exhibit a - preliminary scope of work

68
SJCDPW-RFP-21-B Page 1 of 6 October 11, 2021 EXHIBIT A COUNTY’S PRELIMINARY WORK SCOPE Project Background The Lincoln Village water distribution system was constructed from 1948 to 1953. The Project area is the eastern portion of the district located east of Pershing Avenue (see included map), which consists of approximately 25,000 linear feet of water mains and roughly 460 water service connections. Water mains consist of steel piping ranging from 4 inch to 10 inch diameter. The water distribution system is interconnected with the City of Stockton water supply system. The Colonial Heights water distribution system was constructed from 1947 to 1952. The Project area is the eastern portion of the district located east of Balboa Avenue (see included map), which consists of approximately 20,500 linear feet of water mains and roughly 304 water service connections. Water mains consist of steel piping ranging from 4 inch to 8 inch diameter. The water distribution system is interconnected with the City of Stockton water supply system. Each Project scope includes the design of new water mains constructed with C-900 PVC pipe and new water service laterals with meters. The purpose of the project is to replace ageing infrastructure and install water meters. Most of the existing water mains that will be abandoned are currently located in backyard easements, which will be replaced with water mains within the street limits or County right-of-way accessible from the roadway. In these areas, the design will include the reconnection and installation of new water service laterals from the proposed water main to each parcel. Due to funding constraints, the proposed project may be subdivided into smaller project areas. As this may impact final drawings and cost estimates, this may result in a changes to the scope of work. Any additional costs would be added as an additional task order at the time the changes are made. Engineering services shall include, but not be limited to, the following: TASK 1.0 PROJECT MANAGEMENT & REVIEW MEETINGS TASK 1.1 COORDINATION/MEETINGS/PROJECT ADMINISTRATION Project Management: Project Manager will be responsible for directing the consultant project team during the development and execution of the project, as well as communication with the County staff, and documenting the progress and decisions made during the entire project. This involves all aspects of project management including financial management, invoicing, schedule, quality control and turning in deliverables as requested. Progress reports will be issued with invoices to the County detailing major items worked on during the billing period and percentage completion for each task, with substantiation backup. Project Kick-Off Meeting: A Project “Kick-off” Meeting will be held following the Notice to Proceed. This meeting includes representatives from the County, Consultant, sub-consultants, and other involved agencies. The primary meeting objectives will be to present the project, its goals, review the project scope and action item list, explain the project schedule, identify key project issues, and facilitate a general exchange of views and ideas regarding the completion of the project. EXHIBIT A

Upload: others

Post on 24-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 1 of 6 October 11, 2021

EXHIBIT A

COUNTY’S PRELIMINARY WORK SCOPE Project Background The Lincoln Village water distribution system was constructed from 1948 to 1953. The Project area is the eastern portion of the district located east of Pershing Avenue (see included map), which consists of approximately 25,000 linear feet of water mains and roughly 460 water service connections. Water mains consist of steel piping ranging from 4 inch to 10 inch diameter. The water distribution system is interconnected with the City of Stockton water supply system. The Colonial Heights water distribution system was constructed from 1947 to 1952. The Project area is the eastern portion of the district located east of Balboa Avenue (see included map), which consists of approximately 20,500 linear feet of water mains and roughly 304 water service connections. Water mains consist of steel piping ranging from 4 inch to 8 inch diameter. The water distribution system is interconnected with the City of Stockton water supply system. Each Project scope includes the design of new water mains constructed with C-900 PVC pipe and new water service laterals with meters. The purpose of the project is to replace ageing infrastructure and install water meters. Most of the existing water mains that will be abandoned are currently located in backyard easements, which will be replaced with water mains within the street limits or County right-of-way accessible from the roadway. In these areas, the design will include the reconnection and installation of new water service laterals from the proposed water main to each parcel. Due to funding constraints, the proposed project may be subdivided into smaller project areas. As this may impact final drawings and cost estimates, this may result in a changes to the scope of work. Any additional costs would be added as an additional task order at the time the changes are made. Engineering services shall include, but not be limited to, the following: TASK 1.0 PROJECT MANAGEMENT & REVIEW MEETINGS TASK 1.1 COORDINATION/MEETINGS/PROJECT ADMINISTRATION Project Management: Project Manager will be responsible for directing the consultant project team during the development and execution of the project, as well as communication with the County staff, and documenting the progress and decisions made during the entire project. This involves all aspects of project management including financial management, invoicing, schedule, quality control and turning in deliverables as requested. Progress reports will be issued with invoices to the County detailing major items worked on during the billing period and percentage completion for each task, with substantiation backup. Project Kick-Off Meeting: A Project “Kick-off” Meeting will be held following the Notice to Proceed. This meeting includes representatives from the County, Consultant, sub-consultants, and other involved agencies. The primary meeting objectives will be to present the project, its goals, review the project scope and action item list, explain the project schedule, identify key project issues, and facilitate a general exchange of views and ideas regarding the completion of the project.

EXHIBIT A

Page 2: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 2 of 6 October 11, 2021

Project Development Team Meetings: A coordination and status meeting will be held after each design submittal to review project design, budget, obtain required County input, make decisions, and discuss issues that have the potential of affecting the project design, budget, or schedule. Consultant will prepare all meeting agendas and minutes in consultation with the County’s Project Manager. Project Schedule: The schedule will be prepared in Microsoft Project and identify the major milestones and duration of each task. If necessary, the schedule shall be updated. Deliverables:

Meeting agendas and minutes Project Schedule Invoices with Progress Reports

TASK 1.2 COORDINATION WITH OTHER AGENCIES Consultant will be responsible for identifying the location of all existing utilities in the project area. Consultant shall conduct thorough research to obtain all available utility documents within the project area, and shall be responsible for researching all applicable agency and utility company records. Consultant shall visit the site and conduct field research to collect visible information of the project site. Consultant shall be responsible for preparing a complete list of all underground and aboveground utilities and facilities in the project area, and coordination with required regulatory agencies. Consultant will initiate communication with any affected agencies regarding agency requirements for the Project. Consultant will need to coordinate with the City of Stockton, as the Maintenance District water distribution system is interconnected with the City water supply system. Agencies will be provided proposed project plans during various design engineering stages (50%, 90% & 100%) for their review and input. Consultant will provide the County minutes and copies of written correspondence with each impacted agency. TASK 2.0 PROJECT SURVEYING, MAPPING AND CONTROL TASK 2.1 SURVEYING Consultant will perform topographic surveying and water main alignment profiles as required to provide digital topography and base mapping necessary for the project plans. The survey will, at a minimum, address the following:

Location of existing utilities, roadway limits, sidewalk and curb and gutter, existing County right of way lines, existing parcel boundaries, conflicting structures, ditches, power lines, communication lines, irrigation facilities, trees and any other significant features (pumps, pipes, etc.).

Control survey will be performed to locate all existing survey monuments (pins, nails, bench marks, etc.) within the project area. Survey and transfer Bench Mark control to site from published NGS (National Geodetic Survey) control points. NAD (North American Datum) of 1983 and NAVD (North American Vertical Datum) of 1988 will be used unless otherwise specified.

Monuments will be shown on the plans. Existing monuments will be protected in place or relocated if currently on a facility to be removed. Survey Control will also provide, at

EXHIBIT A

Page 3: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 3 of 6 October 11, 2021

minimum, two (2) on-site control points (horizontal and vertical) for the Project, and tie the vertical control to local datum.

Profiles will be set along the center line of the proposed water main alignment. Provide an electronic drawing (AutoCAD-2012 or higher version) and PDF of the

completed topographic survey TASK 2.2 RIGHT-OF-WAY SURVEY It is assumed that there will be no right-of-way acquisitions necessary as all work should be within County limits (with the exception of service lateral reconnection work). The Consultant shall identify preliminary right-of-way needs, utility, temporary construction, or other pertinent easements. The Consultant will be required to identify and evaluate the right-of-way issues and impacts to the affected driveways, encroachments, easements, etc. The Consultant shall determine the requirements for all permanent easements and for all temporary construction easements. The County will obtain all necessary right of entry permits from affected property owners necessary to complete the preliminary engineering studies, field surveying, topographical data collection, and environmental studies for the Project. Deliverables:

AUTOCAD Base Drawing (Prepared by Consultant) Exhibits/Sketches, Temporary Easement (If necessary)

TASK 3.0 HYDRAULIC MODELING TASK 3.1 HYDRAULIC MODEL DEVELOPMENT AND CALIBRATION The Consultant shall analyze the hydraulic characteristics of the Maintenance District water distribution system for considerations in the design of the Project. The hydraulic model is to address the potable water needs for those parcels currently serviced by the County. Creation and calibration of a computerized hydraulic model of the entire Maintenance District water distribution system including, but not limited to, transmission and distribution mains, and inter-connections. The Water Study for Colonial Heights is attached for reference. The design report analyzed the system and recommended pipe sizing and proposed a new interconnection with the City to reduce water aging. As this has yet to be approved by the City, alternative should be evaluated as part of the modeling. No report or modeling is available for Lincoln Village. The hydraulic model shall be calibrated such that the difference in pressure between the field-measured results and model predicted results is in the range of +/- 10% under a maximum day demand scenario. The model shall be developed for steady state and extended period simulation and adequately portray Average Day, Maximum Day, and Peak Hour demand scenarios. Hydraulic model development, calibration and subsequent analyses shall be conducted in accordance with AWWA M32 Computer Modeling of Water Distribution Systems. The Consultant shall be responsible for owning a licensed copy of the modeling software that will be used for this project. The selected software shall also include a component to model water age and quality, consider fire flow criteria, and have the ability to develop a unidirectional

EXHIBIT A

Page 4: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 4 of 6 October 11, 2021

flushing program. Consultant shall provide recommendations regarding pipe sizing for adequate fire flow, and to minimize water aging in the pipes. An electronic version of the calibrated hydraulic model and associated modeling files shall be delivered upon completion, and shall include modeling files converted to EPANET format. As part of the hydraulic model development and calibration, it is expected that the Consultant will meet with County staff to develop an understanding of the water system and determine the best method for developing system demands. The Consultant shall model multiple seasonal demand periods (e.g. Winter, Spring/Fall, Summer) due to the extreme variation in consumption. Quarterly customer water meter data for commercial accounts will be tabulated and provided to the Consultant for use in developing seasonal demands. Residential accounts are currently unmetered and an average use per household must be assumed. The Consultant will also need to consider demand information from our suppliers (City of Stockton) in developing conditions at our source connections. TASK 3.2 HYDRAULIC MODEL ANALYSIS The Consultant shall conduct the following analyses, but not limited to:

Provide recommended pipe sizing and layout Identify any areas of concern within the Maintenance District distribution systems with

respect to flow, pressure, fire flow and water age and propose solutions to mitigate any issues. Develop and tabulate available fire flow and duration for each system hydrant and prepare system maps to delineate areas of available fire flow and duration.

Determine the maximum daily flow that can be delivered to Maintenance District distribution system through existing interconnections while maintaining acceptable system pressures and flows throughout the existing water distribution system.

Calculate Average Day, Maximum Day, and Peak Hour demands. TASK 3.3 REPORT Provide a written draft report detailing the results of Tasks 3.1 and 3.2. The report shall also include a summary of model development, including methodology and assumptions, and detailed node and pipeline mapping. After review by the County, the Consultant will make all necessary changes and submit a final report. In addition, all reports, data and the model will be provided to the County in electronic format. Deliverables:

Hydraulic Modeling Report Hydraulic Model in EPANET Format

TASK 4.0 PLANS, SPECIFICATIONS AND ENGINEER’S ESTIMATE (PS&E) Task 4.1 PREPARATION OF 50% (PS&E) The purpose of this task is to perform the detailed design of the recommended project, obtain design approval, and produce the construction drawings, special provisions, and construction estimate required for the construction documents. The plans, specifications and estimate will be prepared to State Standards and in accordance with County policies, procedures, manuals, and standards.

EXHIBIT A

Page 5: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 5 of 6 October 11, 2021

These plans will include all details necessary to construct the project. Consultant will prepare Plans, Specifications and Engineer’s Estimate (PS&E) and will include the following minimum items listed below:

Title/Cover Sheet (County format) Typical Sheets (Notes, Abbreviations, etc.) Water Main Layout Plan and Profile Construction Details Summary of Quantities Sheet Design and design support calculations Quantity support calculations Engineer’s Estimates in Microsoft Excel Special conditions and Technical Specifications

A meeting will be held after the county review 50% submittal to discuss the County’s review (redlines and comments) of the 50% submittal. Consultant will provide the following deliverables for PS&E: Deliverables: @ 50% stage = 1 set of size (11x17) plans to scale in PDF format Technical Specifications Engineer’s Estimate Working Days Schedule Project technical specifications will be developed in Microsoft Word. Task 4.2 PREPARATION OF 90% (PS&E) The draft PS&E package consisting of plans, specifications, and estimate, along with design, QA/QC check, quantity calculations, and hydraulic modeling report, will be submitted to the County for their review. This submittal will also include any design exceptions proposed for the project. Deliverables: @ 90% stage = 1 set of size (11x17) plans to scale in PDF format

Technical specifications Engineer’s Estimate Revised Working Days Schedule Response/Review Matrix to the redlines of the 50% plan submittal

Prior to 90% design submittal, Consultant will perform an internal quality and constructability review of the entire PS&E package. This review includes checking all pay items for consistency with the bid list, plans, quantities and special provisions. A meeting will be held after the county review 90% submittal to discuss the County’s review (redlines and comments) of the 90% submittal.

EXHIBIT A

Page 6: Exhibit A - Preliminary Scope of Work

SJCDPW-RFP-21-B Page 6 of 6 October 11, 2021

Task 4.3 PREPARATION OF 100% (FINAL PS&E) Upon receiving review comments from the County and other agencies, each comment will be reviewed, discussed, and addressed in writing. Appropriate modifications will then be made to the plans, specifications, and estimate, which will be submitted to the County, to form a complete package that is ready to advertise for construction. Deliverables: @100% stage = 1 set of size (11x17) plans to scale in PDF format Stamped and signed Contract specifications in PDF format Final Engineer’s Estimate Design and design check calculations Quantity and quantity check calculations Project Working Days Schedule Response/Review Matrix to the redlines of the 90% plan submittal AutoCAD files Electronic files will be a version of the applicable software as specified below.

- AutoCAD format electronic files - plans and drawings - Microsoft Word format electronic files - specifications - Microsoft Excel format electronic files - Engineer’s Estimate, structural design

calculations, quantity check calculations. - Microsoft Project working schedule

TASK 5.0 CONTRACT BIDDING ASSISTANCE Consultant will provide technical assistance to the County through bidding process. Services include providing clarification or answers to questions received from prospective bidders, attendance at Pre-Bid meeting and assist in preparing addendums, if necessary. This assistance could include necessary design revisions if the County deems it necessary. The County will be responsible for receiving all inquiries received during the bidding period, forwarding them to the Consultant and relaying all consultant responses to bidder’s questions. TASK 6.0 OPTIONAL SERVICES DURING CONSTRUCITON Task 6.1 RESPONSE TO QUESTIONS DURING CONSTRUCTION The consultant will be available to answer contractor questions during construction that require input of the design engineer. This effort assumes the County Construction Manager can review all submittals and the majority of change order requests and requests for information (RFIs), with only minimal assistance from the consultant. Task 6.2 PREPARE AS-BUILT PLANS After completion of construction, the consultant will take mark-ups form the County CM (also provided by the Contractor) and prepare As-built drawings. Deliverables: Final as-built drawings in AutoCAD and PDF

EXHIBIT A

Page 7: Exhibit A - Preliminary Scope of Work

 

WATER STUDY FOR

COLONIAL HEIGHTS MAINTENANCE DISTRICT

WATER SYSTEM REPLACEMENT

November 2020

PREPARED FOR THE SAN JOAQUIN COUNTY PUBLIC WORKS DEPARTMENT:

Page 8: Exhibit A - Preliminary Scope of Work

 

Table of Contents 

TABLE OF CONTENTS1.  Introduction and Background ........................................................................................................... 1 

2.  Existing Water System ...................................................................................................................... 1 

3.  Water Model Analysis ....................................................................................................................... 2 

4.  Proposed Water System ................................................................................................................... 7 

5.  Conclusion ....................................................................................................................................... 10 

APPENDICES 

A. Water Study Exhibit 

B. City of Stockton Fire Flow Test  

C. Water Demands Table 

D. Water Model Results 

1. Peak Hour Flows  

2. Maximum Day plus Fire Flow  

3. Water Quality  

E. Intertie Connection Valves 

1. Pressure Sustaining Valve: CLA‐VAL Model 50‐90 Specification Sheet 

2. Double Check Detector Assembly: Ames 3000SS Specification Sheet 

F. Typical Detail for Backyard Watermain Replacements 

G. Engineer’s Estimate of Probable Cost 

H. City of Stockton Coordination – Correspondence & Meeting Summary                  

Page 9: Exhibit A - Preliminary Scope of Work

 

1 of 10   

 1. Introduction and Background  The project is located at San Joaquin County’s Colonial Heights Maintenance District (District) is a county‐maintained area within Stockton, California. The District includes 561 residential lots, 3 commercial lots, and the Colonial Heights School site and based on the Water System Permit with the State the District has 558 existing water service connections. The project area is within the District boundary which is bordered by Hammer Lane to south, Thornton Road to the east, Mosher Slough to the North, and Arroyo Way to the west.   The existing water system serving the District currently has water quality and fire flow issues with aging facilities that includes backyard water mains and unmetered water services. This study determines the proposed water facilities that are required to replace the existing system and also confirm the proposed system will  function  sufficiently  to  provide  adequate  flow  and  pressure,  as well maintain  satisfactory water quality.   The design criteria, projected demands, and detailed analysis used to design and size and the proposed facilities are  included in this report. This study uses  information and guidelines provided in the City of Stockton  Standard Drawings  (City  Standards)  and  the  County  of  San  Joaquin  Improvement  Standards (County  Standards).  This  study  also  specifies  the  design  criteria  used  for  analysis  and  system  layout, outlines  the  proposed  improvements  required  to  replace  the  District’s  existing  system,  shows  the coordination that took place with the City and Fire Department to determine specific requirements for this project, and provides an Engineer’s Estimate of Probable Cost for the proposed improvements. The Engineer’s Estimate of Probable Cost is included for to provide the County a budgetary cost for planning and future funding opportunities. The analysis and cost estimate included in this study assumes water facility improvements described in this study will be constructed in one phase.   2. Existing Water System  The existing Colonial Heights water system is composed of predominately 4” and 6” and lines with some 8” water mains. The existing District  system was constructed between 1947 and 1964 with steel pipe (asphalt dipped and wrapped with asbestos felt) and asbestos cement pipes which are past their design life and have  leaks. Most  the of  the existing water mains are  located  in  the back of  the  lots with  the service connections also in the back. The existing system is served by intertie connections to the City of Stockton water system. The existing City water system surrounding Colonial Heights includes a 16” and 12”  water  lines  on  Thornton  Road,  8”  to  12”  distribution  and  30”  lines  transmission  waterlines  on Hammer Lane, and an existing 6” distribution line on Portola.   The  existing water  system  has  four  Intertie  Connections  to  the  City  of  Stockton water  system  at  the following locations: 

1. Thornton Road and Mosher Slough – Existing 16” City water main near intersection  

2. Emergency Only: Misty Lane – Existing 4” water line near in backyard 

3. Balboa Ave & El Camino Ave – Existing 8” City water main  

4. Portola Ave & Arroyo Way – Existing 6” City water main 

All existing intertie connection listed above will be abandoned. The work associated with abandonment of the existing intertie connection facilities are discussed later in this Study.  

