and  environmental  impacts:  

•   Instruction  manual  to  allow  for  easy  building  of  the  stove  by  individual  households  •   Constructed  using  easily  available,  locally  sourced  recycled  materials  •   Reduces  unsustainable  emissions  via  cooking  •   Reduces  amount  of  waste  by  using  it  productively  •   Creation  of  a  social  enterprise  that  may  benefit  the  whole  community  •   Improves  health  and  livelihoods  through  reduced  emissions  and  waste,  and  time-­‐saving,  

particularly  for  women.    

Page 57: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

52  |  P a g e  

 

Coventry  University,  Team  1:  Improved  biodigester  

Proposal:    

The  report  looks  into  improving  the  design  of  a  biodigester  used  for  cooking  in  Sandikhola.  

Design:  

The  final  design  would  consist  of  a  water  heating  system  inside  the  tpPVC  manure  tank.  The  water  heating  system  would  heat  the  bio  digester  to  increase  temperature  at  around  35  to  40  degrees.  This  would  allow  the  anaerobic  digestion  process  to  occur  much  quickly  and  produce  more  gas.  The  manure  tank  would  be  surrounded  by  a  concrete  wall  for  protection  and  insulation  to  ensure  minimum  heat  loss.  There  would  be  an  inlet  pipe  and  two  outlet  pipes.  The  outlet  pipes  would  allow  water  and  manure  to  leave  the  tank.  Water  used  in  the  heating  system  would  be  reused,  reheated  and  poured  back  into  the  pipeline.  

Cost:  

Item   Cost  Total  cost  of  concrete  wall  and  slurry  mixer   19,395(NRPs)  Total  cost  of  copper  pipe  coil  and  skilled  labour   25,224.60(NRPs)  Costs  of  PVC  tank   135,366(NRPs)  Cost  of  HDPE  pipe   642.40(NRPs)  GI/GI  Flange  set-­‐1(1  inch)   1,050.90(NRPs)  Cost  of  transport   42,000(NRPs)  Cost  of  tool   4,021.67(NRPs)  Cost  of  labour   14,000(NRPs)  

Total  cost:   241,700.57(NRPs)  

Environmental  and  social  impacts:  

•   Uses  locally  available  resources  and  builds  on  existing  knowledge/use  of  biogas.  •   Makes  productive  use  of  locally  abundant  waste  product  (animal  waste  turned  into  fertiliser).      •   Community  will  be  able  to  use  and  maintain  the  system  themselves,  after  initial  training  •   Reduced  deforestation  as  reduced  demand  for  firewood.  •   High  initial  cost  but  could  be  reduced  via  subsidies  and  donations    

Page 58: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

53  |  P a g e  

 

London  Southbank  University,  Team  3:  Rocket  stove,  improved  cooking  stove  

Proposal:  A  “Rocket  Cooker”  cooking  appliance  to  improve  the  ease  of  use,  efficiency,  reliability,  sustainability,  costs  and  the  health  impacts  related  to  traditional  firewood  stoves.    Design:  The  “Rocket  Cooker”  is  a  more  efficient  version  of  a  wood  fire  stove.  It  is  constructed  using  waste  products  such  as  oil  drums,  where  a  chimney  is  created  to  heat  the  cooking  appliance.  The  way  it  has  been  designed  reduces  the  smoke  admissions  and  does  not  waste  as  much  heat  as  the  fire  stoves  which  are  currently  in  place.  The  chimney  (where  the  wood  is  burned)  is  insulated  with  gravel/sand  to  prevent  heat  loss,  although  it  will  also  weigh  the  cooker  down  to  prevent  tipping.  The  insulation  makes  the  cooker  safe  to  touch  as  heat  is  absorbed  through  the  gravel/sand  rather  than  coming  into  contact  with  the  outer  metal  casing.  As  a  result,  the  cooker  can  also  act  as  a  storage  heater  once  the  fire  has  been  extinguished  and  will  gradually  dissipate  heat  within  the  room.  The  accumulated  ash  at  the  base  of  the  stove  shall  be  cleared  from  time  to  time.  The  ashes  must  be  manually  removed,  there  is  no  special  skill  required  to  carry  this  out  and  could  be  done  by  the  villager  themselves.  

Directions  of  use:  Cost:  

Material/Labour   Cost  (£)  2x60  litres  used  oil  drum  (rate  @  £0.05  per  kilo)     £0.05  15pairs  of  nut  &  bolt  (rate  @  £0.02  a  pair)     £0.30  Screwdrivers  set,  use  cost  for  “screwdriver  10”  –  NPR  141.25”  using  data  supplied  by  NEWAH    

£1.00  (one  off  cost)  

Sheet  metal  cutter  (new),  use  cost  for  “gebrit  knife  –  NPR  219.22”  using  data  supplied  by  NEWAH    

£2.00  (one  off  cost)  

20kg  Sand     available  locally  for  free  4hours  of  Labour,  use  cost  for  “skilled  labour  –  NPR  600”  using  data  supplied  by  NEWAH    

£4.00  

Estimated  total  cost   £7.35  

Environmental  and  social  impacts:  

•   Reduced  air  pollution  and  deforestation  due  to  reduced  wood  consumption.  •   Improved  household  living  conditions,  as  stove  takes  up  less  room  in  the  home  and  produces  

less  smoke  than  traditional  stoves.  •   Comprises  mainly  recycled  materials,  which  are  low  cost  and  reduce  local  waste.  •   Low-­‐cost  and  uses  available  fuel,  so  accessible  to  all  members  of  community  (unlike  Biogas)..  •   Potential  employment  via  manufacturing  of  stoves  by  local  tradesman.      

