exceptional points in microwave billiards: eigenvalues and eigenfunctionsphhqpx11/richter.pdf ·...

32
2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 1 Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctions • Microwave billiards and quantum billiards • Microwave billiards as a scattering system • Eigenvalues and eigenfunctions of a dissipative system near an exceptional point • Properties of exceptional points in the time domain • Induced violation of time-reversal invariance determination of Ĥ eff at the EP Supported by DFG within SFB 634 S. Bittner, C. Dembowski, B. Dietz, J. Metz, M. Miski-Oglu, A. R., F. Schäfer H. L. Harney, H. A. Weidenmüller, D. Heiss, C. A. Stafford Dresden 2011

Upload: vuliem

Post on 14-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 1

Exceptional Points inMicrowave Billiards:Eigenvalues and Eigenfunctions

• Microwave billiards and quantum billiards

• Microwave billiards as a scattering system

• Eigenvalues and eigenfunctions of a dissipative systemnear an exceptional point

• Properties of exceptional points in the time domain

• Induced violation of time-reversal invariance→ determination of Ĥeff at the EP

Supported by DFG within SFB 634

S. Bittner, C. Dembowski, B. Dietz, J. Metz, M. Miski-Oglu, A. R., F. SchäferH. L. Harney, H. A. Weidenmüller, D. Heiss, C. A. Stafford

Dresden 2011

Page 2: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 2

Cylindrical Microwave Billiards

xyz

zμμmax ey)(x,E=)r(E ⇒2dc

=f ≤f rrr

( ) 0=y)(x,E0,=y)(x,Ek+Δ G ∂μμ2μ

scalarHelmholtz equation

( )cfπ2

=k0,=)r(E×n0,=)r(Ek+Δ μμG ∂μμ

rrrrrvectorialHelmholtz equation

cylindrical resonators

Page 3: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 3

Microwave and Quantum Billiards

microwave billiard quantum billiard

normal conducting resonators → ~700 eigenfunctionssuperconducting resonators → ~1000 eigenvalues

resonance frequencies ↔ eigenvalueselectric field strengths ↔ eigenfunctions

0)y,x(,0)y,x()k(G

2 =Ψ=Ψ+Δ∂

0)y,x(E,0)y,x(E)k(Gzz

2 ==+Δ∂

Page 4: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 4

Microwave Resonator asa Scattering System

• Microwave power is emitted into the resonator by antenna and theoutput signal is received by antenna → Open scattering system

• The antennas act as single scattering channels

rf power in rf power out

Page 5: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 5

Transmission Spectrum

• Transmission measurements: relative power transmitted from a to b

• Scattering matrix W)WWiπ+H-(EWiπ2-I=S 1-TT

2baain,bout, SP/P ∝

• Ĥ : resonator Hamiltonian • Ŵ : coupling of resonator states to antenna states and to the walls

Page 6: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 6

Resonance Parameters

∑μ

μμ

bμaμbaba (i/2)Γ+f-f

ΓΓi- δ=S

• Use eigenrepresentation of

and obtain for a scattering system with isolated resonancesa → resonator → b

Teff WWiπ-H=H

fµ = real part

Γµ = imaginary part effH• Here: of eigenvalues eµ of

• Partial widths Γµ,a , Γµ,a and total width Γµ

Page 7: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 7

Typical Transmission Spectrum

a) b) c)

• Transmission measurements: relative power from antenna a → b|Sba|2 = Pout,b / Pin,a

Page 8: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 8

Eigenvalues and Eigenfunctions of a Dissipative System near an EP

• At an exceptional point (EP) two (or more) complex eigenvalues and thecorresponding eigenfunctions of a dissipative system coalesce

• The crossing of two eigenvalues is accomplished by the variation of twoparameters

• Sketch of the experimental setup:

• Divide a circular microwave billiard into twoapproximately equal parts

• The opening s controls the coupling of theeigenmodes of the two billiard parts

• The position δ of the Teflon disc determines theresonance frequencies of the left part

Page 9: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 9

Two-state Matrix Model

• Isolated EP→ in its vicinity the dynamics is determined by the two eigenstates→ model system with a 2d non-Hermitian symmetric matrix