Page 10: Exhibit A - Preliminary Scope of Work

 

2 of 10   

The Water Study Exhibit attached as Appendix A shows the existing off‐site and on‐site system including the existing intertie connections.   The water  is  provided  by  the  City  of  Stockton  through  the  intertie  connections.  The  City  of  Stockton water is surface water that is treated using chloramine at the City of Stockton Surface Water Treatment Plant and supplied to the District. The District system used to be served by wells located within district boundary  but  those  are  now  inactive  and  will  be  fully  abandoned  as  part  of  the  proposed improvements.   The existing District water  system experiences water quality  issues  that have been  identified  through past Heterotrophic Bacteria Plate Count (HPC) exceedances.   This water quality  issue is believed to be caused by poor circulation causing stagnate water and long residence time which leads the chloramine residual to diminish in the existing system and allow bacteria growth. The old steel pipes in the existing system  are  also  believed  to  contribute  to  the  dissipation  of  the  chloramine  residual  and  HPC exceedances.   3. Water Model Analysis  Project Demands The determination of the water demands for this project are based on historical monthly water consumption data provided by San Joaquin County from the years of 2010 to 2019. Using this data, mean annual water demands shown below were determined for residential lots, commercial lots, and the school. On‐site demands and off‐site demands are included in the analysis. On‐site demands are those within the District’s proposed water system. Off‐site demands are those outside the District boundary and served by the City system. Off‐site demands were included in the model in areas where they effect the hydraulics of the proposed District water system.        Mean Annual Water Demands Residential:     0.42 gpm/lot School Lots:     11.08 gpm Commercial:     0.61 gpm  The mean annual demands above were applied to the residential lots, commercial lots, and the School site.  Peaking factors for Maximum Day Demand was determined to be 2.2 and Peak Hour Demand was determined  to be 3.8 per  the County Standards Section 4‐2.03.  The project’s maximum day demands were determined by applying a max day peaking factor of 2.2 to the mean annual water demands. This resulted in a total maximum day demand (MDD) of 622.8 gpm for the project including 541.9 gpm from on‐site  and  80.9  gpm  from  off‐site  demands.  The  project’s  peak  hour  demands were  determined  by applying a peak hour peaking factor of 3.8 to the mean annual water demands. This resulted in a peak hour demand of  (PHD) of 1,078.1 gpm for the project  including 938 gpm from on‐site and 140.1 from off‐site demands. The offsite demands are included only for the lots between the point of connection in the water model and the District Boundary.  For the water quality analysis, the minimum historical monthly demand was determined based on the month with the least demand since 2010 using the historical monthly water consumption data for years 2010 to 2019. The minimum historical demand was used in order to simulate the times of the year when consumption is at its lowest and water quality issues arise more frequently.  Using the minimum month of historical usage also provides consideration for the reduced usage that has the potential occur in the district once all services are metered.  

Page 11: Exhibit A - Preliminary Scope of Work

 

3 of 10   

The minimum historical demand was determined to be 251.7 gpd (.175 gpm) per residential lot. The minimum monthly demand excludes demands from the school and business in order to provide a worst‐case water quality condition for when school is not in session and businesses aren’t occupying the commercial lots.    Each junction in model is assigned to certain lot and its associated demand based on type of lot (commercial, residential, school).  A table detailing water demands for each junction is included in Appendix C.  Model Criteria The water model was developed based on criteria provided in the City & County Standards. This includes requirements for pipe roughness, maximum allowable velocity, minimum operating pressures and flow requirements, assumed connection pressures, and pipe sizing and layout.  The model criteria described in this section was used for analysis of peak hour, maximum day plus fire flow, and water quality flow conditions.   The  Hazen‐Williams  coefficient  used  for  the  proposed  water  system  is  110  per  City  Standards  and County Standards Section 4‐3.01.  The  water  model  includes  the  friction  losses  through  8”  and  12”  Pressure  Sustaining  Control  Valves (PSV’s)  and  backflow  protections  devices  that  are  included  at  the  4  Intertie  Connection  locations between the City and District. The pressure sustaining valves (PSV) are assumed to be similar to Cla‐Val Model  E‐50‐90.  The  Specification  Sheet  for  this  PSV  can  be  found  in Appendix  E‐1.  The water model simulates losses through the PSV’s using a Discharge Coefficient (Cv) value of 770 gpm/psi.5 for 8” valves and 1,725 gpm/psi.5 for 12” valves as shown in the PSV’s Specification Sheet. The PSV is set to have the valve  close  when  pressures  on  the  supply/upstream  (City)  side  drop  below  20  psi.  The  backflow protection devices were assumed to be Double Check Detector Assemblies  (DCDA) similar to an Ames 3000SS DCDA. The head loss through the DCDA’s were determined based on head loss curve included the  DCDA  Specification  Sheet  found  in  Appendix  E‐2.  The  requirement  to  have  PSV’s  and  backflow protection  at  each  intertie  Connection  location  is  a  required  by  City  and  were  determined  during coordination efforts which are discussed further in Section 4 of this Study.   The  water  distribution  system  was  also  designed  to  operate  so  that  the  maximum  velocity  in  the proposed water  system  does  not  exceed  10  fps  as  required  by  the  County  Standards.  There may  be locations within the existing system that exceed 10 fps due to existing bottlenecks located off‐site and outside district boundaries that are included in the model.   Fire protection for the project area is provided by the Stockton Fire Department. The City Standards requires that water system provide at least 20 psi at any location during the period of maximum day demand plus a fire flow assuming a 45‐psi pressure at the point of connection. The City Standards also state that the minimum fire flow required for a residential subdivision is 2,000 gpm at any location. This fire flow was used for existing residential lots and verified with the City of Stockton Fire Department.   Per the City of Stockton Fire Department, a 3,000 gpm fire flow is required at the school and commercial lots. This is a value is based on the square footage of the existing commercial and school buildings. This minimum required fire flow was used for the existing commercial and school lots.   City Standards and State laws require that during peak hour flows conditions the water system shall provide at least 40 psi of pressure. This study analysis the peak hour pressures at all locations in the 

Page 12: Exhibit A - Preliminary Scope of Work

 

4 of 10   

proposed water system and provides a proposed system that provides 40 psi during peak hour flow conditions.  

Water Model Points of Connection (POC’s): 

The water model includes 4 points of connection (POC) to the existing City mains that are shown in the Water Study Exhibit attached as Appendix A. The water model POC’s are not in the same location as the proposed intertie connections. The POC’s are located at existing City water mains on Thornton Road, Hammer Lane, and Don Ave and in order to incorporate pressure losses that will occur in the existing City System before it reaches the boundary with the District. Below is a list of the 4 POC’s locations used in the water model.  

1. Thornton Road and Cortez Ave – Existing 16” City water main  

2. Hammer Lane and North Perishing Ave – Existing 12” water main  

3. Hammer Lane between Balboa Ave and North Pershing Ave – Existing 8” City water main  

4. Portola Ave & Don Ave – Existing 12” City water main  

 POC #1 is located at Thornton Road and Cortez Ave and is a new connection location for the District’s water system that replaces the existing connection near Thornton Ave and Mosher Slough. POC #2 is at Hammer Lane and North Pershing Ave connection and replaces the existing emergency connection near Misty Lane. POC #3 is located on Hammer Lane between its intersections with North Pershing Ave and Balboa Ave. POC #4 is located at Portola Ave & Don Ave.     POC #1 and POC #2 are located near the District Boundary and in the same locations as its proposed intertie connections. POC #3 and POC #4 are modeled upstream of the District boundary and not at the proposed intertie connections. This was done in order to take into account the restriction in flows and increased velocities caused by existing the 6” and 8” bottlenecks in the off‐site system that are upstream of the proposed intertie connection locations for POC #3 and POC #4. The off‐site demands between the intertie connections and point of connection were also included in the model analysis.  The operating pressures at the POC’s #1, #2, and #3 were determined using a 2018 Fire Flow Test result provided by the City of Stockton. The Fire Flow Test was performed in December of 2018 at 8014 Lower Sacramento Road (North of Hammer Lane & Sacramento Road) and can be found in Appendix B. The Fire Flow Tests results at this location shows a 58 psi static pressure and 50 psi residual pressure at a flow of 2,350 gpm. This Fire Flow test is located off of an 8” main that is approximately 1,000 lineal feet from the District’s western boundary with the City. Based on these Fire Flow Test results an operating pressure of 50 psi was assumed at POC #1, POC #2, and POC #3 which are located at the existing water mains on Hammer Lane and Thornton Road water main. Recent Fire Flow tests near POC #4 where not provided by the City. For this reason, POC #4 assumes a connection pressure of 45 psi as specified in City Standard Drawing W‐1. The connection pressure assumptions for all four location where verified with City of Stockton during coordination which is discussed further in this study.   Proposed Pipes: 

Proposed pipe sizes where determined using the City and County Standards. The City Standards require a minimum 8” diameter pipes except in cases where there is a dead‐end less than 400’ feet and has no hydrant connections.  The City Standards also does not allow 10” pipe and requires 12” pipe.  Meanwhile, the County Standards allow 10” pipe and requires that a minimum 10” pipe be used to serve commercial or industrial areas. During the analysis the use of 10” pipes was included where needed in order to reduce the overall system volume and improve water quality by reducing water age. 

Page 13: Exhibit A - Preliminary Scope of Work

 

5 of 10   

 During analysis the pipe layout and sizes were designed with the following goals: 

Meet City of Stockton’s and County’s pipe sizing requirements 

Meet pressure and velocity  requirements during Peak Hour and Maximum Day plus  Fire  Flow conditions 

Provide a layout that provides front yard water service to all lots served by the District  

Keep the maximum water age within an acceptable limit  The proposed pipe sizes used in the model are shown The Water Study Exhibit attached as Appendix A. For the model analysis the pipe, junction, and connection elevations are all assumed to be all be at a 0’ elevation datum. This assumption was made because based on the record drawings available in the District it appears the project area is relatively flat and incorporating elevations into the model will have a negligible effect to the model results.   Steady State Analysis A model was  developed  based  on  the  design  criteria  above.  A  steady  state  analysis  of  the  proposed water system was modeled and analyzed using WaterCAD hydraulic modeling software. The model was analyzed with proposed water lines in the District and the 4 proposed connections to the existing City water  system. The  stead‐state analysis  includes 2  scenarios; one  for peak hour  flows  condition and a second  that  analyzes  the  available  fire  flows  in  the  system  during  maximum  day  plus  fire  flow conditions.   Peak Hour Flows: 

The first scenario analyzed the proposed system during peak hour flow conditions. Per City Standards the minimum pressure during peak hour flows shall not be less than 40 psi at any location.  County Standards do not include requirements for peak hour flow conditions.  The model results show that with the proposed system the minimum pressure during peak hour flow conditions is 45.1 psi at several model junctions. Tabular model results for the reservoir (connection), junction, PSV, DDC Valve, and pipes can be found in Appendix D‐1. The flows through each of the proposed intertie connections are shown in Table found in Section 4 of this Study.   

Maximum Day plus Fire Flows: 

The second scenario analyzed the proposed system during maximum day demands plus fire flows. Per County Standards the minimum pressure during maximum day plus fire flow shall not be less than 20 psi at any location. A fire flow analysis was performed to determine the available fire flow (in GPM) at all locations within the proposed system. Available fire flow is the maximum fire flow that can be provided at each junction in the proposed system such that the residual pressures stay within the entire system stay above 20 PSI during maximum day demands and velocities stay below 10 feet per second. The fire flow analysis checks that the available fire flow is more than the fire flow needed. In the model, the fire flow needed for residential lots is set to 2,000 gpm and the fire flow needed for commercial lots and the school site is set to 3,000 gpm as determined by the City of Stockton Fire Department. The fire flows required for fire protection were analyzed at all locations in the proposed system.  Model results from the fire flow analysis show at all locations within District, except those at the end of proposed dead‐end 6” lines, the available fire flows are more than the fire flows needed. The model results also show that with the proposed improvements the system is capable to provide over 2,000 gpm to residential lots and over 3,000 gpm to the commercial lots and school site. Tabular model results showing the fire flow needed, fire flow available, total flow needed (including maximum day demands), 

Page 14: Exhibit A - Preliminary Scope of Work

 

6 of 10   

and total flow available can be found in Appendix D‐2. Based on the model results fire hydrants can be located anywhere within the District’s proposed system except the proposed 6” dead‐end lines. The proposed 6” lines are less than 400’ feet long and do not have any proposed fire hydrant connections. The location of the proposed fire hydrants is detailed in Section 4 of this Study. The maximum flows through each of the proposed intertie connections during fire flow conditions are shown in Table found in Section 4 of this Study  During model analysis, the exclusion of the proposed POC #2 at Hammer Lane and North Pershing Ave was analyzed to determine if the proposed system could operate with only 3 connections to the City system. The results show that if POC #2 is not included, then the proposed system’s pipes must be upsized throughout the system in order to be able provide the required fire flows of 3,000 gpm to the commercial lots in the southwestern area of the District. For this reason, the proposed system includes 4 points of connection to the City System.   Water Quality Analysis An  extended  period  simulation  was  also  performed  on  the  proposed  system  using  WaterCAD.  This simulation was used in order to analyze long term water usage and examine the water quality impacts by  estimating  the maximum water  age  at  all  locations  within  the  on‐site  system  during  times  when demands are minimal. The water quality analysis does not include analysis of the offsite system beyond the points of connection in the water model.   The extended period analysis was run for 14 days under the  fixed  daily  demands  provided  in  Section  3.  The  fixed  daily  demand  was  determined  from  the minimum historical monthly demand and excludes demands from the school and commercial lots. The water  quality  analysis  is  an  approximation  and  does  not  include  daily  diurnal  demands  in  assumes  a fixed daily demand. The results of this analysis are intended to provide an approximate estimate of the water age in the proposed system and identify potential areas in the proposed system where water age may be an issue and potentially require flushing to maintain acceptable water quality.   The water quality model results show that the maximum water ages occur in areas furthest from the connections that are near existing City water mains on Thornton Road or Hammer Lane (POC’s #1, #2, and #3). Water quality analysis results show the maximum water age in the proposed on‐site water system is 2.5 days located at Junction J‐09 in the north western area of the District.  This area has the greatest water age because it is near POC #4, which has a lower operating pressure, and is located upstream of 6” pipes that restrict the supply into the District. Model results of the water quality analysis showing the maximum water ages (in days) for all junctions can be found in Appendix D‐3.   The areas where the maximum water age occurs in the proposed system is different than where they occur in the existing system because the proposed system’s has Intertie Connections facilities that are in different locations and also has less restricted flows into the District that provide better circulation.   The maximum water age results are for the on‐site system only and do not take into account the time it takes to travel form the City of Stockton Water Surface Treatment Plant to the intertie connections. Determining the water age in the existing City water system was not included in in the analysis as it requires knowledge of the existing demands throughout the City’s system. It is recommended that coordination take place between the County and City to determine if the chloramine residuals near the District are high enough to allow the water age within the District’s system to be a maximum of 2.5 days old.      

Page 15: Exhibit A - Preliminary Scope of Work

 

7 of 10   

  4. Proposed Water System   The Water Study Exhibit attached as Appendix A shows the proposed water mains including the existing points of connection, valves, fire hydrants, water sample stations, and abandoned connections.   