Page 59: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

54  |  P a g e  

 

London  South  Bank  University,  Team  1:  Rocket  stove  and  smoke  hood  

Proposal:    

A  highly  efficient  stove  that  burns  at  much  higher  temperatures  than  an  open  fire,  combined  with  a  natural  smoke  ventilation  system,  which  reduces  the  quantity  of  smoke  expelled  into  the  house  during  cooking.  

Design:  

The  rocket  stove  will  be  constructed  in  two  sections;  the  first  is  the  Baldosa  firebox.  The  firebox  is  a  chamber  where  the  combustion  of  raw  materials  takes  place.  The  firebox  will  be  manufactured  locally  using  ceramic  tiles.  The  second  part  of  the  construction  is  the  outer  wall  and  insulation.  The  firebox  will  sit  in  insulation  (dry  wood  ash)  held  in  place  with  an  outer  mud  brick  skin  wall.  Using  an  insulator  in  the  process  increases  the  temperature  in  the  combustion  chamber,  which  helps  to  burn  off  unburnt  particles  from  the  combustion  process,  reducing  the  amount  of  smoke  the  fire  produces.  A  shelf  or  grill  will  be  placed  on  top  of  the  mud  brick  wall,  with  25mm  gap  between  the  grill  and  the  top  of  the  bricks.    

The  natural  smoke  extract  solution  relies  on  the  natural  buoyancy  of  hot  gases  to  drive  the  smoke  through  the  system.  A  steel  smoke  hood  allows  for  ventilation  as  well  as  heating  when  occupants  are  cooking.  The  smoke  hood  will  be  attached  to  a  flue  that  will  enable  us  to  extract  the  fumes  at  the  ceiling  of  the  kitchen  via  a  grille.  

Cost:  

High  initial  cost.  The  cost  to  transport  steel  to  Sandikhola,  will  cost  approximately  15,000  Rupees  per  trip  and  the  skilled  labour  to  cut  the  steel  will  cost  roughly  600  Rupees  per  day.  Unable  to  find  accurate  costings  for  the  metal.  

Environmental  and  social  impacts:  

•   By-­‐products  of  construction  could  be  used  for  productive  purposes  (such  as  fertiliser  and  water  filtration).  

•   All  materials,  except  for  steel,  are  low-­‐costs,  sustainable  and  available  locally.  •   Improved  health  due  to  reduced  smoke  pollution  in  households.  •   Simple  design  that  can  be  constructed  and  maintained  locally.  •   High  initial  cost  may  be  beyond  capacity  of  many  households  with  external  support.    

Page 60: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

55  |  P a g e  

 

Imperial  College  London,  Team  3:  ‘Yak  Pot’  low  smoke  cooker  

Proposal:    

Introduce  a  slow  cooker  slow  cooker  designed  to  keep  fluid  at  a  temperature  that  is  high  enough  to  cook  food  (around  80  C)  for  extended  periods  of  time  with  no  fuel.  

Design:  

The  slow  cooker  consists  of  an  insulated  jacket  which  minimises  heat  loss  from  the  pot  placed  inside.  The  cooker  comprises  reflective  material,  lining,  insulating  layer  and  tie  string.  The  reflective  material  is  placed  against  the  metal  pot  and  minimises  radiative  heat  loss.  Foil  faced  bubble  wrap  can  be  used  as  both  reflection  for  radiation  and  insulation.  The  inner  lining,  made  from  local  materials  such  as  old  clothing,  is  sewn  to  the  reflective  material  and  is  used  to  give  the  general  shape  of  the  slow  cooker.  The  space  between  the  inner  and  outer  lining  is  filled  with  yak  hair  which  will  provide  insulation,  keeping  the  pot  warm.  A  tie-­‐string  is  used  to  close  the  slow  cooker  once  the  pot  is  inside.  A  template  for  the  inner  and  outer  lining,  lid  and  reflective  material  will  be  provided  so  that  the  slow  cooker  can  be  made  to  the  right  size.  

 

Cost:  

It  should  cost  less  than  10$,  be  made  mainly  from  local  materials  and  last  for  a  minimum  of  2  years.  

Environmental  and  social  impacts:  

•   Uses  low  cost  and  largely  locally  available  materials.  •   Simple  design  can  be  made  from  a  ‘do  it  yourself’  pack  by  communities  themselves.  •   Potential  for  local  employment  in  production  of  slow  cookers  for  sale.  •   Reduction  in  deforestation  and  soil  erosion  due  to  reduction  in  wood  burnt  for  cooking.  •   Improved  health  related  to  reduction  of  wood  burning  and  smoke  pollution  in  households.    

Page 61: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

56  |  P a g e  

 

Energy  supply  for  water  pumping  

Durham  University,  Team  1:  Floating  water  wheel  for  water  pumping  

Proposal:    

A  waterwheel  will  be  installed  on  the  Trishuli  River  5km  away,  to  ensure  a  reliable  water  flow  to  the  village  in  the  dry  season.  

Design:  

The  fibreglass  water  wheel  with  curved  blades  will  float  on  intelligently  designed  steel  pontoons,  which  use  hydrofoils  to  accelerate  the  flow  and  thus  increase  power  output.  The  final  12  bladed  waterwheel  design  is  3m  wide,  2m  in  diameter,  and  is  submerged  0.85m  in  the  river.  The  wheel  will  drive  an  on-­‐board  permanent  magnet  generator  through  a  high  torque  density  gear  box,  before  being  put  into  a  generator  with  low  revolutions  per  minute.  Wires  will  then  be  suspended  by  steel  cables  to  take  energy  on  land.  The  system  for  mooring  the  pontoon  to  the  riverbed  comprises  a  large  mass  connected  to  a  heavy  chain  that  runs  along  the  riverbed.  The  pontoon  system  can  easily  be  moved  from  the  river  to  the  bank  and  disassembled  or  maintained.  

