experimental study of acoustic emission...

26
EXPERIMENTAL STUDY OF ACOUSTIC EMISSION TECHNIQUE FOR CONCRETE DEFECT DETECTION HEADER ALI A. UNIVERSITI TEKNOLOGI MALAYSIA

Upload: hanhu

Post on 25-Mar-2019

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

1

EXPERIMENTAL STUDY OF ACOUSTIC EMISSION TECHNIQUE FOR

CONCRETE DEFECT DETECTION

HEADER ALI A.

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

4

EXPERIMENTAL STUDY OF ACOUSTIC EMISSION TECHNIQUE FOR

CONCRETE DEFECT DETECTION

HEADER ALI A.

A project report submitted in partial fulfilment

of the requirements for the award of the degree of

Master of Engineering (Mechanical)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

JUNE 2015

Page 3: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

iii

To Family

“To my beloved family, especially my parents, brothers and sisters for supporting me

all the way”

Page 4: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

iv

ACKNOWLEDGEMENT

First of all, gratefulness of thanks to our creator, “ALLAH” for this

continuous blessing, which make this work neither the first nor the last.

I would like to express my sincere gratitude to my supervisor Dr. Raja Ishak

Raja Hamzah for his valuable guidance, support and encouragement throughout this

study.

Especially, I would like to send my deep appreciations to my family who

brought me up with love and completely support during my study.

Page 5: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

v

ABSTRACT

The process of structural health monitoring (SHM) involves monitoring a

structure over a period of time using appropriate sensors, extracting damage sensitive

features from the measurements made by the sensors and analysing these features to

determine the current state of the structure. Various techniques are available for

structural health monitoring of structures and acoustic emission (AE) is one

technique that is finding an increasing use. Acoustic emission waves are the stress

waves generated by the mechanical deformation of materials. AE waves produced

inside a structure can be recorded by means of sensors attached on the surface.

Analysis of these recorded signals can locate and assess the extent of damage. This

project describes studies on the AE technique for health monitoring of concrete

structures. Crack initiation or structural damage will result in wave propagation in

solid and this can take place in various forms. Propagation of these waves is likely to

be affected by the dimensions, surface properties and shape of the specimen. This, in

turn, will affect source localization. Various laboratory test results will be presented

on source localization, using pencil lead break tests. The results from the tests can be

expected to aid in enhancement of knowledge of acoustic emission process and

development of effective concrete structure diagnostics system.

Page 6: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

vi

ABSTRAK

Proses pemantauan kesihatan struktur (SHM) melibatkan pemantauan

struktur dalam tempoh masa dengan menggunakan sensor yang sesuai, mengekstrak

ciri-ciri sensitif kerosakan dari ukuran yang dibuat oleh sensor dan menganalisis ciri-

ciri ini untuk menentukan keadaan semasa struktur. Pelbagai teknik boleh didapati

untuk pemantauan kesihatan struktur bagi struktur dan pancaran akustik (AE) adalah

salah satu teknik yang semakin meningkat penggunaannya. Gelombang pancaran

akustik adalah gelombang tegasan yang dihasilkan oleh perubahan bentuk mekanikal

bahan. Gelombang AE yang dikeluarkan dalam struktur boleh dirakam melalui

sensor yang dipasang di permukaan. Analisis isyarat yang direkodkan ini boleh

mengesan dan menilai tahap kerosakan. Projek ini menerangkan kajian tentang

teknik AE untuk pemantauan kesihatan struktur konkrit. Permulaan retak atau

kerosakan struktur akan menyebabkan perambatan gelombang dalam pepejal dan ini

boleh berlaku dalam pelbagai bentuk. Perambatan gelombang ini berkemungkinan

terjejas oleh dimensi, ciri-ciri permukaan dan bentuk spesimen. Ini seterusnya, akan

memberi kesan kepada penyetempatan sumber. Pelbagai keputusan ujian makmal

akan dibentangkan tentang penyetempatan sumber, dengan menggunakan ujian patah

mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam

peningkatan pengetahuan proses pancaran akustik dan pembangunan sistem

diagnostik struktur konkrit yang berkesan.