 

Water Mains & Connections: 

The proposed water system will be composed of 8” water mains gridded in the residential areas, 10” mains near the school and commercial lots, and 6” water lines at short dead‐end streets.  The pipe material proposed is PVC DR‐14 (Class 200) pipe per City and County Improvement Standards. The proposed water mains are placed approximately 3’ off the edge of pavement and located on the north and west side of the street per County Standards. The proposed water system may have waterlines that have minimal horizontal clearance or cross under existing sewer pipes which may require special pipe material and approval from the State Division of Drinking Water (DDW). Portions of the improvements on Thornton Road and Hammer Lane may be within City of Stockton’s limits and require encroachment permits.   Coordination with City of Stockton: 

Coordination with the City of Stockton took place to determine the specific requirements for the Intertie Connection facilities, abandonment of the existing intertie connection facilities, and provide verification of the assumed operating pressures at the POC’s. Coordination with the City included email correspondence and a conference call meeting. The email correspondence, which includes a meeting summary and responses, can be found in Appendix H.  The City’s requirements for the Intertie Connections facilities are discussed below.  

 Intertie Connections: 

The proposed water system improvements require four intertie connections with the City water system that are shown in the Water Study Exhibit in Appendix A. All four of the existing intertie connections will be abandoned. The proposed intertie connections will operate differently than the existing connection facilities. During development of this Water Study coordination took place with the City to determine the specific requirements for the proposed intertie connection facilities and provide input on the location of the proposed Intertie Connections.  

The table below provides the name, approximate location, flow conditions through each intertie connection during peak hour flows and the maximum flow plus fire flow conditions as determined by the Water Model. Maximum flows conditions were determined by applying the worst‐case fire flow during maximum day demands. The worst‐case fire flow typically occurs when a fire flow occurs near the intertie location or at the School or Commercial site. 

Table 1 – Proposed Intertie Connection Flows 

ID  Location  Size/ Diameter 

(inches) 

Peak Hour Flow (gpm) 

Maximum Flow(gpm) 

1  Thornton Road and Cortez Ave  12”  784   1,650  

2  Hammer Lane and North Perishing Ave  12”  85  1,727 

3  Balboa Ave & El Camino Ave  8”  99  609 

4  Portola Ave & Arroyo Way  8”  0  327 

Page 16: Exhibit A - Preliminary Scope of Work

 

8 of 10   

 

Installation of the new intertie connections will require isolation of the existing City water system to allow a new connection to the existing main and will be subject to City of Stockton’s requirements. Per the City’s requirements the intertie connection facilities must include a new flow meter, a pressure sustaining valve, and a backflow prevention device. The pressure sustaining valve is a hydraulically operated, pilot‐controlled, modulating valve designed to maintain a constant upstream pressure. During coordination with the City, the City stated they will not limit the flow or require the valve to close during fire flow conditions, where the pressures on the upstream (City) side of the valve may drop below 40 psi. The PSV is assumed to operate so that the valve does not close unless the pressure on the upstream side drops down to 20 psi or below. PSV is also assumed to not include an orifice plate to restrict flows into the District.  

Prior to final design the type, model, and settings for the Control Valve and Backflow Prevention Valve shall be verified by the City.  The location of the 4 intertie connection facilities are shown approximately in this Study and the final locations should also be reviewed and agreed on upon with the City.  

Valves: 

The proposed water system includes gate valves located as shown on the Water Study Exhibit in Appendix A.  The water valves were located to meet County Standards which states that valves shall be located such that no single “shut down” results in greater than 800 feet in residential areas or 500 feet in commercial and school areas. The County also requires that a “shut down” shall not put more than two fire hydrants out of service. The valves are assumed to be gate valves per County Standards.   Fire Hydrants: 

The proposed system includes 65 new fire hydrants that are located to meet City and County Standards.  The County Standards require fire hydrant with maximum spacing of 500 feet in single family residential zones, and 300 feet in multi‐family, commercial and industrial zones. The County Standards also prefer fire hydrant are placed at street intersections to minimize damage by traffic. The City Standards require 300 feet spacing in commercial and industrial zones and 600 feet spacing for residential zones. The proposed system is designed to allow fire hydrants be located anywhere in the District except the 6” dead‐end waterlines.     As part of this Water Study, coordination took place with of the Phil Simon (Assistant Fire Marshal) of the Stockton Fire Department to review the fire hydrant layout, the fire hydrant requirements, the fire connection requirements; and determine the fire flow requirements for residential, school, and commercial lots. Below is a summary of the specific requirements the City of Stockton Fire Department requested for this project after the review: 

Residential lots require a fire flow of 2,000 gpm. 

Commercial lots and the school require a fire flow of 3,000 gpm. 

Fire hydrant type shall be dry‐barrel and full steamer with 1 x 4” outlet and 2 x 2.5” outlets.  The Construction Plans and Specifications shall include the City Standard for these types of hydrants. 

All fire hydrants will require blue reflectors at one foot off center line of street on same side as fire hydrant.  This requirement shall be included in the Construction Plans and Specifications. 

Fire connections shall have aboveground backflow prevention devices and be secured per City Standards. Details of the fire connections shall be included in the Construction Plans and Specifications. 

Advise to whom will be inspecting the workmanship and conducting the water quality testing in Construction Documents and coordinate with City to determine those requirements during development of the Construction Plans and Specifications.  

Page 17: Exhibit A - Preliminary Scope of Work

 

9 of 10   

 As part of this Study a preliminary Fire Hydrant Layout was submitted to the Stockton Fire Department for review. The review comments included an acceptance of the fire hydrant layout with the condition that fire hydrants were added at the intersections of El Camino Avenue and Arroyo Way, Portola Avenue and Balboa Avenue, Barcelona Avenue and Thornton Road, and Thornton Road and El Camino Avenue; in addition to the hydrants shown in the preliminary layout submittal. The Water Study Exhibit attached as Appendix A shows the proposed fire hydrant and includes the fire hydrants at the locations requested by the City. The final fire hydrant layout shall be reviewed and approved by the Stockton Fire Department during the development of the Construction Plans and Specifications.  

 Water Sample Stations: 

The proposed facilities include four water sampling stations per County Standards at the following locations as required by the State and located by County Maintenance staff: 

1211 Hammer Ln. 

8019 Heather Dr. 

1975 San Luis Wy. 

8516 Balboa Ave.  Water Meter and Services: 

The proposed water system improvements require the replacement of over 500 back yard water services with new water meter and services that are served from the front yard.  This requires abandonment of the backyard water main and service connection, installation of new water service line from the outlet of the new water meter to a connection location typically in the backyard, and a new meter and water service connection from the meter inlet to the new water main in the street. A detail showing the typical work required for backyard water service replacements can be found in Appendix F. Water meters and services will be installed per County Standards.   Restoration – Paving and Concrete: 

The proposed water system improvements require restoration of existing pavement; concrete sidewalk, curb and gutter, and landscaping.  This include restoration required when open trenching for the water main, service lines, fire hydrants, and near connections to the existing system.  Restoration is also required for the abandonments. The restoration work at the existing and proposed Intertie Connections will be per the City of Stockton and require an Encroachment Permit with the City of Stockton. The restoration required for each item of work is included in the overall cost of that item.   Abandonment of Existing System: 

The proposed water improvements include the abandonment of the existing water system. The existing water  facilities  that  are  underground  will  be  abandoned  in‐place.  This  includes  capping  the  existing water mains. The existing water facilities at the surface; such as valves, blow‐offs, air release valves, and vaults, will be removed several feet below the surface and materials salvaged.   The  existing  well  sites  within  the  District  are  currently  inactive  and  proposed  to  be  abandoned. Abandonment of the wells shall be done in accordance with standards developed by the Department of Water Resources pursuant  to  Section 13800 of  the Water Code and California Water Well  Standards. Abandonment  will  likely  require  the  well  to  be  filled  and  sealed.  One  of  the  inactive  wells, Well  #3 Facility,  is  located  near  the  levee  south  of Mosher  Slough  and will  require  coordination with  Central Valley Flood Protection Board to submit an application and determine any special conditions for work near the levee.  

Page 18: Exhibit A - Preliminary Scope of Work

 

10 of 10   

 The  removal  of  four  existing  intertie  connections  is  included  in  the  abandonment  work.  The requirements  for  the  abandonment  of  the  existing  intertie  connections  are  subject  to  the  City  of Stockton and at a minimum requires the existing City system to be isolated, the existing valving and flow meters to be removed or salvaged, and the existing water main to be capped.   Engineer’s Estimate of Probable Cost: 

The estimated total project cost for the improvements described in this Section and shown on the Water Study Exhibit in Appendix A is $32.53 million. This includes $21,403,625 in Hard Costs (construction plus 25%  design  contingency)  and  $11,129,885  in  Soft  Costs  (county  staff  time,  design  engineering, construction  management  and  inspection,  construction  engineering,  and  10%  construction contingencies).  The  Engineer’s  Estimate of  Probable Cost  is  attached  in Appendix G.  The  county  staff time  is  included  to  allow  time  for  coordination  with  District  residents,  businesses,  and  school;  and acquiring Rights of Entry to install new service lines and abandon the backyard services.   The analysis and Engineer’s Estimate of Probable Costs included in this study assumes water facility improvements described in this study will be constructed in one phase. If the improvements are constructed in phases the total cost of the project may increase up to 20%.   5. Conclusion  This study proposes improvements to replace the District’s aging water system. The proposed improvements include abandonment of the existing facilities and new water facilities. The new water facilities proposed will create a water system composed 8” water mains gridded in the residential areas, 10” mains around the school and commercial lots, and 6” water lines at short dead‐end streets; with 4 intertie connections to the City water system. An Engineer’s Estimate of Probable Cost for the proposed improvements is included in the study in Appendix G which shows a total project cost (hard construction costs plus soft costs) $32.53 million.  This study used the design criteria from the City and County Standards to develop a WaterCAD model to analyze the proposed water system and shows that it will function sufficiently to meet the applicable City and County Standards during peak hour and maximum day plus fire flow conditions. The model was also used to analyze water quality in the new system to determine the maximum water age which was found to be approximately 2.5 days.  This study also provides a proposed water valve and fire hydrant layout based on applicable City and County Standards and shows 4 water sampling stations as required by State and located by the District. This study also shows how the new water meter and services will be installed and outlines how the existing system will be abandoned. The study also describes the coordination that took place with the Fire Department and City of Stockton and includes specific requirements provided by the City.         

Page 19: Exhibit A - Preliminary Scope of Work

Appendix A Water Study Exhibit 

Page 20: Exhibit A - Preliminary Scope of Work

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

(E)16" T-MAIN

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

© 2019 Microsoft Corporation © 2019 DigitalGlobe ©CNES (2019) Distribution Airbus DS

POC-01

POC-04

POC-03

POC-2

J-76

J-72A

J-41

J-84

J-55

J-02

J-19

J-42

J-85

J-51

J-53

J-05

J-01

J-45

J-66

J-65

J-31

J-68

J-18

J-43

J-44

J-46

J-79

J-13

J-23

J-80

J-17

J-71J-70

J-50

J-24

J-25

J-26

J-39

J-69

J-27 J-28

J-29

J-20

J-22

J-04

J-12J-09

J-08

J-81

J-82

J-14

J-47

J-38

J-78

J-59

J-67

J-58

J-37

J-33

J-16

J-15

J-36

J-57

J-54

J-49

J-35

J-77

J-73

J-60

J-62

J-64

J-74

J-03

J-56

J-61

J-48

J-34

J-63

J-52

J-75

J-06

J-32

J-07

J-40

J-10

J-21

J-30

J-83

EJ-03

EJ-02

EJ-04

J-11

J-72B

PSV-4

PSV-3

PSV-2

PSV-01

P-85A

P-51A

P-05

P

-5

3

P

-

6

6

P

-

6

8

P

-

7

6

P

-

1

8

P-13A

P

-

8

5

B

P

-

1

9

P

-4

1

P-71

P-50A

P-24A P-25

P-50B

P-70

P-26 P-27

P-29

P-39A

P-22A

P-4A

P-9

P-20A

P-12A

P-8

P-81

P-13B

P-46

P-22B

P-4B

P-51B

P

-

6

7

A

P-58

P-37A

P-59

P-69

P-14A

P-33

P-16P-15

P-17A

P-28

P-24B

P-45

P-54A

P-49A

P-77A

P-47A

P-57

P-60

P-62A

P-77B

P-64A

P-38A

P-74

P-03

P-82A

P-54B

P

-

5

6

P-61

P-37B

P-47B

P-34

P

-

6

7

B

P-63

P-49B

P-74B

P-65

P-73

P-62B

P-48

P-35

P-64B

P-52

P-75

P-36

P

-

7

9

P-06

P-23

P-07

P-32

P-39B

P-14B

P-40

P-10

P-20B

P-30

P-12B

P-21

P-31B

P-82B

P

-

1

7

B

P-83

P-02

P

-

E

0

3

P

-

E

0

4

P-E

02

P

-P

O

C

-0

4

P-POC-03

P

-

1

7

C

P

-

8

0

P-78

P

-

8

4

P

-

5

5

P-31A

P-72B

P-E

13

P-POC-2

P-PSV-2

P-43B P-44

EJ-13

EJ-01

EJ-114

1 17677.1001

RJH

RJR

RJR, GVR

11/10/2020

SAN J

OAQ

UIN

CO

UNTY

WATER

STU

DY E

XH

IBIT

CO

LONIA

L H

EIG

THS W

ATE

R S

TUD

YEXH

IBIT

FO

R:

CALIF

OR

NIA

N.T.S.

AS NOTED

N

O

T

F

O

R

C

O

N

S

T

R

U

C

T

IO

N

P

R

E

L

IM

IN

A

R

Y

100'

SCALE IN FEET

0 200'400'

PORTOLA AVE

DRAWING SCALE

HOR. SCALE:

VERT. SCALE:

PROJECT NO.

SHEET NO. OF

REVIEWER:

DATE:

DRAFTER:

DESIGNER:

DRAWING INFO

CH

EC

KE

D B

YD

AT

E

DRAWING SCALE

RE

VIS

IO

N D

ES

CR

IP

TIO

NN

O.

WATER STUDY EXHIBIT

COLONIAL HEIGHTS MAINTENANCE DISTRICT

CORTEZ AVE

SEVILLE AVE

BARCELONA AVE

PALOMA AVE

VALENCIA AVE

EL CAMINO AVE

WEST HAMMER LANE

WEST HAMMER LANE

PALOMA AVE

PALOMA AVE

EL CAMINO AVE

EL CAMINO AVE

VALENCIA AVE

ALCAZAR AVE

SAN GABRIEL WAY

SANTA ROSA WAY

SAN LUIS WAY

PORTOLA AVE

P

O

R

T

O

L

A

A

V

E

CO

LO

NIA

L D

RIV

E

AR

RO

YO

W

AY

AR

RO

YO

W

AY

SA

N P

AB

LO

W

AY

SO

LA

NO

A

VE

SO

LA

NO

A

VE

BA

LB

OA

A

VE

COLONIAL HEIGHTS SCHOOL

MOSHER SLOUGH

MOSHER SLOUGH

CA

PIS

TR

AN

O A

VE

N P

ER

SH

IN

G A

VE

N P

ER

SH

IN

G A

VE

C

O

R

T

E

Z

A

V

E

DE

A

NZ

A A

VE

T

H

O

R

N

T

O

N

R

O

A

D

T

H

O

R

N

T

O

N

R

O

A

D

T

H

O

R

N

T

O

N

R

O

A

D

MA

C D

UF

F R

D

ENCINO AVE

PALOMA AVE

BA

LB

OA

A

VE

COMMERCIAL

MOSHER SLOUGH

(E

)8"W

(

E

)

1

6

"

W

(E)6"W

(E)12"W

(E)30"W

DESCRIPTIONEXISTING

(E)ON-SITE WATERLINE

PROPOSED 10" WATER LINE

PROPOSED 8" WATERLINE

PROPOSED 6" WATERLINE - SEE NOTE 8

(E)OFF-SITE (CITY OWNED) WATERLINE

PROPOSED FIRE HYDRANT - SEE NOTE 1

LEGEND

DISTRICT BOUNDARY (APPROXIMATE)

(E)OFF-SITE (CITY OWNED) FIRE HYDRANT

NOTES:

1. PROPOSED FIRE HYDRANTS ARE LOCATED TO PROVIDE 500'

MAXIMUM SPACING FOR RESIDENTIAL LOTS AND 300' MAXIMUM

SPACING FOR COMMERCIAL LOTS & SCHOOL. ALL FIRE HYDRANT

SHOWN INCLUDE GATE VALVE THAT IS NOT SHOWN FOR CLARITY.

2. EXISTING RESIDENTIAL LOTS ARE ASSUMED TO REQUIRE 2,000 GPM

FIRE FLOW AS DETERMINED BY CITY OF STOCKTON FIRE

DEPARTMENT.

3. COMMERCIAL AND SCHOOL LOT THAT REQUIRE 3,000 GPM ARE

DETERMINED BASED ON BUILDING SQUARE FOOTAGE AND AND

ASSUMED BUILDING TYPE.

4. SEE TABLE IN APPENDIX C FOR DEMAND AT ALL ON-SITE

JUNCTIONS

5. SEE TABLE IN APPENDIX D-1 FOR PEAK HOUR FLOW MODEL

RESULTS.

6. SEE TABLE IN APPENDIX D-2 FOR MAXIMUM DAY DEMAND PLUS

FIRE FLOW MODEL RESULTS..

7. SEE TABLE IN APPENDIX D-3 FOR WATER QUALITY RESULTS

SHOWING MAXIMUM WATER AGE.

8. PROPOSED 6" WATER LINES SHOWN SHALL NOT HAVE FIRE

HYDRANT CONNECTIONS.

9. PROPOSED WATERLINES ON THORNTON ROAD & HAMMER LANE

MAY BE OUTSIDE DISTRICT LIMITS AND MAY REQUIRE

ENCROACHMENT PERMITS FROM THE CITY OF STOCKTON.

10. INTERIE CONNECTION FACILITIES INCLUDE PRESSURE SUSTAINING

CONTROL VALVE, FLOW METER, AND DOUBLE DETECTOR CHECK

VALVE (BACKFLOW PROTECTION). SEE APPENDIX F FOR VALVES'

SPECIFICATION SHEETS.

