experimental study of the neighborhood effects on the mean

15
Original Article Latin American Journal of Solids and Structures, 2018, 15ሺ3ሻ, e21 Experimental study of the neighborhood effects on the mean wind load‐ ing over two equivalent high‐rise buildings Abstract This paper presents a series of results with respect to the mean values of shear, base moment and torsion acting in a building obtained through an ex‐ perimental wind tunnel study using the standard building proposed by the Commonwealth Advisory Aeronautical Research Council ሺCAARCሻ as build‐ ing reference. In the loading determination, the interference of a neighbor‐ ing building with similar geometric characteristics to the CAARC was simu‐ lated, considering variations of positioning and spacing in relation to the ref‐ erence building. It was concluded that the presence of the neighboring build‐ ing increased the mean loads in the reference building for a significant num‐ ber of directions considered. In the case of the considered deviations and the proposed provisions by this study, it was concluded that the vicinity factor that would contemplate the majority of the results obtained in the tests should increase the wind loads by at least 60% in relation to the values ob‐ tained for the building reference considered in isolation. Keywords vicinity effect; wind action; building aerodynamics. 1 INTRODUCTION The construction of tall buildings is very common in large urban areas. Among the reasons for this practice, the greater use of urban area is certainly one of the determining factors. In the search for less valuable land, many enterprises are built farther away from the densely built metropoli‐ tan areas. In many cases, such buildings are unique in their regions, but with the consequent local development, more buildings of similar size begin to be erected. The result of this is a change the wind flow in the region and the change from an isolated building situation to a set of buildings. The interference of high‐rise buildings interaction effects has been a subject of several researchers’ studies for decades. It can be said that these studies began with the evaluation of the effects at the Empire State Building in New York due to the construction of two nearby buildings by Harris ሺ1934ሻ. From this study, many researches on the interference of neighboring constructions have been made ሺMelbourne and Sharp, 1977; Blessmann, 1985, 1992, Thepmongkorn et al., 2002, Tang and Kwok, 2004, Lam et al., 2008 and 2011, Kim et al., 2015a, bሻ. In addition to experimental and measurement studies in real buildings, many researchers have developed numerical simula‐ tions of these effects ሺTutar and Oguz, 2002, Blocken et al., 2007, Jana et al., 2015ሻ. Kim et al ሺ2015bሻ point out that establishing a guideline to evaluate interfering wind loads, whether global or local, is an extremely complex prob‐ lem because of the large number of variables involved. Thus, one of the great challenges of these researchers is to work the effects of these interferences in a computational way and try to adequately represent the real situation. Searching to meet the structural and normative conceptions, most studies seek to establish guidelines in order to determine the effects of interference of neighboring buildings on the wind loadings and the responses produced in the buildings to determine the structural parameters to be considered. In general, the parameters used in codes and standards determine limiting conditions such as the direction of wind incidence and height of neighboring buildings. As an example, the Eurocode 1: 2010 ‐ Part 1‐4: General Actions, Wind Actions, of Instituto Português da Qualidade ሺ2010ሻ, which recommends considering the influence of neighboring constructions in the determination Gregorio Sandro Vieira a * José Luis Vital de Brito b Acir Mércio Loredo‐Souza c a Universidade Federal de Uberlândia, Faculdade de Engenharia Civil, Uberlândia, MG, Brasil. E‐ mail: [email protected] b Universidade de Brasília, Programa de Pós‐ Graduação em Estruturas e Construção Civil, Brasília, DF, Brasil. E‐mail: [email protected] c Universidade Federal do Rio Grande do Sul, La‐ boratório de Aerodinâmica das Construções, Porto Alegre, RS, Brasil. E‐mail: [email protected] *Corresponding author http://dx.doi.org/10.1590/1679-78253560 Received: November 28, 2016 In Revised Form: September 11, 2017 Accepted: October 16, 2017 Available online: February 02, 2018

Upload: others

Post on 08-Nov-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Experimental study of the neighborhood effects on the mean

Original Article

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21

Experimentalstudyoftheneighborhoodeffectsonthemeanwindload‐ingovertwoequivalenthigh‐risebuildings