             Final  design                Wire  support  system  

Cost:  

The  budget  is  £25k,  this  is  used  to:  purchase  the  raw  materials,  manufacture  the  parts,  transport  to  location,  assemble  the  waterwheel  and  train  the  local  maintenance  team.  The  villagers  will  have  to  pay  monthly  instalments  of  approximately  735Rs  per  household  to  cover  the  cost  for  parts  and  replacements  (including  inflation),  the  wages  of  the  maintenance  team  and  unexpected  yearly  fault  cost  

Environmental  and  social  impacts:  

•   Can  be  maintained  by  community.  •   River  environment  unaffected  by  installation.  •   Local  employment  opportunities  for  system  operation  and  maintenance,  particularly  for  the  

poorest  inhabitants.  •   Electricity  generation  does  not  produce  any  pollution.  •   Uses  sustainable  materials  with  majority  of  components  sourced  within  Nepal.    

Page 62: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

57  |  P a g e  

 

Water  mill  

University  of  Manchester,  Team  2:  Integrated  water  mill  and  grinding  wheel  

Proposal:    

An  integrated  water  mill  and  the  grinding  wheel  that  tackles  two  of  the  major  problems  faced  by  villagers:  lack  of  electricity  and  means  of  a  tool  to  grind  grain.  

Design:  The  turbine  that  is  connected  to  the  water  wheel  has  magnets  on  it.  The  turbine  rotates  perpendicular  to  the  coils,  which  induces  a  current  in  the  coil  that  produces  electricity.  The  power  is  distributed  from  the  turbine  to  the  local  power  storage  unit,  where  the  power  is  converted  from  DC  to  AC.  The  power  is  distributed  to  houses  for  individual  consumption  using  overhead  cables  

supported  by  wooden  poles.  Electricity  use  is  monitored  and  households  are  charged  according  to  the  number  of  units  consumed.  Households  will  be  supplied  with  LED  lightbulbs  that  will  be  powered  by  the  electricity.  The  same  turbine  rotates  the  grinding  wheel  on  the  opposite  side  of  the  turbine.  A  hydraulic  jack  is  fitted  underneath  the  grinding  wheel,  which  allows  it  only  to  be  connected  when  required.  

Cost:  Item   Cost  (USD)  

Generator   800  Materials  and  labour  for  generator   500  AC  converter   200  LED  light  bulbs   600  Distributions  system   300  

Total  cost:   2,400  USD  

Environmental  and  social  impacts:  

•   Low-­‐cost  design  where  majority  of  materials  are  available  locally  (within  Nepal).  •   Increased  productivity  due  to  increased  light  and  therefore  working  hours,  as  well  as  reduced  

manual  labour  for  grinding.  •   Environmentally  friendly  and  sustainable  form  of  energy  generation.    

Page 63: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

58  |  P a g e  

 

Edinburgh  University,  Team  4:  Water  Mill  Design  

Proposal:  

A  water  mill  to  grind  grain,  including  rice  and  corn,  which  are  the  most  widely  grown  produce  in  the  community.  Proposed  location  is  immediately  downstream  of  V-­‐notch  weir  constructed  by  NEWAH  in  2013.    

Design:    

The  water  flows  out  of  the  V-­‐notch  weir  and  straight  into  a  cylindrical  chute,  which  has  a  grate  at  the  inlet  to  stop  debris  entering  the  system.  The  chute  directs  the  water  downstream,  slightly  to  the  right  of  the  centre  of  the  turbine  causing  it  to  rotate.  The  water  then  falls  off  the  turbine  blades  directly  into  the  stream,  then  continues  along  its  original  path.  The  turbine  is  made  from  stainless  steel  with  a  protective  coating  of  orange  paint  to  prevent  rust.  The  turbine  is  connected  to  a  shaft  made  from  Shorea  Robusta  by  a  metal  bolt.  The  shaft  runs  up  through  the  floor  of  the  Ghatta,  where  a  large  stone  disc  sits  on  top,  called  the  runner  stone.  A  metal  bar,  upon  which  the  weight  of  the  runner  stone  rests,  is  butted  into  a  grove  in  the  top  of  the  shaft.  The  runner  sits  just  above  a  similar  stone  that  rests  on  the  floor,  called  the  bedstone,  both  are  patterned  with  radial  grooves.  The  grain  itself  sits  in  a  woven  hopper  suspended  from  a  ceiling  beam  via  ropes,  allowing  grain  to  be  introduced  to  the  stones  through  the  eye  of  the  runner  stone.  Once  ground,  the  grain  falls  onto  the  floor  with  a  walled  tray,  for  collection  by  the  miller.    

Cost:  Contribution   Cost  (NPR)  

Parts   52,810  Tools   3,227  Transport   51,000  Labour   72,000  

Estimated  total  cost   179,037  (£1,145)  

Environmental/Social  impacts:  

•   Water  is  redirected  from  its  original  path  for  the  shortest  possible  time,  minimising  the  environmental  impact.  

•   Requires  sufficient  flow  rates  to  function.  •   Saving  in  time  and  effort  due  to  local  grinding/processing  of  grains  and  associated  increase  in  

time  and  effort  for  other  activities,  particularly  for  women.  •   Employment  for  construction,  operation  and  maintenance  of  the  mill.  •   Potential  social  conflict  due  to  installation.  •   Generates  income  for  the  community.    

Page 64: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

59  |  P a g e  

 

DESIGN  AREA  4:  WASTE  MANAGEMENT  

Sludge  management  

London  South  Bank  University,  Team  4:  Multi-­‐purpose  S-­‐Bricks  

Proposal:    

The  proposal  is  to  collect  the  sludge  from  the  bio  digester  and  mould  it  into  an  S-­‐Brick  for  various  uses.  