(E)8"W

(E)8"W

(

E

)

1

2

"

W

(

E

)

1

2

"

W

ABERDEEN AVE

R

O

X

B

U

R

G

H

W

A

Y

E

L

C

A

M

INO

AVE

(

E

)

1

6

"

W

(E)4"W

(E)30"W

(E)30"W

WATER MODEL POC #1 &

PROPOSED INTERTIE CONNECTION #1

CONNECT TO (E) 16" CITY WATER MAIN

PROPOSED INTERTIE CONNECTION #4

ABANDON CONNECTION TO (E) 6" CITY WATER MAIN

& INSTALL NEW CONNECTION

PROPOSED INTERTIE CONNECTION #3

(E) CONNECTION TO 8" CITY WATER LINE

TO REMAIN IN-PLACE

(E)WELL SITE WITH TANK

TO BE ABANDONED

(E)WELL SITE

TO BE ABANDONED

WATER MODEL POC #2 &

PROPOSED INTERTIE CONNECTION #2

CONNECT TO (E) 12" CITY WATER MAIN

ABANDON CONNECTION TO (E)

16" CITY WATER MAIN

ABANDON CONNECTION TO

(E) 4" CITY WATER MAIN

PROPOSED VALVE

LOTS REQUIRING 3,000 GPM FIRE FLOW

SEE NOTE 3

PROPOSED CONNECTION TO

(E)ON-SITE SCHOOL SERVICE LINES

(

E

)

8

"

W

(

E

)

8

"

W

(E)6"W

(E

)12"W

SEE NOTE 9

SEE NOTE 9

WATER MODEL POC #3

(E) CONNECTION TO 30" CITY WATER LINE

TO REMAIN IN-PLACE

WATER MODEL POC #4

(E) CONNECTION TO 12" CITY WATER LINE

TO REMAIN IN-PLACE

DO

N A

VE

PROPOSED WATER SAMPLE STATION

(LOCATIONS SUBJECT TO CHANGE)

INTERTIE CONNECTION FACILITIES

SEE NOTE 10

PROPOSED 12" WATER LINE

N P

ER

SH

IN

G A

VE

P-PSV-01

P-POC-01

P-72A

P-PSV-4

P-01

P-PSV-3

Page 21: Exhibit A - Preliminary Scope of Work

Appendix B  

City of Stockton Fire Flow Results 

Page 22: Exhibit A - Preliminary Scope of Work
Page 23: Exhibit A - Preliminary Scope of Work

Appendix C  

Water Demands Table 

Page 24: Exhibit A - Preliminary Scope of Work

Colonial Heights Water Study

Water Demands Table

Node ID Type

No. of 

Units 

(du)

Average Day 

Demand 

(gpm/du)

Max Day 

Factor

Demand 

Max Day 

(gpm)

Peak Hour 

Factor

Peak Hour 

Demand 

(gpm)

Minimum Historic 

Monthly Demand 

(gpd/du)

Average Day 

Demand 

During Wet 

Weather 

(gpd)

EJ‐01 Existing Residential 10        0.42 2.2 9.30             3.8 16.10             251.7 3,744.0        

EJ‐02 Existing Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

EJ‐03 Existing Residential 27        0.42 2.2 25.11           3.8 43.47             251.7 10,108.8      

EJ‐04 Existing Residential 42        0.42 2.2 39.06           3.8 67.62             251.7 15,724.8      

EJ‐05 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐06 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐07 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐08 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐09 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐10 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐11 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

EJ‐12 Existing Residential ‐           0.42 2.2 ‐               3.8 ‐                 251.7 ‐                  

J‐01 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

J‐02 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐03 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐04 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐05 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐06 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐07 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐08 Residential 6          0.42 2.2 5.58             3.8 9.66               251.7 2,246.4        

J‐09 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐10 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐11 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐12 Residential 10        0.42 2.2 9.30             3.8 16.10             251.7 3,744.0        

J‐13 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐14 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐15 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐16 Residential 6          0.42 2.2 5.58             3.8 12.88             251.7 2,995.2        

J‐17 Residential 8          0.42 2.2 7.44             3.8 9.66               251.7 2,246.4        

J‐18 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

J‐19 Residential 6          0.42 2.2 5.58             3.8 9.66               251.7 2,246.4        

J‐20 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐21 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐22 Residential 10        0.42 2.2 9.30             3.8 16.10             251.7 3,744.0        

J‐23 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐24 Residential 6          0.42 2.2 5.58             3.8 9.66               251.7 2,246.4        

J‐25 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐26 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐27 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐28 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐29 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐30 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐31 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐32 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐33 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐34 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐35 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐36 Residential 9          0.42 2.2 8.37             3.8 14.49             251.7 3,369.6        

J‐37 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐38 Residential 3          0.42 2.2 2.79             3.8 4.83               251.7 1,123.2        

J‐39 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐40 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐41 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐42 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

1 of 2

Page 25: Exhibit A - Preliminary Scope of Work

Colonial Heights Water Study

Water Demands Table

Node ID Type

No. of 

Units 

(du)

Average Day 

Demand 

(gpm/du)

Max Day 

Factor

Demand 

Max Day 

(gpm)

Peak Hour 

Factor

Peak Hour 

Demand 

(gpm)

Minimum Historic 

Monthly Demand 

(gpd/du)

Average Day 

Demand 

During Wet 

Weather 

(gpd)

J‐43 School Aux 1          0.86 2.2 1.89             3.8 3.27               0 ‐

J‐44 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐45 Residential 3          0.42 2.2 2.79             3.8 4.83               251.7 1,123.2        

J‐46 School Main 1          10.22 2.2 22.49           3.8 38.85             0 ‐

J‐47 Residential 5          0.42 2.2 4.65             3.8 8.05               251.7 1,872.0        

J‐48 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐49 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐50 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐51 Residential 5          0.42 2.2 4.65             3.8 8.05               251.7 1,872.0        

J‐52 Residential 10        0.42 2.2 9.30             3.8 16.10             251.7 3,744.0        

J‐53 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐54 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐55 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐56 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐57 Residential 5          0.42 2.2 4.65             3.8 8.05               251.7 1,872.0        

J‐58 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐59 Residential 11        0.42 2.2 10.23           3.8 17.71             251.7 4,118.4        

J‐60 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐61 Residential 12        0.42 2.2 11.16           3.8 19.32             251.7 4,492.8        

J‐62 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐63 Residential 10        0.42 2.2 9.30             3.8 16.10             251.7 3,744.0        

J‐64 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐65 Residential 5          0.42 2.2 4.65             3.8 8.05               251.7 1,872.0        

J‐66 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐67 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐68 Residential 3          0.42 2.2 2.79             3.8 4.83               251.7 1,123.2        

J‐69 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐70 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐71 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

J‐72 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

J‐73 Residential 6          0.42 2.2 5.58             3.8 9.66               251.7 2,246.4        

J‐74 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐75 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐76 Residential 5          0.42 2.2 4.65             3.8 8.05               251.7 1,872.0        

J‐77 Residential 8          0.42 2.2 7.44             3.8 12.88             251.7 2,995.2        

J‐78 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐79 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐80 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

J‐81 Residential 2          0.42 2.2 1.86             3.8 3.22               251.7 748.8           

J‐82 Residential 4          0.42 2.2 3.72             3.8 6.44               251.7 1,497.6        

J‐83 Residential 7          0.42 2.2 6.51             3.8 11.27             251.7 2,620.8        

J‐84 Commercial 1          0.61 2.2 1.35             3.8 2.33               0 ‐

J‐85 Residential 1          0.42 2.2 0.93             3.8 1.61               251.7 374.4           

TOTALS 645      622.8           1,078.1         240,364.8   

2 of 2

Page 26: Exhibit A - Preliminary Scope of Work

Appendix D – Water Model Results 

D‐1. Peak Hour Flows 

D‐2. Maximum Day plus Fire Flow 

D‐3. Water Quality 

Page 27: Exhibit A - Preliminary Scope of Work

D‐1 – Peak Hour Flow Model Results 

Page 28: Exhibit A - Preliminary Scope of Work

FlexTable: Reservoir TableActive Scenario: PHF

Colonial Heights Water System

Elevation (Inlet/Outlet

Invert)(ft)

Pressure(psi)

Hydraulic Grade(ft)

Flow (Out net)(gpm)

Label

0.0050.0115.50754POC-010.0050.0115.5085POC-020.0050.0115.5099POC-030.0045.0103.95140POC-04

Page 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-

755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]Bentley Systems, Inc. Haestad

Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 29: Exhibit A - Preliminary Scope of Work

FlexTable: PSV TableActive Scenario: PHF

Colonial Heights Water System

Pressure (To)(psi)

Pressure (From)(psi)

Headloss(ft)

Hydraulic Grade (To)

(ft)

Hydraulic Grade (From)

(ft)

Flow(gpm)

Discharge Coefficient

(Fully Open)(gpm/psi^0.5)

Hydraulic Grade Setting

(Initial)(ft)

Diameter (Valve)

(in)

Elevation(ft)

Label

49.849.90.44115.00115.437541,725.00046.2112.00.00PSV-150.050.00.01115.49115.50851,725.00046.2112.00.00PSV-249.849.80.04115.09115.1299770.00046.218.00.00PSV-344.844.80.00103.48103.480770.00046.218.00.00PSV-4

Page 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 30: Exhibit A - Preliminary Scope of Work

Colonial Heights Water System Active Scenario: PHF

FlexTable: DDC Valve TableHeadloss

(ft)Hydraulic Grade

(To)(ft)

Hydraulic Grade (From)

(ft)

Flow(gpm)

General Purpose Valve Headloss CurveDiameter (Valve)

(in)

Elevation(ft)

Label

7.39107.57114.9675412" BPA - Ames 3000SS12.00.00DDC-19.34106.15115.498512" BPA - Ames 3000SS12.00.00DDC-28.94106.13115.07998" BPA - Ames 3000SS8.00.00DDC-30.00104.61104.6108" BPA - Ames 3000SS8.00.00DDC-4

Page 1 of 127 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 31: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: PHF

Colonial Heights Water System

Elevation(ft)

Pressure(psi)

Demand(gpm)

Label

0.0044.816EJ-010.0044.813EJ-020.0044.843EJ-030.0044.868EJ-040.00(N/A)(N/A)EJ-050.00(N/A)(N/A)EJ-060.00(N/A)(N/A)EJ-070.00(N/A)(N/A)EJ-080.00(N/A)(N/A)EJ-090.00(N/A)(N/A)EJ-100.00(N/A)(N/A)EJ-120.0049.90EJ-130.00(N/A)(N/A)EJ-1140.0046.02J-010.0045.713J-020.0045.819J-030.0045.814J-040.0046.011J-050.0046.119J-060.0046.214J-070.0045.810J-080.0045.713J-090.0045.719J-100.0046.53J-110.0045.816J-120.0045.811J-130.0046.013J-140.0046.119J-150.0046.213J-160.0046.310J-170.0046.42J-180.0046.310J-190.0045.713J-200.0045.719J-210.0045.816J-220.0045.814J-230.0046.010J-240.0046.013J-250.0046.013J-260.0046.013J-270.0046.111J-280.0045.713J-290.0045.719J-300.0045.814J-31

Page 1 of 327 Siemon Company Drive Suite 200 W Watertown, CT

06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution

CenterColonial Heights - Water Study - RJR.wtg

Page 32: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: PHF

Colonial Heights Water System

Elevation(ft)

Pressure(psi)

Demand(gpm)

Label

0.0045.819J-320.0045.911J-330.0045.919J-340.0045.914J-350.0046.014J-360.0046.013J-370.0046.05J-380.0045.713J-390.0045.719J-400.0045.813J-410.0045.93J-420.0045.83J-430.0045.86J-440.0045.85J-450.0045.839J-460.0045.98J-470.0045.919J-480.0045.913J-490.0045.76J-500.0045.78J-510.0045.916J-520.0045.86J-530.0045.913J-540.0045.96J-550.0045.911J-560.0045.88J-570.0045.719J-580.0045.718J-590.0045.93J-600.0045.919J-610.0045.913J-620.0045.916J-630.0045.913J-640.0045.98J-650.0045.96J-660.0045.93J-670.0045.95J-680.0045.73J-690.0045.73J-700.0045.72J-710.0049.80J-72A0.0045.92J-72B0.0045.910J-730.0045.96J-74

Page 2 of 327 Siemon Company Drive Suite 200 W Watertown, CT

06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution

CenterColonial Heights - Water Study - RJR.wtg

Page 33: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: PHF

Colonial Heights Water System

Elevation(ft)

Pressure(psi)

Demand(gpm)

Label

0.0045.911J-750.0045.98J-760.0045.913J-770.0045.911J-780.0045.93J-790.0045.92J-800.0045.93J-810.0045.96J-820.0045.911J-830.0045.92J-840.0045.92J-85

Page 3 of 327 Siemon Company Drive Suite 200 W Watertown, CT

06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution

CenterColonial Heights - Water Study - RJR.wtg

Page 34: Exhibit A - Preliminary Scope of Work

FlexTable: Pipe TableActive Scenario: PHF

Colonial Heights Water System

Velocity(ft/s)

Flow(gpm)

Hazen-Williams C

MaterialDiameter(in)

Stop NodeStart NodeLength (Scaled)

(ft)

Label

0.000110.0PVC8.0GPV-4PSV-438P-PSV-40.6399110.0PVC8.0GPV-3PSV-356P-PSV-30.2485110.0PVC12.0GPV-2PSV-216P-PSV-22.14754110.0PVC12.0GPV-1PSV-118P-PSV-10.89140110.0PVC8.0EJ-04POC-04602P-POC-040.6399110.0PVC8.0EJ-13POC-3788P-POC-3

(N/A)(N/A)110.0PVC8.0POC-2POC-3767P-POC-3(N/A)(N/A)110.0PVC8.0EJ-114POC-2943P-POC-20.2485110.0PVC12.0PSV-2POC-211P-POC-22.14754110.0PVC12.0PSV-1POC-0132P-POC-010.000110.0PVC8.0J-02GPV-463P-GPV-40.6399110.0PVC8.0J-72BGPV-352P-GPV-30.2485110.0PVC12.0J-82GPV-217P-GPV-22.14754110.0PVC12.0J-11GPV-130P-GPV-1

(N/A)(N/A)110.0PVC8.0EJ-13EJ-061,010P-EJ06B(N/A)(N/A)110.0PVC8.0EJ-10EJ-12306P-E12(N/A)(N/A)110.0PVC8.0POC-3EJ-091,655P-E09(N/A)(N/A)110.0PVC8.0EJ-09EJ-08840P-E08B(N/A)(N/A)110.0PVC8.0EJ-05EJ-0855P-E08A(N/A)(N/A)110.0PVC8.0EJ-08EJ-07484P-E07(N/A)(N/A)110.0PVC8.0EJ-09EJ-0655P-E06A(N/A)(N/A)110.0PVC8.0EJ-06EJ-05839P-E050.4672110.0PVC8.0EJ-03EJ-04254P-E040.1829110.0PVC8.0EJ-02EJ-0370P-E03

(N/A)(N/A)110.0PVC10.0J-85EJ-11440P-121B(N/A)(N/A)110.0PVC8.0EJ-12EJ-114159P-121A0.0615110.0PVC10.0J-80J-85183P-85B0.013110.0PVC10.0J-84J-85184P-85A0.001110.0PVC10.0J-79J-84384P-840.1320110.0PVC8.0J-85J-83471P-830.2031110.0PVC8.0J-83J-82467P-82B0.2844110.0PVC8.0J-77J-82353P-82A0.04-3110.0PVC6.0J-82J-81294P-810.0513110.0PVC10.0J-76J-80273P-800.01-2110.0PVC10.0J-67J-79283P-790.03-4110.0PVC8.0J-76J-78338P-780.02-3110.0PVC8.0J-64J-77350P-77B0.057110.0PVC8.0J-78J-77343P-77A0.0610110.0PVC8.0J-68J-76163P-760.17-27110.0PVC8.0J-77J-75373P-750.10-16110.0PVC8.0J-75J-74367P-74B0.035110.0PVC8.0J-62J-74350P-740.03-4110.0PVC8.0J-74J-73370P-730.3892110.0PVC10.0J-60J-72B189P-72B0.035110.0PVC8.0J-73J-72B521P-72A0.6399110.0PVC8.0PSV-3J-72A40P-720.1320110.0PVC8.0J-70J-71268P-710.0813110.0PVC8.0J-69J-70279P-700.0610110.0PVC8.0J-58J-69333P-690.035110.0PVC8.0J-66J-68160P-68

Page 1 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 35: Exhibit A - Preliminary Scope of Work

FlexTable: Pipe TableActive Scenario: PHF

Colonial Heights Water System

Velocity(ft/s)

Flow(gpm)

Hazen-Williams C

MaterialDiameter(in)

Stop NodeStart NodeLength (Scaled)

(ft)