Page 7: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF APPENDIX xiv

1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives of Study 3

1.4 Scope of Study 3

1.5 Thesis Organization 3

2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Methods of Structural Health Monitoring 6

2.3 Acoustic Emission Technique 7

2.3.1 Advantages Acoustic Emission

Technique 12

2.4 Brief History of the Use of AE Technique 14

2.5 AE Data Analysis Approach 15

Page 8: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

viii

2.5.1 Parameter Based Analysis 15

2.5.2 Waveform Based Analysis 19

2.6 AE Wave Modes 20

2.6.1 Longitudinal and Shear Waves 21

2.6.2 Surface Waves 22

2.6.3 Lamb Waves 22

2.7 Instrumentation for AE Monitoring 24

2.8 Signal Processing Tools 29

2.9 AE Generation during Metal Deformation 30

2.10 General Area of Application 32

2.10.1 Application for SHM of Bridges 33

2.11 Challenges in using Acoustic Emission Technique 34

2.11.1 Source Localization 34

2.11.1.1 Time of Arrival Method 34

2.11.1.2 Source Location using Modal

Analysis Technique 38

2.11.2 Noise Removal and Source

Differentiation 39

2.11.3 Damage Quantification for Several

Assailments 43

2.11.3.1 General Methods 43

2.11.3.2 Intensity Analysis using

Historic and Severity Indices 46

2.11.3.3 B-Value Analysis 48

2.11.3.4 Improved b-value (Ib value)

Analysis 50

2.12 Summary 53

3 METHODOLOGY 56

3.1 Introduction 56

3.2 Research Design 56

3.3 Research Equipment 57

3.3.1 The AE Sensor 58

Page 9: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

ix

3.3.2 Couplant and Cable 59

3.4 Experimental Procedure of Research Work 60

3.4.1 The Pencil Lead Test Setup and

Procedure 60

3.4.2 Experimental Acoustic Wave Velocity

Test and Procedure 64

3.4.2.1 Acoustic Emission System

Setup 64

3.4.2.2 AE Sensor Installation and

Sensitivity Checking 64

3.4.2.3 Wave Velocity Test 65

3.4.2.4 Experiment AE Damage

Detection with Pencil Lead

Test and Setup 68

3.5 Summary 70

4 RESULTS AND DISCUSSION 72

4.1 Introduction 72

4.2 Wave Velocity Result 73

4.3 Signal Wave Attenuation Result 73

4.4 Damage Source Location Result 76

4.5 Summary 77

5 CONCLUSION AND RECOMMENDATIONS 79

5.1 Conclusion 79

5.2 Recommendations 80

REFERENCES 82

Appendix A 90-94

Page 10: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Common SHM methods 8

2.2 Materials in which AE has been measured and source

mechanisms causing AE (Kaphle, 2011) 12

2.3 Characteristics of acoustic emission technique compared

with other inspection methods (Pollock, 1989) 14

2.4 Acoustic emission parameters and their information

about the source event (Ozevin, Greve,2004) 18

2.5 Relationships among the crack safety index, crack

growth rate, count rate and ΔK for bridge steels

explained (Kaphle, 2014) 45

3.1 Parameters for evaluating attenuation 61

4.1 Summary of the features of AE signals from pencil lead

test 74

4.2 The contrast of AE signal amplitude between pencil lead

test result and attenuation calculation 75

4.3 Result of experiment damage source location 76

Page 11: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Acoustic Emission technique (Carlos, 2003) 11

