experimental quantification of entanglement in low dimensional spin systems chiranjib mitra...

64
Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications 2015, December 7-13, HRI Allahabad

Upload: edwin-murphy

Post on 18-Jan-2018

220 views

Category:

Documents


0 download

DESCRIPTION

Quantum Magnetic Systems Low Spin systems (discrete) Low Dimensional Systems – Spin Chains – Spin Ladders Models – Ising Model (Classical) – Transverse Ising Model (Quantum) – Heisenberg Model (Quantum)

TRANSCRIPT

Page 1: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Experimental Quantification of Entanglement in low dimensional Spin Systems

Chiranjib MitraIISER-Kolkata

Quantum Information Processing and Applications 2015, December 7-13, HRI Allahabad

Page 2: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Plan of the Talk• Introduction to Quantum Spin systems and spin qubits• Entanglement in spin chains• Detailed analysis to extract Entanglement from the data –

Magnetic susceptibility as an Entanglement witness• Variation of Entanglement with Magnetic Field• Quantum Information Sharing through complementary

observables• Quantum Phase Transitions in spin systems• Specific Heat as an entanglement witness.• Measurement of specific heat close to quantum criticality

Page 3: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Quantum Magnetic Systems

• Low Spin systems (discrete)• Low Dimensional Systems

– Spin Chains– Spin Ladders

• Models – Ising Model (Classical)– Transverse Ising Model (Quantum)– Heisenberg Model (Quantum)

Page 4: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

The ‘DiVincenzo Checklist’

• Must be able to• Characterise well-defined set of quantum states to

use as qubits• Prepare suitable states within this set• Carry out desired quantum evolution (i.e. the

computation)• Avoid decoherence for long enough to compute• Read out the results

Page 5: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Natural entanglement

• Entanglement that is present ‘naturally’ in easily accessible states of certain systems (for example, in ground states or in thermal equilibrium)

• Natural questions to ask:– How much is there? Can we quantify it?– How is it distributed in space?– Can we use it for anything?

Page 6: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

6

Copper Nitrate Cu(NO3)2 . 2.5H2O

Is an Heisenberg antiferromagnet alternate dimer spin chain system with weak inter dimer interaction as compare to intra dimer interaction.

J

j J >>j

Our system

J

Page 7: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heisenberg model

1i i ii

H B J

No Entanglement for Ferromagnetic ground state

Ener

gy E

Magnetic Field H

2

2

1 ( )2

Singlet (AF)

Page 8: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

The Hamiltonian for two qubit : (Bipartite systems)

Page 9: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

In the ground state (at low temperatures) the system is in the pure state and is in the state

Maximum Mixing

Ener

gy E

-3J/4 (singlet)

J/4 (triplet)J

Page 10: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

At finite temperatures the system is in a mixed state

Page 11: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

At very high temperatures, β 0, the density matrix, Reduces to

Panigrahi and Mitra, Jour Indian Institute of Science, 89, 333-350(2009)

Page 12: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

(goes to zero, since the Pauli matrices are traceless)

Hence the system is perfectly separable

ρ is separable if it can be expressed as a convex sum of tensor product states of the two subsystems

There exists

Page 13: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Thermal Entanglement (intermediate temp)

Page 14: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Concurrence

In Ferromagnet it is zero

For an Antiferromagnet

[W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)]

O’Connor and Wootters, Phys. Rev. A, 63, 052302 (2001)

Page 15: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

B = 0 limit

Isotropic system

Page 16: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Susceptibility as an Entanglement Witness

Wie´sniak M, Vedral V and Brukner C; New J. Phys. 7 258 (2005)

Page 17: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

17D. Das, H. Singh, T. Chakraborty, R. K. Gopal and C. Mitra, NJP 15, 013047 (2013)

Entangled Region

Page 18: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

18D. Das, H. Singh, T. Chakraborty, R. K. Gopal and C. Mitra, NJP 15, 013047 (2013)

Concurrence in Copper Nitrate

Page 19: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Theoretical Entanglement

Arnesen, Bose, Vedral, PRL 87 017901 (2001)

Page 20: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Experimental Entanglement

NJP 15, 013047 (2013); Das, Singh, Chakraborty, Gopal, Mitra

Page 21: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications
Page 22: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Theoretical Entanglement

Page 23: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Entanglement vs Field

NJP 15, 013047 (2013); Das, Singh, Chakraborty, Gopal, Mitra

Page 24: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heisenberg model

1i i ii

H B J

No Entanglement for Ferromagnetic ground state

Magnetic Field H

Ener

gy E

2

2

1 ( )2

Singlet (AF)

Page 25: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Quantum Phase Transition

• H(g) = H0 + g H1, where H0 and H1 commute • Eigenfunctions are independent of g even though the

Eigenvalues vary with g

• level-crossing where an excited level becomes the ground state at g = gc

• Creating a point of non-analyticity of the ground state energy as a function of g