Label

0.09-14110.0PVC8.0J-56J-67365P-67B0.069110.0PVC8.0J-76J-67327P-67A0.01-1110.0PVC8.0J-65J-66149P-660.06-10110.0PVC8.0J-64J-65369P-650.1929110.0PVC8.0J-63J-64373P-64B0.35-54110.0PVC8.0J-54J-64350P-64A0.0813110.0PVC8.0J-62J-63367P-630.2133110.0PVC8.0J-61J-62370P-62B0.18-28110.0PVC8.0J-49J-62350P-62A0.0914110.0PVC8.0J-60J-61364P-610.42103110.0PVC10.0J-47J-60350P-600.03-4110.0PVC8.0J-70J-59332P-590.06-9110.0PVC8.0J-50J-58327P-580.1422110.0PVC8.0J-71J-57345P-570.16-26110.0PVC8.0J-42J-56359P-560.1829110.0PVC8.0J-42J-55198P-550.2335110.0PVC8.0J-55J-54357P-54B0.94-147110.0PVC8.0J-37J-54343P-54A0.31-49110.0PVC8.0J-45J-53143P-530.29-45110.0PVC8.0J-54J-52373P-520.0914110.0PVC8.0J-59J-51325P-51B0.27-43110.0PVC8.0J-53J-51129P-51A0.035110.0PVC8.0J-39J-50277P-50B0.13-21110.0PVC8.0J-51J-50274P-50A0.18-29110.0PVC8.0J-52J-49367P-49B0.46-72110.0PVC8.0J-35J-49343P-49A0.38-60110.0PVC8.0J-49J-48370P-480.26-40110.0PVC8.0J-48J-47364P-47B0.60-94110.0PVC8.0J-33J-47344P-47A0.94-229110.0PVC10.0J-47J-46300P-460.1930110.0PVC8.0J-57J-45340P-450.62-151110.0PVC10.0J-46J-44213P-440.59-145110.0PVC10.0J-44J-43202P-43B0.3484110.0PVC10.0J-45J-43251P-43A0.6399110.0PVC8.0J-72AEJ-13274P-43

(N/A)(N/A)110.0PVC8.0J-38J-42308P-420.37-57110.0PVC8.0J-43J-41250P-410.1816110.0PVC6.0EJ-01EJ-02467P-410.19-30110.0PVC8.0J-41J-40437P-400.07-10110.0PVC8.0J-40J-39432P-39B0.022110.0PVC8.0J-29J-39281P-39A

(N/A)(N/A)110.0PVC8.0J-19J-38623P-38B0.03-5110.0PVC8.0J-37J-38350P-38A0.2133110.0PVC8.0J-36J-37364P-37B1.26-198110.0PVC8.0J-19J-37510P-37A0.82128110.0PVC8.0J-35J-36375P-360.2641110.0PVC8.0J-34J-35371P-350.1422110.0PVC8.0J-33J-34364P-340.53-83110.0PVC8.0J-24J-33337P-330.25-40110.0PVC8.0J-46J-32403P-32

Page 2 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 36: Exhibit A - Preliminary Scope of Work

FlexTable: Pipe TableActive Scenario: PHF

Colonial Heights Water System

Velocity(ft/s)

Flow(gpm)

Hazen-Williams C

MaterialDiameter(in)

Stop NodeStart NodeLength (Scaled)

(ft)

Label

0.1727110.0PVC8.0J-30J-31455P-31B0.10-15110.0PVC8.0J-41J-31290P-31A0.058110.0PVC8.0J-29J-30449P-300.02-3110.0PVC8.0J-20J-29281P-290.70109110.0PVC8.0J-36J-28338P-280.67-104110.0PVC8.0J-28J-27279P-270.58-91110.0PVC8.0J-27J-26279P-260.50-79110.0PVC8.0J-26J-25276P-250.17-27110.0PVC8.0J-14J-24339P-24B0.42-66110.0PVC8.0J-25J-24276P-24A0.13-20110.0PVC8.0J-32J-23397P-230.60-94110.0PVC8.0J-23J-22301P-22B0.1727110.0PVC8.0J-31J-22281P-22A0.21-33110.0PVC8.0J-22J-21454P-210.09-13110.0PVC8.0J-21J-20448P-20B0.01-2110.0PVC8.0J-09J-20289P-20A1.32-207110.0PVC8.0J-18J-19166P-191.33-209110.0PVC8.0J-11J-18178P-182.21-542110.0PVC10.0J-11J-17165P-17C0.90142110.0PVC8.0J-07J-17497P-17B1.44225110.0PVC8.0J-28J-17338P-17A1.05-165110.0PVC8.0J-17J-16338P-160.97-152110.0PVC8.0J-16J-15338P-150.85-133110.0PVC8.0J-15J-14435P-14B0.61-95110.0PVC8.0J-05J-14337P-14A1.20-188110.0PVC8.0J-14J-13300P-13B0.5789110.0PVC8.0J-23J-13221P-13A0.1930110.0PVC8.0J-10J-12453P-12B0.12-19110.0PVC8.0J-22J-12289P-12A0.0710110.0PVC8.0J-09J-10447P-100.03-5110.0PVC8.0J-02J-09289P-90.56-88110.0PVC8.0J-13J-08294P-80.81127110.0PVC8.0J-06J-07397P-070.69108110.0PVC8.0J-05J-06394P-060.022110.0PVC6.0J-01J-05130P-050.50-78110.0PVC8.0J-08J-04321P-4B0.1727110.0PVC8.0J-12J-04288P-4A0.24-37110.0PVC8.0J-04J-03351P-030.11-18110.0PVC8.0J-03J-02547P-020.000110.0PVC8.0PSV-4EJ-0134P-1

Page 3 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 37: Exhibit A - Preliminary Scope of Work

D‐2 – Maximum Day plus Fire Flow Model Results 

Page 38: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: MDD plus FFColonial Heights Water System

Fire Flow (Available)

(gpm)

Flow (Total Needed)(gpm)

Fire Flow (Needed)

(gpm)

Demand(gpm)

Elevation(ft)

Label

(N/A)(N/A)2,00090.00EJ-01(N/A)(N/A)2,00070.00EJ-02(N/A)(N/A)2,000250.00EJ-03(N/A)(N/A)2,000390.00EJ-04(N/A)(N/A)2,000(N/A)0.00EJ-05(N/A)(N/A)2,000(N/A)0.00EJ-06(N/A)(N/A)2,000(N/A)0.00EJ-07(N/A)(N/A)2,000(N/A)0.00EJ-08(N/A)(N/A)2,000(N/A)0.00EJ-09(N/A)(N/A)2,000(N/A)0.00EJ-10(N/A)(N/A)2,000(N/A)0.00EJ-12(N/A)(N/A)2,00000.00EJ-13(N/A)(N/A)2,000(N/A)0.00EJ-114(N/A)(N/A)010.00J-013,2682,0072,00070.00J-022,7492,0112,000110.00J-033,6712,0082,00080.00J-042,4322,0072,00070.00J-053,0382,0112,000110.00J-062,5202,0082,00080.00J-072,7302,0062,00060.00J-083,6432,0072,00070.00J-093,0282,0112,000110.00J-104,5002,0022,00020.00J-113,5922,0092,00090.00J-123,1922,0072,00070.00J-134,5002,0072,00070.00J-142,9462,0112,000110.00J-152,5012,0062,00060.00J-163,6522,0072,00070.00J-172,2702,0012,00010.00J-182,6882,0062,00060.00J-193,6922,0072,00070.00J-202,9952,0112,000110.00J-214,1802,0092,00090.00J-223,8272,0082,00080.00J-234,0012,0062,00060.00J-242,5772,0072,00070.00J-253,0622,0072,00070.00J-262,4902,0072,00070.00J-273,6432,0072,00070.00J-283,6652,0072,00070.00J-293,0502,0112,000110.00J-303,6672,0082,00080.00J-31

Page 1 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 39: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: MDD plus FFColonial Heights Water System

Fire Flow (Available)

(gpm)

Flow (Total Needed)(gpm)

Fire Flow (Needed)

(gpm)

Demand(gpm)

Elevation(ft)

Label

2,9932,0112,000110.00J-323,9792,0072,00070.00J-333,1072,0112,000110.00J-344,0662,0082,00080.00J-354,5002,0082,00080.00J-364,1802,0072,00070.00J-371,5642,0032,00030.00J-383,5722,0072,00070.00J-393,0512,0112,000110.00J-403,5922,0072,00070.00J-412,8432,0022,00020.00J-423,8943,0023,00020.00J-433,4453,0043,00040.00J-443,3373,0033,00030.00J-453,6033,0223,000220.00J-464,5003,0053,00050.00J-473,0962,0112,000110.00J-484,5002,0072,00070.00J-493,2672,0042,00040.00J-503,3162,0052,00050.00J-513,1212,0092,00090.00J-522,6562,0042,00040.00J-534,5002,0072,00070.00J-542,5022,0042,00040.00J-552,6972,0072,00070.00J-562,5282,0052,00050.00J-572,6022,0112,000110.00J-582,8272,0102,000100.00J-594,5003,0023,00020.00J-603,0982,0112,000110.00J-614,5002,0072,00070.00J-623,1092,0092,00090.00J-634,5002,0072,00070.00J-642,9002,0052,00050.00J-652,8942,0042,00040.00J-664,2912,0022,00020.00J-672,4812,0032,00030.00J-682,6922,0022,00020.00J-692,9342,0022,00020.00J-702,7432,0012,00010.00J-71(N/A)(N/A)2,00000.00J-72A4,4293,0013,00010.00J-72B3,0022,0062,00060.00J-733,7672,0042,00040.00J-74

Page 2 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 40: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: MDD plus FFColonial Heights Water System

Fire Flow (Available)

(gpm)

Flow (Total Needed)(gpm)

Fire Flow (Needed)

(gpm)

Demand(gpm)

Elevation(ft)

Label

2,8962,0072,00070.00J-754,5002,0052,00050.00J-764,0502,0072,00070.00J-772,9702,0072,00070.00J-784,2433,0023,00020.00J-794,5003,0013,00010.00J-80(N/A)(N/A)020.00J-814,5002,0042,00040.00J-822,8472,0072,00070.00J-833,8623,0013,00010.00J-844,5003,0013,00010.00J-85

Page 3 of 327 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

11/12/2020

Bentley WaterCAD V8i (SELECTseries 5)[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution CenterColonial Heights - Water Study - RJR.wtg

Page 41: Exhibit A - Preliminary Scope of Work

D‐3 – Water Quality Model Results 

Page 42: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: Water Age

Colonial Heights Water System

Current Time: 0.0 days

Age (Maximum)(days)

Demand(gpm)

Label

2.51J-092.31J-021.81J-201.81J-381.72J-581.61J-291.32J-101.30J-691.22J-591.20J-011.12J-031.11J-391.01J-551.02J-301.02J-121.00J-701.02J-341.02J-211.00J-420.91J-240.92J-040.91J-330.92J-350.90J-810.82J-480.81J-560.80J-710.82J-520.81J-080.72J-310.71J-130.71J-490.72J-220.70J-670.71J-140.71J-540.72J-360.71J-500.72J-230.62J-400.61J-25

Page 1 of 327 Siemon Company Drive Suite 200 W

Watertown, CT 06795 USA +1-203-

755-1666

11/10/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution Center

Colonial Heights - Water Study - RJR.wtg

Page 43: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: Water Age

Colonial Heights Water System

Current Time: 0.0 days

Age (Maximum)(days)

Demand(gpm)

Label

0.61J-650.61J-570.61J-370.61J-620.51J-660.52J-630.50J-790.51J-260.51J-510.51J-680.51J-530.42EJ-010.41J-270.41J-450.41J-050.41J-760.41J-410.42J-320.41J-740.31J-280.30J-430.31J-440.31J-640.30J-460.30J-840.30J-800.31J-470.32J-060.22J-610.21J-750.21J-730.21J-780.22J-150.20J-850.21EJ-020.12J-070.15EJ-030.11J-190.11J-160.11J-830.10J-60

Page 2 of 327 Siemon Company Drive Suite 200 W

Watertown, CT 06795 USA +1-203-

755-1666

11/10/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution Center

Colonial Heights - Water Study - RJR.wtg

Page 44: Exhibit A - Preliminary Scope of Work

FlexTable: Junction TableActive Scenario: Water Age

Colonial Heights Water System

Current Time: 0.0 days

Age (Maximum)(days)

Demand(gpm)

Label

0.17EJ-040.10J-180.10J-72B0.10J-72A0.01J-770.00EJ-130.01J-170.00J-110.01J-82

(N/A)(N/A)EJ-08(N/A)(N/A)EJ-05(N/A)(N/A)EJ-06(N/A)(N/A)EJ-09(N/A)(N/A)EJ-12(N/A)(N/A)EJ-10(N/A)(N/A)EJ-07(N/A)(N/A)EJ-114

Page 3 of 327 Siemon Company Drive Suite 200 W

Watertown, CT 06795 USA +1-203-

755-1666

11/10/2020

Bentley WaterCAD V8i (SELECTseries 5)

[08.11.05.61]

Bentley Systems, Inc. Haestad Methods Solution Center

Colonial Heights - Water Study - RJR.wtg

Page 45: Exhibit A - Preliminary Scope of Work

Appendix E  

E‐1.   Pressure Sustaining Valve: 

CLA‐VAL Model 50‐90 Specification Sheet 

E‐2.  Double Check Detector Assembly: 

 Ames 3000SS Specification Sheet 

Page 46: Exhibit A - Preliminary Scope of Work

E‐1.   Pressure Sustaining Valve: CLA‐VAL Model 50‐90 Specification Sheet 

Page 47: Exhibit A - Preliminary Scope of Work

Pressure Sustaining ServiceWhen installed in a line between an upper zone and alower area of heavy demand, the valve acts to maintain desiredupstream pressure to prevent "robbing" of the upper zone. Waterin excess of pressure setting is allowed to flow to an area of heavydemand, control is smooth, and pressure regulation is positive.

• Accurate Pressure Control• Optional Check Feature• Fast Opening to Maintain Line Pressure• Slow Closing to Prevents Surges• Completely Automatic OperationThe Cla-Val Model 50-90 Pressure Sustaining Valve is a hydraulicallyoperated, pilot-controlled, modulating valve designed to maintain constantupstream pressure within close limits. This valve can be used for pressurerelief, pressure sustaining, back pressure, or unloading functions in aby-pass system.In operation, the valve is actuated by line pressure through a pilot controlsystem, opening fast to maintain steady line pressure but closing graduallyto prevent surges. Operation is completely automatic and pressuresettings may be easily changed.If a check feature is added, and a pressure reversal occurs, the down-stream pressure is admitted into the main valve cover chamber, closing thevalve to prevent return flow.

Schematic Diagram Item Description 1 100-01 Hytrol Main Valve 2 X58C Restriction Assembly 3 CRL5A Pressure Relief Control

Optional Features Item Description

A X46A Flow Clean Strainer B CK2 Isolation Valve c CV Speed Control (Closing) D Check Valves with Isolation Valve F Remote Pilot Sensing H Drain to Atmosphere P X141 Pressure Gauge S CV Speed Control (Opening)

V X101 Valve Position Indicator Y X43 “Y” Strainer

Pressure Sustaining ValveMODEL

Upper ZoneIsolation Valve

Area Of Heavy Demand

CLA-VAL 50-90Pressure Relief

Pressure SustainingValve

Supply Pump

CLA-VAL 60-73Booster PumpControl Valve

CLA-VAL 50-90KOPressure SustainingValve

Isolation Valve

Service

Typical Applications

Pressure ServiceThis typical application controls the maximum system pressure whenVFD pumps are at minimum speed.

50-90

rruddick
Highlight
Page 48: Exhibit A - Preliminary Scope of Work

Model 50-90 (Uses 100-01 Hytrol Main Valve)

Model 50-90 Dimensions (In Inches)

Component Standard Material CombinationsBody & Cover Ductile Iron Cast Steel BronzeAvailable Sizes 1" - 36" 1" - 16" 1" - 16"Disc Retainer &Diaphragm Washer Cast Iron Cast Steel BronzeTrim: Disc Guide, Seat & Cover Bearing

Bronze is StandardStainless Steel is Optional

Disc Buna-N® RubberDiaphragm Nylon Reinforced Buna-N® RubberStem, Nut & Spring Stainless SteelFor material options not listed, consult factory.Cla-Val manufactures valves in more than 50 different alloys.

Materials

GGGG

DDDDInlet

AAAA

X

100-01Grooved

EE

CC(MAX)

K

J

H

Inlet Outlet

B (Diameter)

Y

Z

GGGGGG

DInletDDDDD

FFF

X

100-01Threaded &

Flanged

A

E

C(MAX)

K

J

H

Inlet Outlet

AAAAA

B (Diameter)

Valve Body & CoverPressure Class

Flanged Grooved Threaded

Grade Material ANSIStandards*

150Class

300Class

300Class

End‡Details

ASTM A536 Ductile Iron B16.42 250 400 400 400

ASTM A216-WCB Cast Steel B16.5 285 400 400 400

UNS 87850 Bronze B16.24 225 400 400 400

Note: * ANSI standards are for flange dimensions only. Flanged valves are available faced but not drilled.