2.2 Parameters of AE signals (Nair & Cai, 2010) 16

2.3 Energy as measure area under rectified signal

envelope (Song & Saraswathy, 2007) 17

2.4 Continuous and burst AE signals (Gorman, 1998) 20

2.5 (a) Longitudinal and (b) transverse waves

(Kaphle, 2012) 21

2.6 Surface waves (Kaphle, 2012) 22

2.7 Early arriving symmetric (extensional) mode and

later asymmetric (Flexural) modes

(Thambiratnam, 2009) 23

2.8 Symmetric and Asymmetric Lamb waves

(Thambiratnam, 2012) 23

2.9 AE measurement chain (Trujillo, 2014) 24

2.10 Different types of sensors (Carlyle, 1989) 25

2.11 AE sensor of the piezoelectric element (Grosse,

2008) 26

2.12 Responses of (a) resonant sensor, (b) broadband

sensor (Carlyle, 1989) 28

2.13 (a) Stress-strain diagram of a typical ductile

material; (b) determination of yield strength by the

offset method (Ugural, 2003) 30

2.14 Stress-strain curve in brittle material (Amitrano,

2003) 31

2.15 Stress versus strain along with AE energy (Aad,

Page 12: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

xii

2015) 31

2.16 Stress versus strain along with AE RMS for AISI

type 304 stainless steel (a) annealed and (b) cold

worked 10% (Mohammadi, 2015) 32

2.17 A pressure vessel under test using AE sensors

(Parmar, 2012) 33

2.18 Linear source location 35

2.19 Two-dimensional source location (Mohd Hafizi,

2010) 36

2.20 Use of guard sensors (Hegi, 2005) 40

2.21 AE classification in terms of intensity (vertical

axis) and activity (Horizontal axis) (Aygün, 2011) 43

2.22 Typical relationships among the crack safety

index, crack growth rate, Count rate and ΔK for

bridge steels (Kaphle, 2014) 44

2.23 Assessment chart proposed by NDIS (Aygün,

2011) 45

2.24 Severity- historic index chart for analysis of

concrete bridges (Ziehl, 2008) 47

2.25 Typical intensity chart for metal piping system

(Finlayson, 2003) 48

2.26 Loading curves of a reinforced concrete beam

with corresponding Ib-Values (Shiotani, 2007) 52

2.27 Changes in Ib-value against uniaxial compressive

stress (0–100% failurestress) at various stages of

loading of granite (Rao, 2005) 53

3.1 Research flow chart 57

3.2 Typical AE system setup (Pollock, 1989) 58

3.3 ISR6 sensor 59

3.4 The AE system instrumentation setup in research

(UTM vibration lab) 60

3.5 Pencil lead test setup (UTM vibration lab) 62

3.6 The signal waveform collected from pencil lead

Page 13: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

xiii

fracture test at 1st location (a) and at 8th location

(b); the waveform amplitudes decreasing with

distances from pencil lead fracture location and

the sensor.

63

3.7 Linear source location 66

3.8 Waves recorded by sensors 1,2 to finding TOA 67

3.9 Two dimensional source location (Nivesrangsan et

al., 2007) 68

3.10 Experimental setup – concrete plane with three

sensors (Figure not in scale) 70

4.1 Linear source location 73

4.2 Received AE signals in pencil lead test 75

4.3 Source localization results using TOA method 77

Page 14: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

xiv

LIST OF APPENDIX

APPENDIX NO. TITLE PAGE

A Matlab Cod Localization Sources 90

Page 15: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The Nondestructive testing (NDT) techniques were widely applied to detect

the internal situation of materials and structures. The link between physics and other

applied sciences promote the development of the NDT techniques. When it comes to

the classifications of the NDT techniques, they include but are not limited to acoustic

emission technique, infrared/thermal testing, visual inspection, penetrating testing,

magnetic particle testing, electromagnetic or eddy current testing, radiography, and

ultrasonic testing.

All of these non-destructive testing approaches can work individually;

however, more efficiently if multiple NDTs are employed in the meantime. It is

favorable to apply the NDT techniques into heavy industry like power plants,

aerospace and aircraft industry, leakage detection of pipelines, damage inspection of

dams, construction and maintenance of bridge structure, to name a few (Shiotani,

Aggelis et al., 2007). This research principally discussed the utilizations of the

Acoustic Emission (AE) technique in concrete damage detection.