Subir Sachdev, Quantum Phase Transisions, Cambridge Univ Press, 2000

Page 26: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Level Crossing

diverging characteristic length scale ξ

Δ J |g − g∼ c|zν

ξ−1 ∼ Λ |g − gc|ν

Page 27: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heisenberg model

1i i ii

H B J

No Entanglement for Ferromagnetic ground state

Magnetic Field H

Ener

gy E

2

2

1 ( )2

Singlet (AF)

Page 28: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Quantum Information SharingFor Product states

Page 29: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

(Single Qubit)

Q P

Wiesniak, Vedral and Brukner; New Jour Phys 7, 258(2005)

Page 30: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications
Page 31: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Magnetization

NJP 15, 013047 (2013); Das, Singh, Chakraborty, Gopal, Mitra

Page 32: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Susceptibility

Page 33: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Susceptibility as a function of field

Page 34: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Q

Page 35: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Partial information sharing

Page 36: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications
Page 37: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Theoretical and Experimental P+Q at T=1.8

NJP 15, 013047 (2013); Das, Singh, Chakraborty, Gopal, Mitra

Page 38: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

38

Heat Capacity As Entanglement Witness

NJP 15, 0 113001 (2013); Singh, Chakraborty, Das, Jeevan, Tokiwa, Gegenwart , Mitra

Page 39: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

39

The Hamiltonian is related to heat capacity as

Theory

The measure of entanglement is represented by Concurrence C

Page 40: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

40

Experimental (heat capacity)

H. Singh, T. Chakraborty, D. Das, H. S. Jeevan, Y. K. Tokiwa, P. Gegenwart and C. MitraNJP 15, 0 113001 (2013)

Page 41: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

41

Temperature and Field Dependence

Page 42: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

2

4

6

8

100 Oe

C

(Jou

le/M

ole-

K)

T (K)

separable region

Entangled Regime

Specific Heat as an entanglement witness

Wie´s niak M, Vedral V and Brukner C; Phys.Rev.B 78,064108 (2008)

Page 43: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

The Hamiltonians and specific heat are related as

Specific Heat as an entanglement witness

Page 44: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

44

Experimental (heat capacity)…..

U = dC / dT

Page 45: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

45

Theoretical

Page 46: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

46

Temperature and Field Dependence of Internal energy

Page 47: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

47

Entanglement vs. Temperature vs. Field

Page 48: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

-1 0 1 2 3 4 5 6 7 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35C

V (C

al/M

ol-K

)

H (Tesla)

T= 0.8K

QPT at 0.8K

Specific Heat as a function of field at 0.8 K: QPT

Page 49: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heisenberg model

1i i ii

H B J

No Entanglement for Ferromagnetic ground state

Ener

gy E

Magnetic Field H

2

2

1 ( )2

Singlet (AF)

Page 50: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

-1 0 1 2 3 4 5 6 7 8

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

CV (C

al/M

ol-K

)

H (Tesla)

T= 0.8K

QPT at 0.8K

Quantum Phase Transition

Experiment Theory

NJP 15, 0 113001 (2013); Singh, Chakraborty, Das, Jeevan, Tokiwa, Gegenwart , Mitra

Page 51: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Entanglement across QPT

T=0.8 K

NJP 15, 0 113001 (2013); Singh, Chakraborty, Das, Jeevan, Tokiwa, Gegenwart , Mitra

Page 52: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

NH4CuPO4·H2O : Spin Cluster compound

Tanmoy Chakraborty, Harkirat Singh, Chiranjib Mitra, JMMM, 396, 247 (2015)

Page 53: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Magnetization: 3D plots

Page 54: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Quantum Information Sharing

Tanmoy Chakraborty, Harkirat Singh, Chiranjib Mitra, JMMM, 396, 247 (2015)

Page 55: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Quantum Information Sharing

Page 56: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heat Capacity

Page 57: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Heat Capacity: 3D plots

Page 58: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Capturing the QPT

Tanmoy Chakraborty, Harkirat Singh, Chiranjib Mitra, JMMM, 396, 247 (2015)

Page 59: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Conclusion and future directions

• AF Ground state of a quantum mechanical spin system is entangled

• Magnetic susceptibility can be used as a macroscopic entangled witness

• Using quantum mechanical uncertainty principle for macroscopic observables, it is possible to throw light on quantum correlations close to QPT.

• Specific heat measurements at low temperatures explicitly capture the QPT.

• Specific Heat is an Entanglement Witness• ENTANGLEMENT Dynamics using Microwaves

Page 60: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Nature Physics, 11, 255 (2015)

Page 61: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications
Page 62: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Nature Physics, 11, 212 (2015)

Page 63: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications
Page 64: Experimental Quantification of Entanglement in low dimensional Spin Systems Chiranjib Mitra IISER-Kolkata Quantum Information Processing and Applications

Collaborators• Tanmoy Chakraborty • Harkirat Singh• Diptaranjan Das• Sourabh Singh• Radha Krishna Gopal• Philipp Gegenwart