Design:  

The  process  for  creating  the  S-­‐Brick  is  to  initially  collect  digestate  from  the  bio  digester  and  eliminate  the  wasting  of  the  digestate.  This  is  done  using  a  large  bamboo  shoot,  cut  in  half  to  allow  the  digestate  to  flow  to  various  empty  oil  drums.  The  shoot  will  swing  to  allow  many  drums  to  be  filled  without  manually  moving  a  full  heavy  one.  The  digestate  is  mixed  with  a  number  of  different  media  such  as  dry  straw,  saw  dust,  clay  rich  mud,  or  low  grade  fly  ash.  All  of  the  stated  mixing  agents  are  used  to  help  increase  the  viscosity  of  the  mixture  and  to  help  it  set  during  moulding.  The  mixture  is  then  poured  into  sized  moulds.  These  moulds  consist  of  various  interchangeable  cross  members,  which  allow  the  moulds  to  be  sized  according  to  the  eventual  use  of  the  bricks.  Once  the  mixture  is  poured  into  the  moulds,  they  must  be  left  to  dry  and  cure  for  a  period  of  time.  Incorporation  of  a  number  of  bamboo  rods  through  the  brick  allows  it  to  be  used  as  a  non-­‐structural  ventilation  house  brick.  Alternatively,  the  dry  bricks  can  be  later  mixed  with  water  to  form  a  solution  and  used  as  fertiliser  on  crops.  

Cost:  

Expenditure  on  new  products  or  tools  is  nearly  zero  cost.  One  sheet  of  ply  wood  costing  around  450  NRP,  can  be  used  to  construct  2  boxes  for  brick-­‐making,  therefore  the  cost  of  one  box  to  produce  a  minimum  of  9  bricks  is  around  225  NRP,  not  including  tools  or  labour.  

Environmental  and  social  impacts:  

•   Uses  sustainable  locally  sourced  waste  material  (digestate).  •   Simple  production  process  can  be  conducted  by  community.  •   Reduction  in  vehicular  air  pollution  due  to  removal  of  need  to  transport  digestate  off-­‐site.  •   Reduction  in  land  pollution  due  to  re-­‐use  of  digestate  (compared  to  current  dumping).  •   Improvement  in  household  air  quality  if  bricks  used  to  increase  ventilation.  •   Increased  crop  production  if  bricks  used  as  fertiliser.  •   Potential  for  local  employment  via  reproduction  of  bricks.    

Page 65: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

60  |  P a g e  

 

Waste  as  energy  

University  of  Strathclyde,  Team  1:  Plastic  bottle  greenhouse  

Proposal:    

A  low-­‐level  greenhouse  made  from  plastic  waste  bottles,  which  would  reduce  the  amount  of  plastic  waste  within  the  village,  improve  crop  production  and  therefore  increase  food  and  income  to  households.  

Design:  

The  greenhouse  will  be  made  of  panels  of  bottles  held  within  a  bamboo  frame.  The  panels  are  created  using  plastic  bottles  that  are  joined  together  into  threads.  Approximately  4000  bottles  are  required  to  make  a  greenhouse  for  a  10m  x  5m  plot  of  land.  This  solution  could  extend  the  summer  crop  growing  season  as  little  variety  is  grown  in  winter.    

The  low  height  (one  bottle)  of  the  greenhouse  greatly  reduces  wind  impact  as  well  as  buckling  of  the  bamboo  due  to  short  column  length.  The  size  also  allows  for  portability,  so  the  soil  can  be  worked  and  planted  before  being  covered  by  the  greenhouse.  As  it  is  permeable  from  the  gaps  between  the  bottles,  the  rain  would  water  the  crops  without  need  for  the  field  to  be  uncovered.    

 

Cost:  

The  200  m  of  bamboo  required  for  a  greenhouse  to  cover  a  10m  x  5m  plot  would  only  cost  1400Rs.  Jute  twine  is  not  included  in  this  costing.  However,  jute  was  found  to  cost  roughly  65Rs/kg.  Bottles  are  waste  materials  and  are  therefore  cost  free.  

Environmental  and  social  impacts:  

•   Uses  materials  that  are  sustainable  and  locally  sourced.  •   Reduction  in  waste  within  the  community  due  to  recycling  of  bottles.  •   Simple  design  can  be  constructed  by  households  or  groups  in  the  community.  •   Movable  structure  that  can  be  adapted  to  fit  different  locations.  •   Increased  food  and  income  due  to  increase  in  yield  and  variety  of  crops  grown.  •   Growth  of  plants  also  depends  on  water  availability.    

Page 66: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

61  |  P a g e  

 

DESIGN  AREA  5:  TRANSPORT  

Vertical  goods  transportation  systems  

University  of  East  Anglia,  Team  2:  Mule-­‐powered  wooden  rail  system  

Proposal:    

A  mule-­‐powered  wooden  rail  system  that  allows  for  the  transportation  of  goods  up  and  down  the  hills  in  the  village.  

Design:    

The  proposed  transport  system  comprises  a  wooden  sledge  upon  wooden  rails.  Goods  are  fastened  to  the  sledge  and  pulled  up  hill  by  rope.  In  order  to  stop  the  sledge  from  falling  or  slipping  off  the  rails  the  sledge  will  more  closely  resemble  figure  2,  with  a  lip  on  either  edge  for  the  rails  to  lay  within.  Figure  3  illustrates  the  initial  design  for  the  spool,  around  which  the  steel  cable  will  be  wound.  The  proposed  transport  design  proposes  wood  for  both  the  railings  and  sledge;  however  moving  forward  metal  and  pipe  will  be  considered  as  alternative  or  additional  design.    