Once the elastic wave is generated, it then travels throughout the material and

can be detected at considerable distances from its point of origin. Traveling from its

source to the point of detection, the wave is subjected to all the characteristics and

variations of its acoustic path. Its energy is attenuated by geometric spreading and

scattering by both microscopic and macroscopic variations in the material‟s structure.

Page 16: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

2

Other kinds of attenuations may also be present. The wave‟s frequency content is

generated by the source and modified as it travels the acoustic path. The primary

information carried by the wave is the time of arrival and the elastic energy detected

at each sensor on the structure. The excitation of a sensor indicates that something

happened in the specimen at a specific time, while the amplitude indicates the level

of the disturbance. The apparent location of the source and all other characteristics

of the detected signal are modified by the characteristics of the wave‟s path to each

sensor as well as the characteristics the sensor. As a result, in a highly controlled

laboratory experiment, a reasonable estimate can be made of the characteristics of the

emission source; however, in a test on an actual structure, we are limited to what are

basically statistical estimates from multiple emissions to tell us what is happening in

the specimen. Statistical analysis is not generally used in the study of acoustic

emissions, but the state of the specimen and the location coordinates of the sources

are inferred from averages of calculated values from multiple emissions.

1.2 Problem Statement

The loss of signal amplitude when AE signals transmit through the material.

It is a common phenomenon, which has been witnessed in the AE technique test.

The amplitude of AE signals will decline rapidly in the material with high

attenuation. Attenuation dampens a stress wave as the wave front propagates away

from its source and spreads over a larger volume. Attenuation of a stress wave in an

infinite medium causes the wave amplitude to decrease proportional to the distance

from the wave source.

The concrete has unique characteristics due to heterogeneity, porosity and

presence of cracks. Besides internal damping, AE waves travelling in concrete

members undergo reflection, scattering, mode conversion and diffraction, all of

which influence the propagation of stress waves. Wave attenuation limits sensor

distance, which, in turn, limits the area that can be accurately monitored by a lead

Page 17: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

3

pencil test. Therefore, attenuation is considered as having the major influence on the

accuracy of data collected from concrete members.

1.3 Objectives of Study

1. To investigate the reliability and performance of acoustic emission

technique that used to localization the active defects in a concrete plane.

2. To prevent wave signal attenuation which effect on the acoustic emission

system.

1.4 Scope of Study

1. Experiment the range that can be measured using the defined AE sensor.

2. Test the localization capability of the defined AE sensor in concrete.

3. Analysis the data using Matlab programming.

1.5 Thesis Organization

This thesis consists of five chapters summarized as follows:

Chapter two: presents the literature review about the acoustic emission in term of

the experimental methods.

Chapter three: describes the methodology that has been used to predict the damage

location using acoustic emission technique.

Page 18: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

4

Chapter four: provides the results of the process for the experiment speed sound

through the concrete experiment signal wave attenuation and damage source

location, where the damage location with exact damage position then with calculated

damage position.

Chapter five: summarizes the conclusion of the work and the recommendations for

the future works.

Page 19: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

82

REFERENCES

Achenbach, J. D. (2009). Structural Health Monitoring–What is the Prescription?.

Mechanics Research Communications, 36(2), 137-142.

Amitrano, D. (2003). Brittle‐ductile Transition and Associated Seismicity:

Experimental and Numerical Studies and Relationship with the b value.

Journal of Geophysical Research: Solid Earth (1978–2012), 108(B1).

Aad, G., Abbott, B., Abdallah, J., Khalek, S. A., Abdinov, O., Aben, R., ... &

Alonso, F. (2015). Search for Higgs Boson Pair Production in the γ γ b b¯

Final State Using p p Collision Data at s= 8 TeV from the ATLAS Detector.

Physical Review Letters, 114(8), 081802.

Abdelrahman, M. (2013). Assessment of Damage in Concrete Structures Using

Acoustic Emission.