• Eigenvalues:

• EPs:

• All entries are functions of δ and s

(C. Dembowski et al., Phys. Rev. E 69, 056216 (2004))

⎟⎟⎠

⎞⎜⎜⎝

⎛=

2S12

S121

eff EH

HE)δ,(sH

S12

212S12

212,1

2HEEZ;1ZH

2EEe

−=+=ℜ

ℜ±⎟⎠⎞

⎜⎝⎛ +

=

EPEP ss,δδZ:0 ==↔±==ℜ i

Page 10: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 10

Encircling the EP in theParameter Space

• Encircling the EP located at the parameter values sEP and δ EP

• The eigenvalues are interchanged and one of the eigenfunctions in addition picks up a topological phase π

⎟⎟⎠

⎞⎜⎜⎝

−→⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛→⎟⎟

⎞⎜⎜⎝

+

+

+

+

ψ

ψ

ψ

ψ,

EE

EE Ψ1

Ψ2

Ψ2

Ψ1⎟⎟⎠

⎞⎜⎜⎝

⎛→⎟⎟

⎞⎜⎜⎝

1

2

2

1

ee

ee

Page 11: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 11

Experimental Setup(C. Dembowski et al., Phys. Rev. Lett. 86, 787 (2001))

Page 12: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 12

Frequencies and Widths

s < sEP s > sEP

• Change of the real (resonance frequency) and the imaginary (resonancewidth) part of the eigenvalue e1,2 =f1,2+i.Γ1,2 for varying δ and fixed s

Page 13: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 13

Measuring Field Distributions

• Use dielectric perturbation body, e.g. magnetic rubber

• Maier-Slater theorem:

• Reconstruct the eigenfunctions from the pattern of nodal lines, where E(x,y)=0 → extraction of Ψ(x, y)

)y,x(Ec)y,x(f 21 ⋅=δ

perturbation body

guiding magnet

Page 14: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 14

Evolution of Wave Functions

Page 15: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 15

Chirality of Eigenfunctions

• Eigenfunctions are interchanged and one eigenfunction picks up atopological phase of π

• Surrounding the EP four times restores the original situation

Page 16: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 16

What happens at the EP?

• At the exceptional point the two eigenmodes coalesce with a phasedifference π/2

• Can this phase difference be measured?• Choose two eigenmodes which are each localized in one of the

semicircular parts of the cavity for s < sEP and δ = δ EP (i.e. f1=f2)→ these can be excited separately

|Ψ2(s = 0)⟩

|ΨEP⟩ =|Ψ1(s=0)⟩ + i|Ψ2(s=0)⟩

(C. Dembowski et al., Phys. Rev. Lett. 90, 034101 (2003))

at s = sEP and δ = δ EP

|Ψ1(s = 0)⟩

s = 0

Page 17: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 17

Measured Phase Difference

• Modes Ψ1 and Ψ2 are excited separately by antennas 1 and 2• Measurement of the phase difference φ0 between the oscillating fields

|Ψ1⟩ and |Ψ2⟩ at the positions of the antennas

Page 18: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 18

Time Decay of the Resonancesnear and at the EP

• In the vicinity of an EP the two eigenmodes can be described as a pair of coupled damped oscillators

• Near the EP the time spectrum exhibits besides the decay of theresonances oscillations → Rabi oscillations with frequency Ω = 2πf

• At the EP ℜ and Ω vanish → no oscillations

ℜ∝ΩΩ

ΩΓ−∝ ;)t(sin)texp()t(P 2

2

)texp(t)t(P 2 Γ−∝

• In distinction, an isolated resonance decays simply exponentially→ line-shape at EP is not of a Breit-Wigner form

(Dietz et al., Phys. Rev. E 75, 027201 (2007))

Page 19: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 19

2.79 2.83f (GHz)

P(t)

= |F

TS

21|2

(dB

)

|S12

|2 (d

B)

Time Decay of the Resonances"far" from the EP

• Г1 = 1.584 ± 0.005 MHz• Г2 = 1.022 ± 0.002 MHz• Region of interaction at about 2 µs → Rabi oscillations