‡ End Details machined to ANSI B2.1 specifications.Valves for higher pressure are available; consult factory for details

Pressure Ratings (Recommended Maximum Pressure - psi)

Valve Size (Inches) 1 1 1⁄4 1 1⁄2 2 2 1⁄2 3 4 6 8 10 12 14 16 18 20 24 30 36A Threaded 7.25 7.25 7.25 9.38 11.00 12.50 — — — — — — — — — — — —AA 150 ANSI — — 8.50 9.38 11.00 12.00 15.00 20.00 25.38 29.75 34.00 39.00 41.38 46.00 52.00 61.50 63.00 72.75AAA 300 ANSI — — 9.00 10.00 11.62 13.25 15.62 21.00 26.38 31.12 35.50 40.50 43.50 47.64 53.62 63.24 64.50 74.75AAAA Grooved End — — 8.50 9.00 11.00 12.50 15.00 20.00 25.38 — — — — — — — — —B Diameter 5.62 5.62 5.62 6.62 8.00 9.12 11.50 15.75 20.00 23.62 28.00 32.75 35.50 41.50 45.00 53.16 56.00 66.00C Maximum 5.50 5.50 5.50 6.50 7.56 8.19 10.62 13.38 16.00 17.12 20.88 24.19 25.00 39.06 41.90 43.93 54.60 59.00CC Maximum Grooved End — — 4.75 5.75 6.88 7.25 9.31 12.12 14.62 — — — — — — — — —D Threaded 3.25 3.25 3.25 4.75 5.50 6.25 — — — — — — — — — — — —DD 150 ANSI — — 4.00 4.75 5.50 6.00 7.50 10.00 12.69 14.88 17.00 19.50 20.81 — — 30.75 — —DDD 300 ANSI — — 4.25 5.00 5.88 6.38 7.88 10.50 13.25 15.56 17.75 20.25 21.62 — — 31.62 — —DDDD Grooved End — — — 4.75 — 6.00 7.50 — — — — — — — — — — —E 1.12 1.12 1.12 1.50 1.69 2.06 3.19 4.31 5.31 9.25 10.75 12.62 15.50 12.95 15.00 17.75 21.31 24.56EE Grooved End — — 2.00 2.50 2.88 3.12 4.25 6.00 7.56 — — — — — — — — —F 150 ANSI — — 2.50 3.00 3.50 3.75 4.50 5.50 6.75 8.00 9.50 10.50 11.75 15.00 16.50 19.25 22.50 28.50FF 300 ANSI — — 3.06 3.25 3.75 4.13 5.00 6.25 7.50 8.75 10.25 11.50 12.75 15.00 16.50 19.25 24.00 30.00G Threaded 1.88 1.88 1.88 3.25 4.00 4.50 — — — — — — — — — — — —GG 150 ANSI — — 4.00 3.25 4.00 4.00 5.00 6.00 8.00 8.62 13.75 14.88 15.69 — — 22.06 — —GGG 300 ANSI — — 4.25 3.50 4.31 4.38 5.31 6.50 8.50 9.31 14.50 15.62 16.50 — — 22.90 — —GGGG Grooved End — — — 3.25 — 4.25 5.00 — — — — — — — — — — —H NPT Body Tapping 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00J NPT Cover Center Plug 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 1.00 1.00 1.25 1.50 2.00 1.00 1.00 1.00 2.00 2.00K NPT Cover Tapping 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00Stem Travel 0.40 0.40 0.40 0.60 0.70 0.80 1.10 1.70 2.30 2.80 3.40 4.00 4.50 5.10 5.63 6.75 7.50 8.50Approx. Ship Weight (lbs) 15 15 15 35 50 70 140 285 500 780 1165 1600 2265 2982 3900 6200 7703 11720Approx. X Pilot System 11 11 11 13 14 15 17 29 31 33 36 40 40 43 47 68 79 85Approx. Y Pilot System 9 9 9 9 10 11 12 20 22 24 26 29 30 32 34 39 40 45Approx. Z Pilot System 9 9 9 9 10 11 12 20 22 24 26 29 30 32 34 39 42 47

Page 49: Exhibit A - Preliminary Scope of Work

Model 50-90 Metric Dimensions (Uses 100-01 Hytrol Main Valve)

Model 50-90 Dimensions (in mm)

Valve Size (mm) 25 32 40 50 65 80 100 150 200 250 300 350 400 450 500 600 750 900A Threaded 184 184 184 238 279 318 — — — — — — — — — — — —AA 150 ANSI — — 216 238 279 305 381 508 645 756 864 991 1051 1168 1321 1562 1600 1848AAA 300 ANSI — — 229 254 295 337 397 533 670 790 902 1029 1105 1210 1326 1606 1638 1899AAAA Grooved End — — 216 228 279 318 381 508 645 — — — — — — — — —B Diameter 143 143 143 168 203 232 292 400 508 600 711 832 902 1054 1143 1350 1422 1676C Maximum 140 140 140 165 192 208 270 340 406 435 530 614 635 992 1064 1116 1387 1499CC Maximum Grooved End — — 120 146 175 184 236 308 371 — — — — — — — — —D Threaded 83 83 83 121 140 159 — — — — — — — — — — — —DD 150 ANSI — — 102 121 140 152 191 254 322 378 432 495 528 — — 781 — —DDD 300 ANSI — — 108 127 149 162 200 267 337 395 451 514 549 — — 803 — —DDDD Grooved End — — — 121 — 152 191 — — — — — — — — — — —E 29 29 29 38 43 52 81 110 135 235 273 321 394 329 381 451 541 624EE Grooved End — — 52 64 73 79 108 152 192 — — — — — — — — —F 150 ANSI — — 64 76 89 95 114 140 171 203 241 267 298 381 419 489 572 724FF 300 ANSI — — 78 83 95 105 127 159 191 222 260 292 324 381 419 489 610 762G Threaded 48 48 48 83 102 114 — — — — — — — — — — — —GG 150 ANSI — — 102 83 102 102 127 152 203 219 349 378 399 — — 560 — —GGG 300 ANSI — — 102 89 110 111 135 165 216 236 368 397 419 — — 582 — —GGGG Grooved End — — — 83 — 108 127 — — — — — — — — — — —H NPT Body Tapping 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00J NPT Cover Center Plug 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 1.00 1.00 1.25 1.50 2.00 1.00 1.00 1.00 2.00 2.00K NPT Cover Tapping 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00Stem Travel 10 10 10 15 18 20 28 43 58 71 86 102 114 130 143 171 190 216Approx. Ship Weight (kgs) 7 7 7 16 23 32 64 129 227 354 528 726 1027 1353 1769 2812 3494 5316Approx. X Pilot System 280 280 280 331 356 381 432 737 788 839 915 1016 1016 1093 1194 1728 2007 2159Approx. Y Pilot System 229 229 229 229 254 280 305 508 559 610 661 737 762 813 864 991 1016 1143Approx. Z Pilot System 229 229 229 229 254 280 305 508 559 610 661 737 762 813 864 991 1067 1194

GGGG

DDDDInlet

AAAA

X

100-01Grooved

EE

CC(MAX)

K

J

H

Inlet Outlet

B (Diameter)

YZ

GGGGGG

DInletDDDDD

FFF

X

100-01Threaded &

Flanged

A

E

C(MAX)

K

J

H

Inlet Outlet

AAAAA

B (Diameter)

Page 50: Exhibit A - Preliminary Scope of Work

E-50-90 (R-03/2019)

50-90Valve

Selection

100-01 Pattern: Globe (G), Angle (A), End Connections: Threaded (T), Grooved (GR), Flanged (F) Indicate Available Sizes

Inches 1 11⁄4 11⁄2 2 21⁄2 3 4 6 8 10 12 14 16 18 20 24 30 36

mm 25 32 40 50 65 80 100 150 200 250 300 350 400 450 500 600 750 900

Basic Valve100-01

Pattern G, A G, A G, A G, A G, A G, A G, A G, A G, A G, A G, A G, A G, A G G G, A G G

End Detail T T T, F,Gr*

T, F,Gr

T, F,Gr*

T, F,Gr

F, Gr

F, Gr*

F, Gr* F F F F F F F F F

Suggested Flow (gpm)

Maximum 55 93 125 210 300 460 800 1800 3100 4900 7000 8400 11000 14000 17000 25000 42000 50000

Maximum Surge 120 210 280 470 670 1000 1800 4000 7000 11000 16000 19000 25000 31000 39000 56500 63000 85000

Suggested Flow

(Liters/Sec)

Maximum 3.5 6 8 13 19 29 50 113 195 309 442 530 694 883 1073 1577 2650 3150

Maximum Surge 7.6 13 18 30 42 63 113 252 441 693 1008 1197 1577 1956 2461 3560 3975 5360

100-01 Series is the full internal port Hytrol. *Globe Grooved Only

MaterialsStandard Pilot System Materials

Pilot Control: Low Lead Bronze Trim: Stainless Steel Type 303 Rubber: Buna-N® Synthetic Rubber

Optional Pilot System MaterialsPilot Systems are available with optionalAluminum, Stainless Steel or Monel materials.

Adjustment Ranges 0 to 75 psi Max. 20 to 105 psi 20 to 200 psi * 100 to 300 psi

*Supplied unless otherwise speci-fied. Other ranges areavailable, please consult factory.

Temperature Range Water: to 180°F

Pilot System Specifications

When Ordering, Specify:1. Catalog No. 50-902. Valve Size3. Pattern - Globe or Angle4. Pressure Class5. Threaded, Flanged, Grooved6. Trim Material7. Adjustment Range8. Desired Options9. When Vertically Installed

CLA-VAL EUROPEChemin des Mésanges 1CH-1032 Romanel/Lausanne, SwitzerlandPhone: 41-21-643-15-55E-mail: [email protected]

CLA-VAL FRANCEPorte du Grand Lyon 1ZAC du Champ du PérierFrance - 01700 NeyronPhone: 33-4-72-25-92-93E-mail: [email protected]

CLA-VAL1701 Placentia Avenue • Costa Mesa, CA 92627

800-942-6326 Fax: 949-548-5441 Web Site: cla-val.com E-mail: [email protected]

©COPYRIGHT CLA-VAL 2019 Printed in USA Specifications subject to change without notice. visit www.cla-val-latinamerica.com for Spanish literature

CLA-VAL CANADA4687 Christie DriveBeamsville, OntarioCanada L0R 1B4Phone: 905-563-4963E-mail [email protected]

CLA-VAL UKDainton House, Goods Station RoadTunbridge Wells Kent TN1 2 DH EnglandPhone: 44-1892-514-400E-mail: [email protected]

CLA-VAL PACIFIC45 Kennaway RoadWoolston, Christchurch, 8023New ZealandPhone: 64-39644860www.cla-valpacific.comE-mail: [email protected]

Main Valve Options

EPDM Rubber PartsOptional diaphragm, disc and o-ringfabricated with EPDM synthetic rub-berViton® Rubber Parts - suffix KBOptional diaphragm, disc and o-ringfabricated with Viton® synthetic rubber

Epoxy Coating - suffix KCNSF/ANSI 61 Fusion Bonded EpoxyDura-Kleen® Stem - suffix KDFluted design prevents dissolvedminerals build-up on the stemLFS Trim Designed to regulate precisely andsmoothly at typical flow rates as well aslower than the industry standard of 1fps, without decreasing the valve’scapacity

Valve OptionsX141 Pressure

Gauge

X101AR ValvePosition Indicatorwith Air Release

X43HStrainer

StainlessSteel Pilot

X101 Valve Position

Indicator

X144 e-FlowMeter

Page 51: Exhibit A - Preliminary Scope of Work

Hytrol Valve 100-01

Principle of Operation

Full Open OperationWhen pressure in the cover chamberis relieved to a zone of lower pres-sure, the line pressure at the valveinlet opens the valve, allowing fullflow.

Modulating ActionThe valve holds any intermediateposition when operating pressuresare equal above and below thediaphragm. A Cla-Val “Modulating”Pilot Control will allow the valve toautomatically compensate for linepressure changes.

Tight Closing OperationWhen pressure from the valve inletis applied to the cover chamber, thevalve closes drip-tight.

• Drip-Tight, Positive Seating• Service Without Removal From Line• Threaded, Flanged or Grooved Ends• Globe or Angle Pattern• 100% Factory TestedThe Cla-Val Model 100-01 Hytrol Valve is a hydraulically oper-ated, diaphragm actuated, globe or angle pattern valve. It con-sists of three major components: body, diaphragm assembly,and cover. The diaphragm assembly is the only moving part. The diaphragm assembly is guided top and bottom by a preci-sion machined stem. It utilizes a non-wicking diaphragm ofnylon fabric bonded with synthetic rubber. A resilient syntheticrubber disc retained on three and one half sides by a disc retainerforms a drip-tight seal with the renewable seat when pressure isapplied above the diaphragm.The Model 100-01 is the basic valve used in nearly all Cla-Val Automatic Control Valves. It is the valve of choice for sys-tem applications requiring remote control, pressure regulation,solenoid operation, rate of flow control, liquid level control orcheck valve operation. The rugged simplicity of design andpackless construction assure a long life of dependable, trouble-free operation. It is available in various materials and in a fullrange of sizes, with either threaded, flanged or grooved ends. Itsapplications are unlimited.

MODEL

On-Off ControlModulating

ControlOn-Off Control

Page 52: Exhibit A - Preliminary Scope of Work

Specifications Model 100-01

Viton® Rubber Parts - suffix KBOptional diaphragm, disc and o-ring fabri-cated with Viton® synthetic rubber. Viton® iswell suited for use with mineral acids, saltsolutions, chlorinated hydrocarbons, andpetroleum oils; and is primarily used in hightemperature applications up to 250° F. Donot use with epoxy coatings above 175° F.

Epoxy Coating - suffix KCThe NSF/ANSI 61 fusion bonded epoxycoating option is for use with cast iron,ductile iron or steel valves. This coating isresistant to various water conditions, cer-tain acids, chemicals, solvents and alka-lies. epoxy coatings are applied in accor-dance with AWWA coating specificationsC116-03. Do not use with temperaturesabove 175° F.

Dura-Kleen® Stem - suffix KDThis stem is designed for applicationswhere water supplies containing dissolvedminerals create deposits that build-up on astandard stem and hamper valve opera-tion. A patented, self-cleaning design onthe stem allows all valve sizes to operatefreely in the harshest conditions.

Delrin® Sleeved Stem - suffix KGThe Delrin® sleeved stem is designed forapplications where water supplies containdissolved minerals which can formdeposits that build up on the valve stemand hamper valve operation. Scale build-up will not adhere to the Delrin® sleevestem. Delrin® sleeved stems are not recom-mended for valves in continuous operationwhere differential pressures are in excess of80 psi (2" and larger Hytrol valves).

Heavy Spring - suffix KHThe heavy spring option is used in applica-tions where there is low differential pres-sure across the valve, and the additionalspring force is needed to help the valveclose. This option is best suited for valvesused in on-off (non-modulating) service.

Anti-Cavitation Trim - suffix KOAnti-Cavitation Trim components consist ofa stainless steel radial slotted disc guideand seat. This system is used when highdifferentials are present across the valve.

Water Treatment Clearance - suffix KWThis additional clearance is beneficial inapplications where water treatment com-pounds can interfere with the closing of thevalve. The smaller outside diameter discguide provides more clearance betweenthe disc guide and the valve seat. Thisoption is best suited for valves used in on-off (non-modulating) service.

For assistance in selecting appropriate valve options or valves manufactured with special design requirements, please contactour Regional Sales Office or Factory.

Available SizesPattern Threaded Flanged Grooved EndGlobe 3⁄8" - 3" 11⁄2" - 36" 11⁄2"-2"- 21⁄2"- 3"- 4"- 6"- 8"Angle 1" - 3" 11⁄2" - 16" & 24" 11⁄2"-2"- 21⁄2"- 3"- 4"- 6"

COVER PIPE PLUG

COVER BEARING SPRING

STEM NUT

DIAPHRAGM WASHER

DISC RETAINER

BODY

*SPACER WASHERS

DISC GUIDE

SEAT

PIPE PLUG

STEM

SEAT O-RING

STUD 8" and Larger

*DIAPHRAGM

*DISC

*Repair Parts

Seat Screw 8" and Larger

(Globe or Angle)

PIPE PLUG

HEX NUT 8" and Larger

Cover Bolt 6" and Smaller

KO DISC GUIDE

KO SEAT

KO Anti-Cavitation Trim Option

Component Standard Material CombinationsBody & Cover Ductile Iron Cast Steel BronzeAvailable Sizes 3/8" - 36" 1" - 16" 1" -16"Disc Retainer &Diaphragm Washer Cast Iron Cast Steel BronzeTrim: Disc Guide, Seat & Cover Bearing

Bronze is StandardStainless Steel is optional

Disc Buna-N® RubberDiaphragm Nylon Reinforced Buna-N® RubberStem, Nut & Spring Stainless SteelFor material options not listed, consult factory.Cla-Val manufactures valves in more than 50 different alloys.

Materials

Valve Body & CoverPressure Class

Flanged Grooved Threaded

Grade Material ANSIStandards*

150Class

300Class

300Class

End‡Details

ASTM A536 Ductile Iron B16.42 250 400 400 400

ASTM A216-WCB Cast Steel B16.5 285 400 400 400

UNS 87850 Bronze B16.24 225 400 400 400

Note: * ANSI standards are for flange dimensions only. Flanged valves are available faced but not drilled.