Abraham, J., Abreu, P., Aglietta, M., Ahn, E. J., Allard, D., Allekotte, I., ... &

Bonino, R. (2010). Measurement of the Depth of Maximum of Extensive Air

Showers Above 10 18 eV. Physical Review Letters, 104(9), 091101.

Asaei, S. M. S., Lau, T. L., & Bunnori, N. M. (2012). Experimental and Numerical

Verification of the Retrofitted RC Columns using FRP-A State of the Art

Review. Caspian Journal of Applied Sciences Research, 1(9), 38-55.

Chang, P. C., & Liu, S. C. (2003). Recent Research in Nondestructive Evaluation of

Civil Infrastructures. Journal of Materials in Civil Engineering, 15(3), 298-

304.

Chen, H. G., Yan, Y. J., & Jiang, J. S. (2006). Vibration-based damage detection of

Composite Wingbox Structures using Improved Hilbert-Huang Transform.

Page 20: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

83

Key Engineering Materials, 324, 539-542.

Comolli, L., & Micieli, A. (2011). Numerical Comparison of Peak Detection

Algorithms for the Response of FBG in Non-Homogeneous Strain Fields. In

21st International Conference on Optical Fibre Sensors (OFS21) (pp.

77538F-77538F). International Society for Optics and Photonics.

Carlos, M. F. (2003). Acoustic Emission: Heeding the Warning Sounds from

Materials. ASTM Standardization News, 31(10).

Carlyle, J. M. (1989). Acoustic Emission Testing the F-111. NDT International,

22(2), 67-73.

Cuadra, J., Vanniamparambil, P. A., Hazeli, K., Bartoli, I., & Kontsos, A. (2013).

Damage Quantification in Polymer Composites using a Hybrid NDT

Approach. Composites Science and Technology, 83, 11-21.

Cao, M., & Qiao, P. (2008). Integrated Wavelet Transform and its Application to

Vibration Mode Shapes for the Damage Detection of Beam-Type Structures.

Smart Materials and Structures, 17(5), 055014.

Carpinteri, A., Lacidogna, G., & Niccolini, G. (2006). Critical Behaviour in Concrete

Structures and Damage Localization by Acoustic Emission. Key Engineering

Materials, 312, 305-310.

Carpinteri, A., Lacidogna, G., & Puzzi, S. (2009). From Criticality to Final Collapse:

Evolution of the “b-value” from 1.5 to 1.0. Chaos, Solitons & Fractals,41(2),

843-853.

Carpinteri, A., Lacidogna, G., Accornero, F., Mpalaskas, A. C., Matikas, T. E., &

Aggelis, D. G. (2013). Influence of Damage in the Acoustic Emission

Parameters. Cement and Concrete Composites, 44, 9-16.

De Oliveira, R. F. (2005). Health Monitoring of FRP using Acoustic Emission and

Fibre Optic Techniques (Doctoral dissertation, Le Mans).

Dai, K., Smith, B. H., Chen, S. E., & Sun, L. (2014). Comparative Study of Bridge

Page 21: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

84

Management Programmes and Practices in the USA and China. Structure and

Infrastructure Engineering, 10(5), 577-588.

Daniel, I. M., Luo, J. J., Sifniotopoulos, C. G., & Chun, H. J. (1998). Acoustic

Emission Monitoring of Fatigue Damage in Metals. Nondestructive Testing

and Evaluation, 14(1-2), 71-87.

Devi, R. R., Ali, I., & Maji, T. K. (2003). Chemical Modification of Rubber Wood

with Styrene in Combination with a Crosslinker: Effect on Dimensional

Stability and Strength Property. Bioresource Technology, 88(3), 185-188.

Figueiredo, E., Figueiras, J., Park, G., Farrar, C. R., & Worden, K. (2011). Influence

of the Autoregressive Model Order on Damage Detection. Computer‐Aided

Civil and Infrastructure Engineering, 26(3), 225-238.