Page 20: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 20

Time Decay of the Resonancesnear and at the EP

Page 21: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 21

• Search for Time-reversal (T-) Invariance Violation (TIV) in nuclear reactions

Detailed Balance in Nuclear Reactions

Page 22: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 22

Detailed Balance in Nuclear Reactions

• Search for TIV innuclear reactions → upper limits

Page 23: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 23

Induced T-Invariance Violation in Microwave Billiards

• T-invariance violation caused by a magnetized ferrite

• Ferrite features Ferromagnetic Resonance (FMR)

• Coupling of microwaves to the ferrite dependson the direction a b

Sab

Sba

ab

• Principle of detailed balance: |Sab|2 = |Sba|2

• Principle of reciprocity: Sab = Sba

a b• •

(B. Dietz et al., Phys. Rev. Lett. 98, 074103 (2007))

Page 24: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 24

Scattering Matrix Description

Remember: Scattering matrix formalism

• Investigation of systems

→ replace Ĥ by a matrix

• Note: Ĥeff = Ĥ – iπŴŴT is non-Hermitian in both cases

• Isolated resonances: singlets and doublets → Ĥ is 1D or 2D

• Overlapping resonances (Γ > D) Ĥ = in RMT

T-invariantT-noninvariant

real symmetricHermitian

( ) WWWiπ+H-IfWiπ2-I=(f)S 1-TT

GOEGUE

(B. Dietz et al., Phys. Rev. Lett. 103, 064101 (2009)

Page 25: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 25

Isolated Resonances - Setup

Page 26: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 26

Singlet with T-Violation

0.002

0.004|S|

0

-π2.80 2.85 2.90

Frequency (GHz)

Arg(S)

• Reciprocity holds → T-violation cannot be detected this way

• Sab• Sba

Page 27: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 27

Doublet with T-Violation

• Violation of reciprocity due to interference of two resonances

Page 28: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 28

Scattering Matrix and T-violation

• Scattering matrix element (ω = 2πf)

• Decomposition of effective Hamiltonian

• Ansatz for T-violation incorporating the ferromagnetic resonance and its selective coupling to the microwaves

• Note: Ĥs conserves T-invariance and Ĥa violates it

bW)H-(ωWaiπ2-δ=)ω(S 1-eff

+abab

saeff H+Hi=H ˆˆˆ

⎟⎟⎠

⎞⎜⎜⎝

− 00

12

12a

a

HH a

12iHa12iH-

Page 29: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 29

T-Violating Matrix Element

r0

2Mra

12 i/T-ω-(B)ωω

TBλ2π

=(B)H

couplingstrength

externalfield

spinrelaxation

time

magneticsusceptibility

• Fit parameters: andλ ω

• • • •

Page 30: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 30

Measured T-Violating Matrix Element

• T-violating matrix element shows resonance like structure• Successful description of dependence on magnetic field→ Ĥeff was determined and will be used to describe TIV at the EP

π/2

-π/20

Page 31: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 31

Relative Strength of T-Violation

• Compare: TIV matrix element to the energy difference of two eigenvalues of the T-invariant system

a12H

s2

s1

a12

E-E2H

Page 32: Exceptional Points in Microwave Billiards: Eigenvalues and Eigenfunctionsphhqpx11/richter.pdf · 2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter

2011 | Institute of Nuclear Physics Darmstadt/SFB 634 & ECT*, Trento | Achim Richter | 32

Summary and Outlook

• Microwave billiards are precisely controlled, parameter-dependent dissipative systems

• Complex eigenvalues and eigenfunctions can be determined from the billiard scattering matrix→ Observation of EPs in microwave billiards

• Behavior of eigenvalues close to and at an EP investigated experimentally

• Also time-behavior close to and at an EP was studied→ disappearance of echoes at the EP → t2-behavior

• T-invariance violation induced in microwave billiards and observed for doublets of resonances → determination of complete Ĥeff possible at an exceptional point

• Second talk: Measurement and interpretation of T-violation