‡ End Details machined to ANSI B2.1 specifications.Valves for higher pressure are available; consult factory for details

Pressure Ratings (Recommended Maximum Pressure - psi)

Operating Temp. RangeFluids

-40° to 180° F

Page 53: Exhibit A - Preliminary Scope of Work

Model 100-01 Flow Chart (Based on normal flow through a wide open valve)

K = 894d 4

C 2v

L = K 12 f

K Factor (Resistance Coefficient)The Value of K is calculated from the formula:(U.S. system units)

Equivalent Length of PipeEquivalent lengths of pipe (L) are determined from the formula:(U.S. system units)

Fluid VelocityFluid velocity can be calculated from the following formula:(U.S. system units)

d

V = .4085 Q2d

CV FactorFormulas for computing C Factor, Flow (Q) and Pressure Drop V ( P):

CV = QP CV=Q P CV

=Q

P2

V

Where:U.S. (gpm) @ 1 psi differential at 60 F water

(l/s) @ 1 bar (14.5 PSIG) differentialor

at 15 C waterinside pipe diameter of Schedule 40 Steel Pipe (inches)friction factor for clean, new Schedule 40 pipe(dimensionless) (from Cameron Hydraulic Data,18th Edition, P 3-119)Resistance Coefficient (calculated)Equivalent Length of Pipe (feet)Flow Rate in U.S. (gpm) or (l/s)Fluid Velocity (feet per second) or (meters per second)Pressure Drop in (psi) or (bar)

=

=

==

=====P

VQLK

fd

C

Functional Data Model 100-01

*Estimated

Valve Size Inches 3⁄8† 1⁄2† 3⁄4† 1† 1 11⁄4 11⁄2 2 21⁄2 3 4 6 8 10 12 14 16 18 20 24 30 36mm. 10 15 20 25 25 32 40 50 65 80 100 150 200 250 300 350 400 450 500 600 750 900

CVFactor

GlobePattern

Gal./Min.(gpm.) 1.8 6 8.5 13.3 20 30 32 54 85 115 200 440 770 1245 1725 2300 3130 4463 5345 7655 10150 14020Litres/Sec. (l/s.) .11 .38 .54 .84 1.261.89 2 3.4 5.4 7.3 13 28 49 79 109 145 198 282 337 483 640 885

AnglePattern

Gal./Min.(gpm.) — — — — 21 27 29 61 101 139 240 541 990 1575 2500* 3060* 4200* — — 9950* — —Litres/Sec. (l/s.) — — — — 1.321.701.83 3.8 6.4 8.8 15 34 62 99 158 193 265 — — 628 — —

EquivalentLengthofPipe

GlobePattern

Feet (ft.) 25 7 16 23 10 19 37 51 53 85 116 211 291 347 467 422 503 612 595 628 1181 2285Meters (m.) 7.6 2.2 4.8 7.1 3.1 5.7 12 15.5 16 26 35 64 89 106 142 129 154 187 181 192 360 696

AnglePattern

Feet (ft.) — — — — 9.0 28 46 40 37 58 80 139 176 217 222* 238* 247* — — 372* — —Meters (m.) — — — — 2.8 8.7 14 12 11 18 25 43 54 66 68 73 75 — — 113 — —

K Factor

Globe Pattern 16.3 3.7 5.7 6.1 2.7 3.6 5.9 5.6 4.6 6.0 5.9 6.2 6.1 5.8 6.1 5.0 4.6 5.2 3.9 4.0 6.4 6.4Angle Pattern — — — — 2.5 4.4 7.1 4.4 3.3 4.1 4.1 4.1 3.7 3.6 2.9 2.8 2.6 — — 2.4 — —

Liquid Displacedfrom Cover

Chamber WhenValve Opens

Fl. Oz .12 .34 .34 .70 — — — — — — — — — — — — — — — — — —U.S. Gal. — — — — .02 .02 .02 .03 .04 .08 .17 .53 1.26 2.51 4.0 6.5 9.6 11 12 29 42 90ml 3.5 10.110.120.775.775.775.7 121 163 303 643 — — — — — — — — — — —Litres — — — — — — — — — — — 2.0 4.8 9.5 15.1 24.6 36.2 41.6 45.4 109.8 159 340

† Non Guided Stem

1211/2

2 3 4 6 8 10 1621/2 14 2411/41

1 2 3 4 6 8 10 12 2421/211/2 14 1611/4

363020181/2* 1*3/4*(*Non Guided Stem)

3/8* 1

10 20 30 40 60 80 100 200 500 1000 2000 5000 10,000 20,000 50,000 1

2

3 4

6 8

10

20

30 40

60 80

100

5 3

Angle Valve Sizes (Inches)

Globe Valve Sizes (Inches)

Pres

sure

Dro

p —

psi

Flow Rate gpm (water)

1 100,000

rruddick
Highlight
rruddick
Highlight
rruddick
Highlight
rruddick
Highlight
rruddick
Highlight
rruddick
Highlight
Page 54: Exhibit A - Preliminary Scope of Work

CLA-VAL 1701 Placentia Ave • Costa Mesa CA 92627 • Phone: 949-722-4800 • Fax: 949-548-5441 • E-mail: [email protected] • www.cla-val.com Copyright Cla-Val 2019 • Printed in USA • Specifications subject to change without notice.©

GGGGGG

DInletDDDDD

FFF

100-01Threaded &

Flanged

A

E

C(MAX)

K

J

H

Inlet Outlet

AAAAA

B (Diameter)

A

E

C(MAX)

J

Inlet Outlet

B

100-013/8”, 1/2”, 3/4”, 1”

Auxillary Hytrol Valves with non Guided Stems

GGGG

DDDDInlet

AAAA

100-01Grooved

EE

CC(MAX)

K

J

H

Inlet Outlet

B (Diameter)Dimensions

E-100-01 (R-10/2019)

Note: The top two flange holes on valve size 36 are threaded to 1 1/2"-6 UNC.*Non Guided Stem Auxiliary Hytrol Controls†18 inch and larger 100-01 series Hytrol valves are equipped with flange feet for safety and convenience.Consult Cla-Val representative for details.

Cla-Val Control Valves operate with maximum efficiency when mounted in horizontal piping with the main valve cover UP, however, other positions are acceptable. Due tocomponent size and weight of 8 inch and larger valves, installation with cover UP is advisable. We recommend isolation valves be installed on inlet and outlet for maintenance.Adequate space above and around the valve for service personnel should be considered essential. A regular maintenance program should be established based on the specificapplication data. However, we recommend a thorough inspection be done at least once a year. Consult factory for specific recommendations.

Model 100-01

Valve Size (Inches) 3⁄8 * 1⁄2 * 3⁄4 * 1 * 1 1 1⁄4 1 1⁄2 2 2 1⁄2 3 4 6 8 10 12 14 16 18† 20† 24† 30† 36†

A Threaded 2.75 3.50 3.50 5.12 7.25 7.25 7.25 9.38 11.00 12.50 — — — — — — — — — — — —AA 150 ANSI — — — — — — 8.50 9.38 11.00 12.00 15.00 20.00 25.38 29.75 34.00 39.00 41.38 46.00 52.00 61.50 63.00 72.75AAA 300 ANSI — — — — — — 9.00 10.00 11.62 13.25 15.62 21.00 26.38 31.12 35.50 40.50 43.50 47.64 53.62 63.24 64.50 74.75AAAA Grooved End — — — — — — 8.50 9.00 11.00 12.50 15.00 20.00 25.38 — — — — — — — — —B Diameter 2.50 3.12 3.12 4.38 5.62 5.62 5.62 6.62 8.00 9.12 11.50 15.75 20.00 23.62 28.00 32.75 35.50 41.50 45.00 53.16 56.00 66.00C Maximum 2.33 5.88 5.88 6.25 5.50 5.50 5.50 6.50 7.56 8.19 10.62 13.38 16.00 17.12 20.88 24.19 25.00 39.06 41.90 43.93 54.60 59.00CC Maximum Grooved End — — — — — — 4.75 5.75 6.88 7.25 9.31 12.12 14.62 — — — — — — — — —D Threaded — — — — 3.25 3.25 3.25 4.75 5.50 6.25 — — — — — — — — — — — —DD 150 ANSI — — — — — — 4.00 4.75 5.50 6.00 7.50 10.00 12.69 14.88 17.00 19.50 20.81 — — 30.75 — —DDD 300 ANSI — — — — — — 4.25 5.00 5.88 6.38 7.88 10.50 13.25 15.56 17.75 20.25 21.62 — — 31.62 — —DDDD Grooved End — — — — — — — 4.75 — 6.00 7.50 — — — — — — — — — — —E 1.25 0.88 0.88 1.63 1.12 1.12 1.12 1.50 1.69 2.06 3.19 4.31 5.31 9.25 10.75 12.62 15.50 12.95 15.00 17.75 21.31 24.56EE Grooved End — — — — — — 2.00 2.50 2.88 3.12 4.25 6.00 7.56 — — — — — — — — —F 150 ANSI — — — — — — 2.50 3.00 3.50 3.75 4.50 5.50 6.75 8.00 9.50 10.50 11.75 15.00 16.50 19.25 22.50 28.50FF 300 ANSI — — — — — — 3.06 3.25 3.75 4.13 5.00 6.25 7.50 8.75 10.25 11.50 12.75 15.00 16.50 19.25 24.00 30.00G Threaded — — — — 1.88 1.88 1.88 3.25 4.00 4.50 — — — — — — — — — — — —GG 150 ANSI — — — — — — 4.00 3.25 4.00 4.00 5.00 6.00 8.00 8.62 13.75 14.88 15.69 — — 22.06 — —GGG 300 ANSI — — — — — — 4.25 3.50 4.31 4.38 5.31 6.50 8.50 9.31 14.50 15.62 16.50 — — 22.90 — —GGGG Grooved End — — — — — — — 3.25 — 4.25 5.00 — — — — — — — — — — —H NPT Body Tapping — 0.125 0.125 0.25 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00J NPT Cover Center Plug 0.125 0.125 0.125 0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.75 0.75 1.00 1.00 1.25 1.50 2.00 1.00 1.00 1.00 2.00 2.00K NPT Cover Tapping — 0.125 0.125 0.25 0.375 0.375 0.375 0.375 0.50 0.50 0.75 0.75 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 2.00Valve Stem Int. Thread UNF — — — — 10 - 32 10 - 32 10 - 32 10 - 32 10 - 32 1⁄4 - 28 1⁄4 - 28 3⁄8 - 24 3⁄8 - 24 3⁄8 - 24 3⁄8 - 24 3⁄8 - 24 1⁄2 - 20 3⁄4 - 16 3⁄4 - 16 3⁄4 - 16 3⁄4 - 16 3⁄4 - 16Stem Travel — — — — 0.40 0.40 0.40 0.60 0.70 0.80 1.10 1.70 2.30 2.80 3.40 4.00 4.50 5.10 5.63 6.75 7.50 8.50Approx. Ship Weight (lbs) 3 3 8 8 15 15 15 35 50 70 140 285 500 780 1165 1600 2265 2982 3900 6200 7703 11720N

go to www.cla-val.com and click on theYouTube link to view a 3D animation

demonstrating how the 100-01 operates

rruddick
Highlight
Page 55: Exhibit A - Preliminary Scope of Work

E‐2.  Double Check Detector Assembly: 

Ames 3000SS Specification Sheet 

Page 56: Exhibit A - Preliminary Scope of Work

Series 3000SSDouble Check Detector AssembliesSizes: 21⁄2" – 12" 3000SSSeries 3000SS Double Check Detector Assemblies are designed for use in accordance with water utility non-health hazard con-tainment requirements. It is mandatory to prevent the reverse flow of fire protection system substances, i.e., glycerin wetting agents, stagnant water and water of non-potable quality from being pumped or siphoned into the potable water supply.

Features• Cam-Check Assembly valve provides low head loss• Short lay length is ideally suited for retrofit installations• Stainless Steel body is half the weight of competitive designs

reducing installation and shipping cost• Stainless steel construction provides long term corrosion

protection and maximum strength• Single top access cover with two-bolt grooved style coupling

for ease of maintenance• No special tools required for servicing• Compact construction allows for smaller vaults and enclosures• Furnished with 5⁄8" x 3⁄4" bronze meter (gpm or cfm)• Detects underground leaks and unauthorized water use• May be installed horizontal or vertical “flow up” position

(ASSE Only)

Available ModelsSuffix:LG – less shutoff valvesOSY – UL/FM outside stem and yoke resilient seated

gate valvesOSY FxG – flanged inlet gate connection and grooved

outlet gate connectionOSY GxF – grooved inlet gate connection and flanged

outlet gate connectionOSY GxG – grooved inlet gate connection and grooved

outlet gate connectionCFM – cubic feet per minuteGPM – gallons per minute meterPost indicator plate and operating nut available – consult factory

SpecificationsA Double Check Detector Assembly shall be installed on fire protection systems when connected to a drinking water supply. Degree of hazard present is determined by the local authority having jurisdiction. The main valve body shall be manufactured from 300 Series stainless steel to provide corrosion resistance, 100% lead free* through the waterway. The double check detector assembly consists of two independently operating, spring loaded check valves, two UL, FM, OSY resilient seated gate valves, and bypass assembly. The bypass assembly con-sists of a meter (cubic ft. or gallons), a double check including shutoff valves and required test cocks. Each cam-check shall be internally loaded and provide a positive drip tight closure against reverse flow. Cam-check includes a stainless steel cam arm and spring, rubber faced disc and a replaceable seat. There shall be no brass or bronze parts used within the cam-check valve assembly. The check valve seats shall be of molded thermoplastic construction. The use of seat screws as a reten-tion method is prohibited. All internal parts shall be accessible through a single cover on the valve assembly. The valve cover shall be held in place through the use of a single grooved style two-bolt coupling. The bypass line shall be hydraulically sized to accurately measure low flow. The bypass line shall consist of a meter, a small diameter double check assembly with test cocks and isolation valves. The bypass line double check valve shall have two independently operating modular poppet check valves, and top mounted test cocks. The assembly shall be an Ames Fire & Waterworks 3000SS.

MaterialsAll internal metal parts: 300 Series stainless steel, Main valve body: 300 Series stainless steel, Check assembly: Noryl® Flange dimension in accordance with AWWA Class D.Noryl® is a registered trademark of General Electric Company.

* The wetted surface of this product contactedby consumable water contains less than0.25% of lead by weight.

It is illegal to use this product in any plumbing system providing water for human consumption, such as drinking or dishwashing, in the United States. Before installing standard material product, consult your local water authority, building and plumbing codes.

WARNING!

ES-A-3000SS

Job Name –––––––––––––––––––––––––––––––––––––––––––– Contractor ––––––––––––––––––––––––––––––––––––––––––––

Job Location –––––––––––––––––––––––––––––––––––––––––– Approval ––––––––––––––––––––––––––––––––––––––––––––––

Engineer ––––––––––––––––––––––––––––––––––––––––––––– Contractor’s P.O. No. –––––––––––––––––––––––––––––––––––

Approval ––––––––––––––––––––––––––––––––––––––––––––– Representative –––––––––––––––––––––––––––––––––––––––––

Ames Fire & Waterworks product specifications in U.S. customary units and metric are approximate and are provided for reference only. For precise measure-ments, please contact Ames Fire & Waterworks Technical Service. Ames Fire & Waterworks reserves the right to change or modify product design, construction, specifications, or materials without prior notice and without incurring any obligation to make such changes and modifications on Ames Fire & Waterworks products previously or subsequently sold.

Page 57: Exhibit A - Preliminary Scope of Work

C(Open)

Pressure — TemperatureTemperature Range: 33°F – 110°F (0.5°C – 43°C) Maximum Working Pressure: 175psi (12 bar)

CapacityFlow curves as tested by Underwriters Laboratory per UL 1469, 1996. * Rated flow **UL Tested

StandardsASSE 1048, AWWA C510-92, CSA B64.5, UL 1469

ApprovalsUL Classified (OSY only), FM (sizes 21⁄2" – 10", OSY only)

SIZE DIMENSIONS NET WEIGHT NET WEIGHT

A C (OSY) D G L P w/Gates w/o Gatesin. in. mm in. mm in. mm in. mm in. mm in. mm lb. kg. lb. kg.21⁄2 37 965 163⁄8 416 31⁄2 89 10 250 22 559 121⁄2 318 155 70 68 313 38 965 187⁄8 479 33⁄4 95 10 250 22 559 13 330 230 104 70 324 40 1016 223⁄4 578 41⁄2 114 10 250 22 559 141⁄2 368 240 109 73 336 481⁄2 1232 301⁄8 765 51⁄2 140 15 381 271⁄2 699 151⁄2 394 390 177 120 548 521⁄2 1334 373⁄4 959 63⁄4 171 15 381 291⁄2 749 181⁄2 464 572 259 180 8210 551⁄2 1410 453⁄4 1162 8 200 15 381 291⁄2 749 191⁄2 495 774 351 190 8612 571⁄2 1461 531⁄8 1349 91⁄2 241 15 381 291⁄2 749 21 533 1044 474 220 100

kPa psi 103 15

83 12

62 9

41 6

21 3

0 0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 gpm 171 380 570 760 950 1140 1330 1520 1170 1900 2090 2280 2470 2660 2850 lpm

5 10 15 fps1.5 3 4.6 mps

4" * **

kPa psi

83 12

69 10

55 8

41 6

28 4

14 2

3" * **

0 25 50 100 150 200 250 300 350 400 450 500 550 600 gpm95 190 380 570 760 950 1140 1330 1520 1710 1900 2090 2280 lpm

15 fps4.6 mps

kPa psi

83 12

69 10

55 8

41 6

28 4

14 2

21/2" * **

0 25 50 100 150 200 250 300 350 400 450 500 525 gpm95 190 380 570 760 950 1140 1330 1520 1710 1900 1995 lpm

15 fps4.6 mps

kPa psi

103 15

83 12

62 9

41 6

21 3

6" * **

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 gpm 380 760 1140 1520 1900 2280 2660 3040 3420 3800 4180 4560 4940 5320 5700 lpm

5 10 15 fps1.5 3 4.6 mps

kPa psi

83 12

62 9

41 6

21 3

8" * **

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 gpm950 1900 2850 3800 4750 5700 6650 7600 8550 9500 lpm

5 10 15 fps1.5 3 4.6 mps

kPa psi

103 15

83 12

62 9

41 6

21 3

10"

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 3000 3500 gpm950 1900 2850 3800 4750 5700 6650 7600 8550 9500 11400 13300 lpm

5 10 fps1.5 3 mps

kPa psi 110 16 97 14 83 12 69 10 55 8 41 6 28 4 14 2

12"

* **

0 500 1000 1500 2000 2500 3000 3500 4000 4500 gpm1900 3800 5700 7600 9500 11400 13300 15200 17100 lpm

5 10 fps1.5 3 mpsL P

A

D

G

ES-A-3000SS 2015 © 2020 Watts

USA: Backflow T: (978) 689-6066 • F: (978) 975-8350 • AmesFireWater.comUSA: Control Valves T: (713) 943-0688 • F: (713) 944-9445 • AmesFireWater.com

Canada: T: (888) 208-8927 • F: (888) 479-2887 • AmesFireWater.caLatin America: T: (52) 55-4122-0138 • AmesFireWater.com

* **

For 12" assembly approvals consult factory.

rruddick
Highlight
rruddick
Highlight
Page 58: Exhibit A - Preliminary Scope of Work

Appendix F  

Typical Detail for Backyard Watermain Replacements 

Page 59: Exhibit A - Preliminary Scope of Work

W

NOTES:

1. FRONT HOSE BIB MUST BE 3/4"

DIAMETER OR LARGER AND

INTERIOR PLUMBING MUST NOT

INCLUDE A WATER SOFTENER

2. EXACT WATER METER LOCATION

MAY VARY DUE TO FIELD

CONDITIONS AND EXISTING HOME

OWNER IMPROVEMENTS.