As  a  source  of  energy  for  transportation  the  system  of  mule  powered  spools  is  recommended.  Mules,  or  buffalo  if  the  load  was  large  enough,  will  wind  up  the  spool,  pulling  the  trolley  up  the  hillside.  

     

Cost:    

As  many  locally  sourced,  highly  available  materials  as  possible  are  used  to  keep  costs  low.  The  only  expensive  material  in  the  design  is  the  metal  cabling  used  to  tow  the  trolley  up  the  track.  This  cabling  is  also  inexpensive,  with  prices  under  £0.45  per  metre.  

Social  and  environmental  impacts:  

•   Potential  large  area  required  for  spools  to  wind  the  rope  to  power  the  sledges  in  the  system.  •   Simple  construction  and  maintenance  that  can  be  conducted  by  the  community.  •   System  potentially  funded  through  toll  scheme.  •   No  environmental  damage  or  pollution  produced  by  system.  •   Uses  low-­‐cost,  locally  sourced  and  sustainable  materials.  •   Improved  transportation  of  goods  in  the  village  throughout  the  year.    

Page 67: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

62  |  P a g e  

 

Cardiff  University,  Team  1:  Motorised  ropeway  pulley  system  

Proposal:    

A  motorised  rope  pulley  transport  system  for  movement  of  goods  up  and  down  a  mountain  powered  by  a  biogas  generator  and  electric  motors.    

Design:    

The  design  comprises  a  ropeway  lift  system  with  three  stations  and  effectively  two  separate  but  similar  ropeways.  Each  system  would  have  a  big  turning  wheel,  which  could  be  connected  to  a  motor  at  certain  times  to  enable  the  transport  of  a  higher  ratio  of  uphill  moving  load  to  downhill  moving  load.  The  carts  would  move  along  static  steel  ropes,  being  pulled  by  a  separate  moving  rope  that  connects  the  uphill  load  to  the  downhill  load  (see  figure  2).  The  purpose  of  having  each  cart  connected  to  two  lines  is  firstly  to  share  the  load  between  the  lines.  This  reduces  the  tension  in  the  lines.  It  also  enables  the  use  of  a  lighter  moving  rope,  avoiding  the  system  pulling  the  heavy  steel  cable  up  hill,  as  well  as  reducing  the  friction  between  the  moving  rope  and  the  pylons.  Analysing  the  load  in  the  system  requires  complex  technical  analysis  and  local  research.  

Cost:    

Environment/social  impacts:    

•   Feasible  design  but  needs  technical  input  to  ensure  safe  design  and  construction.  •   Improvement  of  local  waste  management  through  collection  and  use  of  faeces.  •   Provision  of  fertiliser  as  a  by-­‐product  of  the  biogas  generation.  •   Local  employment  for  construction,  operation  and  maintenance  of  the  ropeway.  •   Minimum  visual  impact  on  natural  environment  and  carbon  neutral  power  source.  •   Risk  posed  by  heavy  overhead  load  and  methane  generator,  but  reduced  by  adequate  training  

of  operators.    

Item   Cost  (£)  4400m  of  Ø50  mm  steel  cable   £16,700  Large  pulley  with  brakes  and  with  a  1000kg  capacity   £143.17  2  two-­‐roller  assembly  zip  line  pulleys   £100  2  large  cages  for  transport   unspecified  Concrete,  reinforcements  and  steel  for  the  6  support  pylons   £8000  Transport  trucks  for  steel  cables   £1000  Workforce  of  10  skilled  workers  and  20  unskilled  workers   £100  per  day  Human  and  animal  waste  for  generator   £0  (donations)  

Estimated  total  cost:   £25,888  +  labour  

Page 68: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

63  |  P a g e  

 

Birmingham  University,  Team  3:  Oxen  powered  vertical  transport  system  

Proposal:    

An  oxen-­‐powered  vertical  transportation  system  that  allows  numerous  benefits  in  the  village  of  Sandikhola  based  on  the  increase  in  disposable  time  it  creates.  

Design:  

A  low  tech,  suspended  ropeway  that  can  be  used  with  up  to  ten  10kg  bags  to  hold  firewood,  or  a  single100kg  container  was  identified  as  the  best  solution.  The  system  consists  of  a  steel  wire  suspended  3m  above  ground  level  on  bamboo  saddles  attached  to  bamboo  columns  at  30m  spacing.  The  wires  themselves  will  be  supported  3m  in  the  air  by  saddles  atop  the  columns.  These  saddles  support  tin  sheets  which  have  peaks  and  troughs  that  are  perfect  for  ensuring  the  cable  runs  straight  while  allowing  attachments  of  vertical  rope  that  require  tapered  longitudinal  binding  to  the  cable  itself  to  prevent  slippage  of  the  bag  while  travelling  up  the  slope.  Two  guy  wires  act  perpendicular  to  the  ropeway  with  a  further  placed  inline  to  provide  resistance  to  tension  of  the  cable.  The  system  would  be  powered  by  manual  energy  generation  in  the  form  of  locally  available  and  inefficiently  used  oxen  or  gaur.    

Cost:    

 

Environmental  and  social  impacts:  

•   Education  and  training  will  prevent  potential  increase  in  social  inequality  the  design  may  create.  

•   Can  be  constructed  by  community  without  external  assistance  once  training  is  given.  •   Creation  of  more  free-­‐time,  which  may  increase  income,  education  and  quality  of  life  in  

general  for  the  community.  •   Potential  increase  in  deforestation  due  to  ease  of  wood  transport.    

Page 69: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

64  |  P a g e  

 

Edinburgh  University,  Team  2:  Bicycle  powered  vertical  transport  system  

Proposal:    

Vertical  goods  transportation  via  an  aerial  ropeway  powered  by  bicycles  to  transport  firewood,  crops,  animal  feed  and  any  other  goods  required.  