Finlayson, R. D., Luzio, M. A., Miller, R. K., & Pollock, A. A. (2003, August).

Continuous Health Monitoring of Graphite Epoxy Motorcases (GEM). In

NDE for Health Monitoring and Diagnostics (pp. 272-283). International

Society for Optics and Photonics.

Grosse, C. U., & Ohtsu, M. (2008). Acoustic Emission Testing. Springer Science &

Business Media.

Gorman, M. R. (1998). Some Connections between AE Testing of Large Structures

and Small Samples. Nondestructive Testing and Evaluation, 14(1-2), 89-104.

Hoell, S., & Omenzetter, P. (2014). Damage Detection in a Wind Turbine Blade

Based on Time Series Methods. In EWSHM-7th European Workshop on

Structural Health Monitoring.

Huang, M., Jiang, L., Liaw, P. K., Brooks, C. R., Seeley, R., & Klarstrom, D. L.

(1998). Using Acoustic Emission in Fatigue and Fracture Materials Research.

JOM, 50(11), 1-14.

Hamstad, M. A., O‟Gallagher, A., & Gary, J. (2001). Effects of Lateral Plate

Dimensions on Acoustic Emission Signals from Dipole Sources. Journal of

Acoustic Emission, 19, 258-274.

Page 22: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

85

Haneef, T., Lahiri, B. B., Bagavathiappan, S., Mukhopadhyay, C. K., Philip, J., Rao,

B. P. C., & Jayakumar, T. (2015). Study of the Tensile Behavior of AISI

Type 316 Stainless Steel using Acoustic Emission and Infrared

Thermography Techniques. Journal of Materials Research and Technology.

Holford KM, R Pullin and R J Lark. (2004) Acoustic Emission Modelling of

Concrete Hinge Joint Models. J Acoustic Emission, 22, 2004, ISSN 0730-

0050, pp 166 – 172.

Huguet, S., Godin, N., Gaertner, R., Salmon, L., & Villard, D. (2002). Use of

Acoustic Emission to Identify Damage Modes in Glass Fibre Reinforced

Polyester. Composites Science and Technology, 62(10), 1433-1444.

Jin, Z., Jiang, M., Sui, Q., Zhang, F., & Jia, L. (2013, October). Acoustic Emission

Source Linear Localization Based on an Ultra-Short FBGs Sensing System.

In Asia Pacific Optical Sensors Conference 2013 (pp. 89241F-89241F).

International Society for Optics and Photonics.

Kaphle, M. R., Tan, A., Thambiratnam, D., & Chan, T. H. (2011). Review: Acoustic

Emission Technique-Opportunities, Challenges and Current Work at QUT.

Kharrat, M., Ramasso, E., Placet, V., & Boubakar, M. L. (2014). A Signal

Processing Method for Hits Detection and Separation in High AE Activity

Systems: Application to Composite Materials under Fatigue Tests. In

EWSHM-7th European Workshop on Structural Health Monitoring.

Kaphle, M., Tan, A. C., Thambiratnam, D. P., & Chan, T. H. (2012). Identification of

Acoustic Emission Wave Modes for Accurate Source Location in Plate‐Like

Structures. Structural Control and Health Monitoring, 19(2), 187-198.

Kaphle, M. R., & Tan, A. (2009). Source Location of Acoustic Emission Waves for

Structural Health Monitoring of Bridges.

Kamala, G., Hashemi, J., & Barhorst, A. A. (2001). Discrete-wavelet Analysis of

Acoustic Emissions during Fatigue Loading of Carbon Fiber Reinforced

Composites. Journal of Reinforced Plastics and Composites, 20(3), 222-238.

Page 23: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

86

Kaphle, M. R. (2012). Analysis of Acoustic Emission Data for Accurate Damage

Assessment for Structural Health Monitoring Applications.

Kaphle, M. R., Tan, A., Thambiratnam, D., & Chan, T. H. (2011). Review: acoustic

emission technique-opportunities, challenges and current work at QUT.