3. ALTERNATE 1 IS THE MOST

COMMON METHOD OF

INSTALLATION. ALTERNATE 2 WILL

BE USED INSTEAD IF CONDITIONS

PERMIT.

4. DIRECTIONAL BORING IS TYPICALLY

USED TO INSTALL NEW WATER

SERVICE LINES TO THE BACKYARD.

ANY LANDSCAPING OR HARDSCAPE

DAMAGED DURING CONSTRUCTION

WILL BE REPLACED IN-KIND.

NEW METER BOX

(SEE NOTE 2)

WATER SERVICE

LINE (ALTERNATE 1),

SEE NOTES 3 & 4

(E)WATER SERVICE

LINE TO REMAIN

NEW HOSE BIB TO BE

INSTALLED AT POINT

OF ABANDONMENT

CONNECTION OF

NEW WATER

SERVICE LINE TO

(E)WATER SERVICE

LINE

(E)DIRECT SERVICE LINE

TO BE ABANDONED

NEW WATER MAIN

IN STREET

PROPERTY LINE

(TYP)

WATER SERVICE

LINE (ALTERNATE 2),

SEE NOTES 1 & 3

1' FROM BACK OF WALK

(E)WATER MAIN IN BACKYARD

TO BE ABANDONED IN-PLACE

PRIMARY CONNECTION

TO FRONT HOSE BIB,

SEE NOTES 1 & 3

3' TO 10'

STREET

(916) 366-3040 Fax (916) 366-3303905 Sutter Street Suite 200 Folsom CA 95630

Civil Engineers | Land Surveyors | LiDARR. E. Y. ENGINEERS, Inc.

COLONIAL HEIGHTS WATER SYSTEMCOLONIAL HEIGHTS WATER SYSTEM

JANUARY 2020

(E)CURB, GUTTER, &

SIDEWALK (WHERE

APPLICABLE)

BUILDING

TYPICAL SERVICE CONNECTION FORWATER MAIN REPLACEMENT PROJECTS

Page 60: Exhibit A - Preliminary Scope of Work

 

   

 

 

 

Appendix G  

Engineer’s Estimate of Probable Cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 61: Exhibit A - Preliminary Scope of Work

Item No.

Item DescriptionUnit of

MeasureQty

Unit Price(In Figures)

Item Total(In Figures)

1 Mobilization/Demobilization LS 1 1,000,000$ 1,000,000$

2 Traffic Control LS 1 950,000$ 950,000$

3 Water Pollution Control LS 1 20,000$ 20,000$

4 Construction Staking & Preservation of Survey Information LS 1 150,000$ 150,000$

5 Abandon Existing Fire Hydrant EA 60 2,000$ 120,000$

6 Abandon Existing Appurtenance (Valves, ARV's, & BO's) EA 20 1,500$ 30,000$

7 Abandon Existing Well Site with Tank Removal EA 1 10,000$ 10,000$

8 Abandon Existing Well Site (No Tank) EA 1 5,000$ 5,000$

9 Abandon Existing Connection to System EA 3 6,000$ 18,000$

10 Connect to Existing Backyard Service Line & Abandon Backyard Watermain EA 513 7,000$ 3,591,000$

11 6" PVC C-900 (DR-14) Water Pipe LF 420 155$ 65,100$

12 8" PVC C-900 (DR-14) Water Pipe LF 32,100 165$ 5,296,500$

13 10" PVC C-900 (DR-14) Water Pipe LF 3,000 175$ 525,000$

14 12" PVC C-900 (DR-14) Water Pipe LF 280 190$ 53,200$

15 Fire Hydrant Assembly & Lateral with Valve EA 69 12,000$ 828,000$

16 1" Water Service Line (serving Residential and School Irrigation) EA 558 4,000$ 2,232,000$

17 2" Water Service Line (serving Commercial Lots) EA 3 7,000$ 21,000$

18 3" Water Service Line (serving School) EA 1 7,500$ 7,500$

19 1" Water Meter & Box (at Residential Lot & School Irrigation) EA 558 1,100$ 613,800$

20 2" Water Meter & Box (at Commercial Lot) EA 3 2,300$ 6,900$

21 3" Water Meter & Box (at School Service) EA 1 2,700$ 2,700$

22 6" Gate Valve EA 2 1,500$ 3,000$

23 8" Gate Valve EA 105 1,600$ 168,000$

24 10" Gate Valve EA 13 2,200$ 28,600$

25 12" Butterfly Valve EA 2 2,800$ 5,600$

26 1" Air Release Valve EA 55 5,000$ 275,000$

27 2" Blow Off Valve EA 40 8,000$ 320,000$

28 Water Sampling Station EA 4 5,500$ 22,000$

29 Testing, Disinfection, and Flushing LS 1 140,000$ 140,000$

30 Connect to Existing Water System with Control Valve & Flow Meter EA 4 150,000$ 600,000$

31 Connect to Existing Fire Service EA 3 5,000$ 15,000$

Design Contingency 25% $4,280,725

County Staff Time - Public Outreach & Administration 5% 1,070,181.25$

Design Engineering (Plans, Specifications, and Estimate) 12% 2,568,435.00$

Construction Management & Inspection 20% 4,280,725.00$

Construction Engineering 5% 1,070,181.25$

Construction Contingencies 10% 2,140,362.50$

TOTAL HARD COST OF CONSTRUCTION 21,403,625$

TOTAL SOFT COST OF CONSTRUCTION1

Reviewed by: RJH

Engineer's Estimate of Probable Cost

1. Total Soft Cost of Construction excludes any enviormental services, permitting fees, and any potential mitigation costs.Notes:

32,533,510$

11,129,885$

17,122,900$

Project: San Joaquin County - Colonial Heights Water System Replacement

Source: Colonial Heights Water Study - Water Study Exhibit

Year of Construction: 2022

Date: 11/10/2020

Prepared by: RJR

SUBTOTAL (WITHOUT DESIGN CONTINGENCY)

TOTAL COST OF CONSTRUCTION

SOFT COSTS

Page 62: Exhibit A - Preliminary Scope of Work

Appendix H  

City of Stockton Coordination – Correspondence & Meeting Summary 

Page 63: Exhibit A - Preliminary Scope of Work

1

Ryan Ruddick

From: Ryan RuddickSent: Tuesday, September 15, 2020 9:10 AMTo: 'Jason Ender'Cc: Bob Huun; '[email protected]'; 'Ann Okubo'; 'Rudy Quinones'; 'Lance Cook'; '[email protected]'Subject: RE: Colonial Heights Maintenance District (SJ County) - Water System Improvements - Fire Hydrant

Layout & Fire Flow RequirementsAttachments: ES-A-4000SS.PDF

Jason, 

Can you please see my questions below. Question #1 is a new question regarding the reduced pressure backflow prevention device and is critical to this project: 

1. If a reduce pressure backflow device is required, then the proposed Colonial Heights water system cannot meetthe minimum operating pressure of 40 psi required by the State. This is because the reduced pressure backflowprevention device adds losses of over 10 psi at each connection and causes the Colonial Heights system to havepressures downstream of the device that are less than 40 psi. This is assuming that the City pressure is 50 psi orless at the points of connection. This device also restricts the fire flow capacity that is required for the Schooland Commercial area within the system. In order to allow the Colonial Heights water system to have adequatepressure at the points of connection, can we utilize the check feature that is built into the control valve andexclude the reduce pressure backflow device?

a. Also, for you information attached is a Specification Sheet for the reduced pressure backflow preventiondevice that I used to determine losses. I have highlighted the pressure loss curve to show the losses thisdevice will create. I have checked other reduced pressure backflow prevention device models and theyalso have similar losses.

2. During our meeting the City identified a potential stub for future connection at Perishing Ave & Hammer thatcould be used for a future POC to Colonial Heights. Were you able to verify future stub is installed anddetermine if they prefer Colonial Heights use the stub as a proposed POC?

3. Please provide the City’s required Control Valve’s pressure and flow conditions/settings, specifically theupstream pressure setting. Also, I am assuming the valve will be a CLA‐VAL Pressure Sustaining Valve (CLA‐VALModel 50‐90) or similar?

Let me know if you have any questions or need more information. 

Thanks, 

Ryan Ruddick, PE Associate Engineer R.E.Y. ENGINEERS, INC. Civil Engineers | Land Surveyors | LiDAR

905 SUTTER STREET, SUITE 200�FOLSOM, CA 95630

(916) 366-3040 office (707) 391-7013 cell

Page 64: Exhibit A - Preliminary Scope of Work

2

(916) 366-3303 fax www.reyengineers.com

From: Ryan Ruddick  Sent: Monday, August 31, 2020 3:57 PM To: 'Jason Ender' <[email protected]> Cc: Bob Huun <[email protected]>; [email protected]; Ann Okubo <[email protected]>; Rudy Quinones <[email protected]>; Lance Cook <[email protected]>; [email protected] Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements 

Jason, 

There are few action items from our meeting that were not addressed. Can you please answer the questions to the City below from our meeting: 

During out meeting the City identified a potential stub for future connection at Perishing Ave & Hammer thatcould be used for a future POC to Colonial Heights. Were you able to verify future stub is installed anddetermine if they prefer Colonial Heights use the stub as a proposed POC?

Please provide the City’s required Control Valve’s pressure and flow conditions/settings. Also, I am assuming thevalve will be a CLA‐VAL Pressure Sustaining Valve (CLA‐VAL Model 50‐90) with a Check feature?

Let me know if you have any questions or need me to clarify anything.  

Thanks, 

Ryan Ruddick, PE Associate Engineer R.E.Y. ENGINEERS, INC. Civil Engineers | Land Surveyors | LiDAR

905 SUTTER STREET, SUITE 200�FOLSOM, CA 95630

(916) 366-3040 office (707) 391-7013 cell (916) 366-3303 fax www.reyengineers.com

From: Jason Ender <[email protected]>  Sent: Monday, August 24, 2020 4:12 PM To: Ryan Ruddick <[email protected]> Cc: Bob Huun <[email protected]>; [email protected]; Ann Okubo <[email protected]>; Rudy Quinones <[email protected]>; Lance Cook <[email protected]>; [email protected] Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements 

Ryan,

Clarification for the information provided in the previous email below.

Page 65: Exhibit A - Preliminary Scope of Work

3

A reduced pressure backflow prevention device is required at all points of connection to the City system regardless of the type of control valve used.

Sorry for any confusion this may have caused. Should you have any questions or need additional information, please let me know. Jason Jason M. Ender Construction Engineering Supervisor City of Stockton Public Works Department (209) 937-8381 - phone [email protected] www.stocktongov.com

From: Jason Ender  Sent: Thursday, August 20, 2020 12:32 PM To: Ryan Ruddick <[email protected]> Cc: Bob Huun <[email protected]>; [email protected]; Ann Okubo <[email protected]>; Rudy Quinones <[email protected]>; Lance Cook <[email protected]>; [email protected] Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements  Ryan, The City has finalized the connection requirements. They are as follows:

A pressure sustaining control valve with a reduced pressure type backflow prevention device is required at each point of connection. CLA-VAL model control valves have a check feature that is built in the valve; and that would also be acceptable.

Bi-directional flow meters are not permitted.

Should you have any questions or need additional information, please let me know. Jason Jason M. Ender Construction Engineering Supervisor City of Stockton Public Works Department (209) 937-8381 - phone [email protected] www.stocktongov.com

From: Ryan Ruddick <[email protected]>  Sent: Thursday, August 13, 2020 3:02 PM To: Jason Ender <[email protected]> Cc: Bob Huun <[email protected]>; [email protected]; Ann Okubo <[email protected]>; Rudy Quinones <[email protected]>; Lance Cook <[email protected]>; [email protected] Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements 

Page 66: Exhibit A - Preliminary Scope of Work

4

CAUTION: This email originated from outside the City of Stockton.  Do not click any links or open attachments if this is unsolicited email. 

Jason, 

Have you had a chance to finalize the POC requirements?  If we could get a this information soon it would be greatly appreciated. 

Thanks, 

Ryan Ruddick, PE Associate Engineer R.E.Y. ENGINEERS, INC. Civil Engineers | Land Surveyors | LiDAR

905 SUTTER STREET, SUITE 200�FOLSOM, CA 95630

(916) 366-3040 office (707) 391-7013 cell (916) 366-3303 fax www.reyengineers.com

From: Ryan Ruddick  Sent: Thursday, July 23, 2020 10:01 AM To: 'Jason Ender' <[email protected]> Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements 

Jason, 

Thank you for the update. 

Once you have confirmed the requirements and details for the POC’s please send them over. 

Thanks again, 

Ryan Ruddick, PE Associate Engineer R.E.Y. ENGINEERS, INC. Civil Engineers | Land Surveyors | LiDAR

905 SUTTER STREET, SUITE 200�FOLSOM, CA 95630

(916) 366-3040 office (707) 391-7013 cell (916) 366-3303 fax www.reyengineers.com

From: Jason Ender <[email protected]>  Sent: Thursday, July 23, 2020 9:53 AM To: Ryan Ruddick <[email protected]> Cc: Bob Huun <[email protected]>; [email protected]; Ann Okubo <[email protected]>; Rudy Quinones <[email protected]>; Lance Cook <[email protected]>; [email protected] 

Page 67: Exhibit A - Preliminary Scope of Work

5

Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements  Ryan,   I have reviewed the summary regarding our discussion Tuesday afternoon.  Following our conference call, City staff had a brief internal meeting regarding the project where additional information became available.  I felt it important to emphasize the City’s position at this time to clarify any mis‐information and or confusion regarding the points of connection to the City system.  At this time, POC requirements have not been determined, as you have indicated below.  The use of bi‐directional flow meters may not be permitted and the installation of backflow prevention devices may be required.  Additionally, the installation of a pressure control valve seems likely.    Staff are in the process of finalizing the City’s requirements related to the appurtenances required at the POC’s.  Once the details of those connections are confirmed, the City will finalize its position and provide the information for your use.    Should you have any questions or need additional information, please let me know.  Jason  

Jason M. Ender Construction Engineering Supervisor City of Stockton Public Works Department (209) 937-8381 - phone [email protected] www.stocktongov.com  

From: Ryan Ruddick <[email protected]>  Sent: Wednesday, July 22, 2020 3:59 PM To: Jason Ender <[email protected]> Cc: Bob Huun <[email protected]>; [email protected] Subject: RE: Colonial Heights Maintenance District (SJ County) ‐ Water System Improvements ‐ Fire Hydrant Layout & Fire Flow Requirements  CAUTION: This email originated from outside the City of Stockton.  Do not click any links or open attachments if this is unsolicited email. 

All,  Thank you for meeting yesterday to discuss the County’s Colonial Heights Water System project. The purpose of this email is provide is to provide a summary of our meeting including a few action items that came up. Action items are show in red.   During the meeting Myself, Bob Huun, Rudy (from Water Field Office), and Jason Ender reviewed the existing and proposed points of connections (POC) shown in the Draft Study.  During the review the following items came up:  

Proposed Point of Connection Facility Locations & Requirements  

o Discussion regarding appurtenance requirements at the POC’s. Specific questions arose whether all POC’s will have bi‐directional flow meters and exclude check valves?  

Page 68: Exhibit A - Preliminary Scope of Work

6

City to provide response regarding the POC requirements and if bi‐directional flow meters willbe used.

City to verify who is responsible for the payment and installation of the flow meters at theproposed POC’s?

(Question from REY not discussed in meeting) If a specific Control Valve is required what are thespecs including the valve’s pressure and flow conditions/settings.

o The City noted that a minimum 12” pipe sizes is required (10” connections not allowed) with ButterflyValves. Also, all connections will require cut‐ins (no hot‐taps).

REY to revised Draft to show 12” connections and identify butterfly valve requirements. REY willalso identify the requirement to cut‐in at the POC’s.

o The City identified a potential stub for future connection at Perishing Ave & Hammer that could be usedfor a future POC to Colonial Heights. This POC would replace the proposed POC near Hammer Lane &Valencia Ave.

City to provide verify future stub is installed and determine if they prefer Colonial Heights usethe stub as a proposed POC.

Existing POC’s Abandonment

o Abandon per City requirements which require full abandonment including removal of valves.

Proposed Point of Connection Facility Operations & Connection Pressures

o REY reviewed each POC’s assumed connection pressures and the City agreed that those assumptions aresufficient.

o REY asked if the proposed POC’s valves will close if pressure drop below 40 psi during fire flowconditions. City stated that they will not require that valves close during emergency situations and ifanything will show up to bypass the valving to allow full flow.

Facility Testing Requirements

o City mentioned that during preparation of the Construction Documents, coordination needs to takeplace between the County and City to determine the facility’s testing requirements.

REY to include mention of the testing requirements and the requirement to coordinate with theCity for final testing/acceptance.

Please respond to any action items identified in red and let me know if you have any questions. Also, if I interpreted any items above incorrectly feel free to correct me. 

Jason – Please forward this email to Rudy. 

Thanks, 

Ryan Ruddick, PE Associate Engineer R.E.Y. ENGINEERS, INC. Civil Engineers | Land Surveyors | LiDAR