Design:  

The  design  consists  of  four  fixed  towers,  two  at  the  top  of  an  incline  and  two  at  the  bottom.  Two  tensioned  parallel  steel  wires  shall  run  up  the  slope  connecting  the  top  and  bottom  towers  together.  The  towers  should  be  made  from  concrete  and  have  foundations  suitable  to  support  the  forces  exerted  on  them.  A  basket  hangs  from  the  two  wires.  This  is  pulled  up  and  down  the  system  using  two  bicycles  mechanically  connected  to  a  cable  drum.  The  basket  is  designed  to  be  interchangeable,  which  allows  different  baskets  for  different  loads  to  be  used.  An  aluminium  basket  design  is  included,  with  a  maximum  load  of  52.5  kg,  however  this  may  be  left  detached  to  allow  the  user  to  attach  smaller  loads  without  it  if  they  want  to.  A  braking  system  was  considered  necessary  for  the  ropeway  to  avoid  any  damage  to  the  basket  if  it  reached  the  bottom  station  too  quickly.  

 

Cost:  Item   Cost  

Materials   £2764.86  Transport   £957  Labour   £1075  

Total  cost:   £4796.86  

Charging  households  25  NRP  per  day  to  use  the  system  would  prevent  heavy  usage  from  impacting  finances  of  users  too  heavily,  while  allowing  the  system  to  make  a  profit.  A  lower  rate  could  be  introduced,  charging  15  NRP  for  a  single  load,  for  people  who  only  need  a  specific  item  transported.  

Environmental  and  social  impacts:  

•   Involvement  of  community  in  construction.  •   Local  employment  opportunities  for  operation  and  maintenance.  •   Pedal  powered  system  that  does  not  pollute  environment.  •   Minimal  environmental  impacts  during  construction.  •   Increase  in  free-­‐time  and  improved  health  due  to  reduction  in  time  and  effort  to  transport  goods  up  

and  downhill,  particularly  for  women.    

Page 70: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

65  |  P a g e  

 

Edinburgh  University,  Team  3:  Block  and  tackle  goods  transportation  system  

Proposal:    

A  hand-­‐powered  vertical  goods  transportation  system  to  reduce  the  problem  of  the  transportation  of  large  volumes  of  heavy  goods  over  a  steep  gradient.  

Design:  

The  design  consists  of  a  basket  hung  on  a  cableway  that  can  be  filled  with  goods  to  be  transported,  and  then  moved  up  the  hill  by  the  operation  of  a  crank  attached  to  a  winding  drum  at  the  bottom  of  the  hill.  As  the  operator  turns  the  crank  the  drum  turns  and  winds  in  a  rope.  As  this  rope  is  wound  in,  the  basket  is  pulled  up  the  hill  along  the  cableway  by  way  of  a  three-­‐sheave  block  and  tackle.  The  drum  uses  a  ratchet  in  order  for  the  basket  to  remain  stationary  when  the  operator  lets  go  of  the  crank;  this  also  allows  people  to  unload  the  basket  wherever  they  choose  along  the  cableway.  Once  the  basket  is  at  the  top  of  the  hill,  it  can  either  be  brought  back  down  empty  or  villagers  can  use  it  to  transport  goods  down  the  hill.  Either  way,  the  ratchet  on  the  drum  is  disengaged  and  the  basket  is  carried  down  the  hill  by  gravity.  A  brake  that  acts  on  the  drum  is  used  to  control  the  speed  of  the  basket  and  prevent  it  colliding  with  the  bottom  support.  One  of  the  basket’s  sides  is  hinged  so  as  to  act  as  a  door  to  ease  loading  of  goods.  Also,  the  basket  is  detachable  to  facilitate  repairs  and  enable  villagers  to  hang  items  that  might  not  fit  inside  the  basket  but  could  still  be  hauled  up  the  hill.  The  system  is  designed  to  carry  a  load  of  100  kg.  

Cost:  Item   Cost  (NPR)  

Materials  and  equipment   180,372  Labour   14,000  Transportation   Negligible  

Total  cost:   194,372  NPR  

Environmental  and  social  impacts:  

•   Uses  low-­‐cost  and  locally  sourced  materials,  including  cedar  wood.  •   Simple  design  that  can  be  easily  repaired  and  maintained  locally.  •    Improvement  in  health  and  income  due  to  reduction  in  time  and  effort  spent  transporting  

goods  up  and  downhill.  •   Potential  for  local  employment  in  operation  and  maintenance.    

Page 71: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

66  |  P a g e  

 

Sheffield  Hallam  University,  Team  2:  ‘Paddy  Pulley’  transportation  system  

Proposal:    

The  paddy  pulley,  a  vertical  goods  transportation  system,  is  designed  to  improve  the  transportation  of  rice  uphill,  which  increases  work  efficiency  of  harvesting  and  also  prevents  workers  from  being  injured.  

Design:  

Two  bamboo  'A'  frames,  one  at  the  top  of  the  hill  and  one  at  the  bottom  of  the  hill,  slide  in  parallel  along  the  hill  so  that  rice  can  be  collected  across  the  full  side  of  the  hill.  There  will  be  plastic  buckets  attached  to  the  pulley  and  rope  system  with  hooks.  These  buckets  will  be  filled  up  with  rice  and  once  filled  a  person  at  the  top  of  the  hill  will  lift  up  the  rice  by  turning  the  handle  on  a  wooden  pulley  system.  The  ropes  will  be  made  of  natural  fibres,  such  as  dogbane.  The  height  of  the  rope  will  be  two  metres,  so  the  buckets  can  be  easily  lifted  off  by  hand  when  standing  but  also  moves  above  the  height  of  the  rice  in  the  fields.  