Lim, J., & Kaewkongka, T. (2008, May). Leakage Evaluation of Heating Coil Tube

in Thermal Oil Boiler by using Acoustic Emission and Data Classification

Technique. In Instrumentation and Measurement Technology Conference

Proceedings, 2008. IMTC 2008. IEEE (pp. 1659-1662). IEEE.

Lovejoy, S. C. (2008). Acoustic Emission Testing of In-service Conventionally

Reinforced Concrete Deck Girder Superstructures on Highway Bridges (No.

FHWA-OR-RD-09-05).

Mancini, S., Tumino, G., & Gaudenzi, P. (2006). Structural Health Monitoring for

Future Space Vehicles. Journal of Intelligent Material Systems and

Structures, 17(7), 577-585.

Mohammadi, R., Saeedifar, M., & Fotouhi, M. (2015). Determination of Fracture

Toughness of Heat Treated AISI D2 Steel using Finite Element and Acoustic

Emission Methods. Modares Mechanical Engineering, 14(11).

Mohd Hafizi, Z. (2010). A Study Of Acoustic Emission Intensity Effect During Fuel

Injector Fault.

Maslouhi, A. (2011). Fatigue Crack Growth Monitoring in Aluminum using Acoustic

Emission and Acousto‐Ultrasonic Methods. Structural Control and Health

Monitoring, 18(7), 790-806.

Morscher, G. N., Hurst, J., & Brewer, D. (2000). Intermediate‐Temperature Stress

Rupture of a Woven Hi‐Nicalon, BN‐Interphase, SiC‐Matrix Composite in

Air. Journal of the American Ceramic Society, 83(6), 1441-1449.

Micheletto, R., Fukuda, H., & Ohtsu, M. (1995). A Simple Method for the

Production of a Two-Dimensional, Ordered Array of Small Latex Particles.

Langmuir, 11(9), 3333-3336.

Page 24: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

87

Nair, A., & Cai, C. S. (2010). Acoustic Emission Monitoring of Bridges: Review and

Case Studies. Engineering Structures, 32(6), 1704-1714.

Nor, N. M., Bunnori, N. M., Ibrahim, A., Shahidan, S., & Saliah, S. M. (2011,

March). An Investigation on Acoustic Wave Velocity of Reinforced Concrete

Beam In-Plane Source. In Signal Processing and its Applications (CSPA),

2011 IEEE 7th International Colloquium on (pp. 19-22). IEEE.

Nair, A., & Cai, C. S. (2010). Acoustic Emission Monitoring of Bridges: Review and

Case Studies. Engineering Structures, 32(6), 1704-1714.

Nivesrangsan, P., Steel, J. A., & Reuben, R. L. (2007). Source Location of Acoustic

Emission in Diesel Engines. Mechanical Systems and Signal Processing,

21(2), 1103-1114.

Oh, H., Azarian, M. H., & Pecht, M. (2011, May). Estimation of Fan Bearing

Degradation using Acoustic Emission Analysis and Mahalanobis Distance. In

Proceedings of the Applied Systems Health Management Conference (pp. 1-

12).

Oost, T. K., Sun, C., Armstrong, R. C., Al-Assaad, A. S., Betz, S. F., Deckwerth, T.

L., ... & Fesik, S. W. (2004). Discovery of Potent Antagonists of the

Antiapoptotic Protein XIAP for the Treatment of Cancer. Journal of

Medicinal Chemistry, 47(18), 4417-4426.

Ozevin, D., Greve, D. W., Oppenheim, I. J., & Pessiki, S. (2004, July). Resonant-

Type MEMS Transducers Excited by Two Acoustic Emission Simulation

Techniques. In Smart Structures and Materials (pp. 239-249). International

Society for Optics and Photonics.

Pandey, A. K., Biswas, M., & Samman, M. M. (1991). Damage Detection from

Changes in Curvature Mode Shapes. Journal of Sound and Vibration, 145(2),

321-332.