 

Cost:  Item   Cost  (NPRs)  

Tools   9,961.14  Materials   2,221.20  Transport   22,000.00  Labour   4,400.00  

Total  cost:   38,582.34  NPRs  

Environmental  and  social  impacts:  

•   Design  uses  low-­‐cost  locally  available  materials.  •   Minimal  impact  on  surrounding  environment  if  bamboo  and  trees  harvested  sustainably.  •   Simple  design  can  be  constructed  and  maintained  by  community.  •   Improvement  in  health  and  productivity  due  to  reduction  in  time  spent  carrying  rice.    

Page 72: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

67  |  P a g e  

 

University  of  East  Anglia,  Team  1:  Power-­‐assisted  gravity  ropeway  

Proposal:    

A  vertical  ropeway  system  that  functions  by  gravity  and/or  assisted  power,  which  can  be  used  to  transport  goods  between  highland  and  lowland  areas.  

 

Design:  

The  pulley  system  consists  of  two  stations  situated  at  the  top  and  bottom  of  a  hillside.  Between  those  stations,  two  trollies  –  connected  to  individual  tracking  wire  –  are  simultaneously  ferried  up  and  down  a  hillside  by  a  hauling  wire  which  itself  passes  around  a  sheave  at  both  stations.  The  kinetic  energy  generated  from  the  trolley  descending  the  hillside  in-­‐turn  generates  enough  energy  so  that  a  trolley  can  ascend  the  hillside  at  the  same  time.  In  situations  where  the  trolley  descending  is  heavier  than  the  ascending  trolley,  no  additional  power  is  needed.  However,  where  this  is  not  the  case  a  bicycle  frame  connected  to  the  system  at  one  end  provides  the  power  to  move  the  loads.  

 

Cost  

The  cost  has  been  established  from  a  case  study  using  a  similar  idea,  which  had  an  approximate  cost  of  786,750  NPR.  The  system  proposed  here  would  be  cheaper  as  some  parts  would  be  able  to  be  recycled  from  scrap  of  other  commodities  such  as  car  parts  and  bicycles.  Also  the  baskets  would  be  able  to  be  made  by  the  community.  With  consideration  of  this,  the  estimated  cost  is  between  720,000  and  740,000  NPR.  

 

Environmental  and  social  impacts:  

•   Simple  design  that  does  not  require  skilled  labour  for  construction  and  maintenance.  •   Increase  in  productivity  due  to  reduction  in  time  spent  carrying  loads.  •   Reduction  in  waste  on  roads  due  to  reduced  reliance  on  cattle  for  transport.  •   System  requires  input  of  clean  energy  only.    •   Local  employment  opportunities  through  construction,  maintenance  and  operation.  •   Reduction  in  social  exclusion  due  to  greater  connection  of  areas.    

Page 73: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

68  |  P a g e  

 

Road  maintenance  and  management  

Birmingham  University,  Team  4:  Combined  road  drainage  system  

Proposal:    

Develop  a  viable  design  solution  that  could  help  manage  and  cope  with  the  high  volume  of  rain  that  Nepal  gets  during  the  monsoon  seasons,  which  can  be  particularly  damaging  to  roads.  

Design:  

A  four-­‐part  drainage  system  that  includes  a  camber,  side  drains,  scour  checks  and  culverts.  The  design  comprises  only  four  different  materials;  timber,  bamboo,  stone  and  soil.  

The  side  drain  is  constructed  by  excavating  soil  from  the  sides  of  roads.  Excavated  soil  is  placed  onto  the  road  to  form  a  camber,  which  will  encourage  rainwater  to  flow  off  either  side  of  the  road  to  the  side  drains.  Along  the  length  of  the  side  drains  are  regular  bamboo  scour  checks,  which  slow  down  the  flow  of  rainwater.  Water  eventually  flows  into  a  timber  culvert  and  is  discharged  in  a  safe  location.  

 

Cost:  

 

Environmental  and  social  impacts:  

•   Uses  locally  sourced  low-­‐cost  materials.  •   Potential  for  employment  of  community  during  construction.  •   Reduces  potential  of  hazardous  landslides,  which  improves  transportation  by  road  and  hence  

health,  business,  education  and  food  security.    •   Increased  availability  of  water  for  use  by  community  and  animals.    

Page 74: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

69  |  P a g e  

 

DESIGN  AREA  6:  INFORMATION  COMMUNICATIONS  TECHNOLOGY  

Automated  data  recording  system  

Imperial  College  London,  Team  5:  Automated  data  recording  system  

Proposal:    

A  modular  recording  system  that  will  reduce  NEWAH's  workload,  particularly  time  spent  manually  collecting  and  analysing  data.  

Design:  

The  modular  recording  system  includes  a  small  programmable  computer  (such  as  Arduino  or  Raspberry  Pi)  and  attachable  sensors.  The  system  will  routinely  collect  data  and  generate  automated  reports  which  can  be  sent  securely  via  a  radio  transmitter  or  collected  manually.  The  modules  include  riverside  flow  and  water  depth  monitors.  A  barometer  will  detect  the  water  depth  through  the  

pressure  in  the  enclosed  tube,  and  a  kinetic  water  wheel  will  measure  flow  rate.  Next  to  static  water  sources,  sensors  such  as  pH  gauges  and  TDS  (total  dissolved  solids)  meters  could  be  used  to  gauge  spring  health.  For  detecting  smoke  levels  and  underwater  turbidity,  a  flash  from  a  light  bulb  will  be  used,  as  the  number  of  particles  is  represented  by  the  opacity  of  the  image  taken  during  the  flash.  This  design  can  be  modified  to  

be  waterproof  and  used  underwater  to  provide  an  estimate  of  turgidity  in  the  water.  The  software  to  receive  and  analyse  the  data  will  be  designed  for  desktop.  The  information  will  be  copied  from  the  receiver  (which  will  have  local  storage)  upon  start  up  and  the  program  will  carry  out  analysis,  presenting  the  data  in  the  forms  of  graphs  against  time  or  other  graphical  formats  to  the  end  user.  