Rens, K. L., Nogueira, C. L., & Transue, D. J. (2005). Bridge Management and

Nondestructive Evaluation. Journal of Performance of Constructed Facilities,

Page 25: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

88

19(1), 3-16.

Rose, J. L. (2004). Ultrasonic Waves in Solid Media. Cambridge University Press.

Ramadan, S., Gaillet, L., Tessier, C., & Idrissi, H. (2008). Assessment of the stress

Corrosion Cracking in a Chloride Medium of Cables Used in Prestressed

Concrete Structures by the Acoustic Emission Technique. Measurement

Science and Technology, 19(11), 115702.

RILEM Technical Committee. (2010). Recommendation of RILEM TC 212-ACD:

Acoustic Emission and Related NDE Techniques for Crack Detection and

Damage Evaluation in Concrete*. Materials and Structures, 43(9), 1183-

1186.

Rao, M. V. M. S., & Lakshmi, K. P. (2005). Analysis of b-value and Improved b-

Value of Acoustic Emissions Accompanying Rock Fracture. Current Science-

Bangalore-, 89(9), 1577.

Raghu Prasad, B. K., & Vidya Sagar, R. (2008). Relationship between AE Energy

and Fracture Energy of Plain Concrete Beams: Experimental Study. Journal

of Materials in Civil Engineering, 20(3), 212-220.

Ryan, T. J., Antman, E. M., Brooks, N. H., Califf, R. M., Hillis, L. D., Hiratzka, L.

F., ... & Smith, S. C. (1999). 1999 Update: ACC/AHA Guidelines for the

Management of Patients With Acute Myocardial Infarction: Executive

Summary and Recommendations A Report of the American College of

Cardiology/American Heart Association Task Force on Practice Guidelines

(Committee on Management of Acute Myocardial Infarction). Circulation,

100(9), 1016-1030.

Shiotani, T., Aggelis, D. G., & Makishima, O. (2009). Global Monitoring of Large

Concrete Structures using Acoustic Emission and Ultrasonic Techniques:

Case Study. Journal of Bridge Engineering, 14(3), 188-192.

Sagar, R. V. (2009). An experimental Study on Acoustic Emission Energy and

Fracture Energy of Concrete. In National Seminar & Exhibition on Non-

Page 26: EXPERIMENTAL STUDY OF ACOUSTIC EMISSION …eprints.utm.my/id/eprint/53528/1/HeaderAliAMFKM2015.pdf · mata pensil. Keputusan dari ujian boleh dijangkakan untuk membantu dalam Keputusan

89

Destructive Evaluation (pp. 225-228).

Song, H. W., & Saraswathy, V. (2007). Corrosion Monitoring of Reinforced

Concrete Structures-A. Int. J. Electrochem. Sci, 2, 1-28.

Trujillo, B., Zagrai, A. N., Meisner, D., & Momeni, S. (2014, March). Monitoring of

Acoustic Emission Activity using Thin Wafer Piezoelectric Sensors. In SPIE

Smart Structures and Materials+ Nondestructive Evaluation and Health

Monitoring (pp. 906418-906418). International Society for Optics and

Photonics.

Ugural, A. C., & Fenster, S. K. (2003). Advanced Strength and Applied Elasticity.

Pearson Education.

Yoon, D. J., Weiss, W. J., & Shah, S. P. (2000). Assessing Damage in Corroded

Reinforced Concrete using Acoustic Emission. Journal of Engineering

Mechanics, 126(3), 273-283.

Yang, L., Zhou, Y. C., Mao, W. G., & Lu, C. (2008). Real-time acoustic emission

Testing Based on Wavelet Transform for the Failure Process of Thermal

Barrier Coatings. Applied Physics Letters, 93(23), 231906.

Ziehl, P. H. (2008, March). Applications of acoustic emission evaluation for civil

infrastructure. In The 15th International Symposium on: Smart Structures and

Materials & Nondestructive Evaluation and Health Monitoring (pp. 69340I-

69340I). International Society for Optics and Photonics.