Cost:  

Exact  implementation  cost  would  be  dependent  on  the  system  configuration  chosen  and  practicality  of  each  option,  but  it  is  estimated  the  system  could  be  achieved  for  approximately  45  USD.  

Environmental  and  social  impacts:  

•   Low-­‐cost,  simple  design  can  be  used  and  maintained  by  NEWAH  staff.  •   Durable  system  will  not  be  adversely  affected  by  extreme  weather  conditions.  •   Top-­‐down  design  and  implementation,  although  community  involved  in  maintenance  of  

sensors.  •   Increased  productivity  of  NEWAH  staff  due  to  reduction  in  time  spent  collecting  data.  •   Potential  to  improve  health  through  increased  monitoring  of  smoke  levels/water  quality.    

Page 75: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

70  |  P a g e  

 

DESIGN  AREA  7:  CLIMATE  CHANGE  

Food  security  

University  College  Dublin,  Team  1:  ‘EnvelHope’  food  dehydration  system  

Proposal:  

A  food  dehydration  system,  based  on  sun-­‐drying,  designed  to  prolong  the  shelf  life  of  food  to  ensure  the  community  receives  adequate  nutrition  throughout  the  year.    

Design:    

EnvelHope  is  composed  of  two  breathable  plastics  –  Tyvek  and  High  Density  Polyethylene  Plastics  to  allow  the  food  to  release  moisture  naturally.  The  “zip-­‐lock”  seal,  a  closing  device  to  force  the  evaporated  water  out  of  the  system,  protects  the  food  from  bugs  and  insects,  and  allows  for  pressure  to  assist  in  drying.  An  autonomous  drainage  system  composed  of  hard  rubber  or  plastic  blades,  pipes  and  sponges  allows  water  to  escape.  The  hard  blades  act  as  an  instant  drying  mechanism,  when  applied  with  force,  and  also  as  a  barrier  between  the  sponge  and  food.  When  the  heat  is  harvested  in  the  bag,  the  temperature  increases  pressure  giving  it  an  arched  roof.  This  arched  roof  allows  water  condensation  to  trickle  down  either  side  of  the  device  and  onto  the  sponges’  walls.  When  the  sponge  expands  at  maximum  capacity,  the  pressure  of  the  hard  blade  will  push  against  the  sponge,  relieving  itself  of  excess  water  and  siphoning  the  liquid  out  of  the  pipes.  The  standard  product  size  intended  to  be  produced  is  congruent  to  a  large  chopping  board,  25cm  x  30cm,    but  these  dimensions  can  be  easily  scaled  up  or  down  in  accordance  with  the  community’s  needs.  

Cost:  

By  identifying  the  average  income,  there  is  a  plan  to  make  the  EvelHope  affordable  to  every  community  in  Nepal  at  the  cost  of  only  5  Euro.  

Environmental  and  social  impacts:    

•   Based  on  traditional  food  preservation  methods  already  used  •   Increases  food  shelf-­‐life  and  hence  food  security.  •   Envelopes  are  fully  reusable  but  plastic  is  not  repairable  if  damaged.  •   Regular  maintenance  and  part  replacement  needed.  •   Product  could  be  manufactured  within  Nepal.  •   Potential  for  future  local  manufacture  with  adequate  support.  •   Instruction  manual  to  assist  with  use.    

Page 76: EWB Challenge 2015 Report Summaries

[EWB  CHALLENGE  2015:  REPORT  SUMMARIES]    

71  |  P a g e  

 

Fly  and  mosquito  management  

University  of  Sheffield,  Team  2:  Mosquito  surveillance  system  

Proposal:    

A  disease  prediction  system  for  communities  at  risk  of  malaria  and  other  vector-­‐borne  diseases  that  utilises  a  combination  of  crowd  sourced  climate  data  as  well  as  pre-­‐existing  weather  data,  to  determine  the  likelihood  of  an  increase  in  mosquito  population.  

Design:  

The  kits  will  include  a  basic  thermometer  and  a  rainfall  gauge  to  measure  the  daily  climate  conditions,  the  data  obtained  from  this  equipment  will  be  submitted  to  a  central  database  via  an  SMS  by  designated  community  members.  This  data  can  then  be  processed  by  a  central  computer  system  to  make  the  predictive  calculations  for  the  local  mosquito  populations  in  the  local  environments  of  the  communities.  The  resulting  predictions  can  be  sent  back  to  a  community  representative  via  SMS  and  to  a  publicly  available  website,  in  the  form  of  bulletins,  warning  messages  and  interactive  maps.  These  outputs  will  provide  them  with  warning  if  high  numbers  of  mosquitoes  are  likely.  The  community  can  then  use  a  public  warning  system  based  on  coloured  flags,  which  are  also  supplied  with  the  kit,  to  alert  others  of  the  threat.  

 

Cost:  

The  total  cost  of  the  kit  would  be  approximately  -­‐  £1.53/unit  or  226.85  NPR  /unit,  with  the  additional  flagpole  -­‐  £3.28/unit  or  486.31  NPR  /unit.  This  gives  a  total  cost  for  50,000  units,  which  would  be  distributed  among  the  communities  of  13  districts,  of  £76,500.  

Environmental  and  social  impacts:  

•   Kits  are  low-­‐cost  and  include  recyclable  materials.  •   Potential  for  local  employment  in  operation  of  the  system.    •   Increase  in  knowledge  on  general  healthcare  issues  among  health  workers  and  community.  •   Increased  productivity  due  to  reduction  in  mosquito-­‐related  illnesses.