AbstractThispaperpresentsaseriesofresultswithrespecttothemeanvaluesofshear,basemomentandtorsionactinginabuildingobtainedthroughanex‐perimentalwindtunnelstudyusingthestandardbuildingproposedbytheCommonwealthAdvisoryAeronauticalResearchCouncil CAARC asbuild‐ingreference.Intheloadingdetermination,theinterferenceofaneighbor‐ingbuildingwithsimilargeometriccharacteristicstotheCAARCwassimu‐lated,consideringvariationsofpositioningandspacinginrelationtotheref‐erencebuilding.Itwasconcludedthatthepresenceoftheneighboringbuild‐ingincreasedthemeanloadsinthereferencebuildingforasignificantnum‐berofdirectionsconsidered.Inthecaseoftheconsidereddeviationsandtheproposedprovisionsbythisstudy,itwasconcludedthatthevicinityfactorthatwould contemplate themajority of the results obtained in the testsshouldincreasethewindloadsbyatleast60%inrelationtothevaluesob‐tainedforthebuildingreferenceconsideredinisolation.

Keywordsvicinityeffect;windaction;buildingaerodynamics.

1INTRODUCTION

Theconstructionoftallbuildingsisverycommoninlargeurbanareas.Amongthereasonsforthispractice,thegreateruseofurbanareaiscertainlyoneofthedeterminingfactors.

Inthesearchforlessvaluableland,manyenterprisesarebuiltfartherawayfromthedenselybuiltmetropoli‐tanareas.Inmanycases,suchbuildingsareuniqueintheirregions,butwiththeconsequentlocaldevelopment,morebuildingsofsimilarsizebegintobeerected.Theresultofthisisachangethewindflowintheregionandthechangefromanisolatedbuildingsituationtoasetofbuildings.

Theinterferenceofhigh‐risebuildingsinteractioneffectshasbeenasubjectofseveralresearchers’studiesfordecades.ItcanbesaidthatthesestudiesbeganwiththeevaluationoftheeffectsattheEmpireStateBuildinginNewYorkduetotheconstructionoftwonearbybuildingsbyHarris 1934 .Fromthisstudy,manyresearchesonthe interferenceof neighboring constructionshavebeenmade MelbourneandSharp, 1977;Blessmann, 1985,1992,Thepmongkornetal.,2002,TangandKwok,2004,Lametal.,2008and2011,Kimetal.,2015a,b .Inadditiontoexperimentalandmeasurementstudiesinrealbuildings,manyresearchershavedevelopednumericalsimula‐tionsoftheseeffects TutarandOguz,2002,Blockenetal.,2007,Janaetal.,2015 .Kimetal 2015b pointoutthatestablishingaguidelinetoevaluateinterferingwindloads,whetherglobalorlocal,isanextremelycomplexprob‐lembecauseofthelargenumberofvariablesinvolved.Thus,oneofthegreatchallengesoftheseresearchersistoworktheeffectsoftheseinterferencesinacomputationalwayandtrytoadequatelyrepresenttherealsituation.

Searchingtomeetthestructuralandnormativeconceptions,moststudiesseektoestablishguidelinesinordertodeterminetheeffectsofinterferenceofneighboringbuildingsonthewindloadingsandtheresponsesproducedinthebuildingstodeterminethestructuralparameterstobeconsidered.Ingeneral,theparametersusedincodesandstandardsdetermine limitingconditionssuchas thedirectionofwind incidenceandheightofneighboringbuildings.Asanexample,theEurocode1:2010‐Part1‐4:GeneralActions,WindActions,ofInstitutoPortuguêsdaQualidade 2010 ,whichrecommendsconsideringtheinfluenceofneighboringconstructionsinthedetermination

GregorioSandroVieiraa*JoséLuisVitaldeBritobAcirMércioLoredo‐Souzac

aUniversidadeFederaldeUberlândia,FaculdadedeEngenhariaCivil,Uberlândia,MG,Brasil.E‐mail:[email protected]ília,ProgramadePós‐GraduaçãoemEstruturaseConstruçãoCivil,Brasília,DF,Brasil.E‐mail:[email protected],La‐boratóriodeAerodinâmicadasConstruções,PortoAlegre,RS,Brasil.E‐mail:[email protected]

*Correspondingauthor

http://dx.doi.org/10.1590/1679-78253560

Received:November28,2016InRevisedForm:September11,2017Accepted:October16,2017Availableonline:February02,2018

Page 2: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 2/15

oftheaveragewindinordertoverifytheeffectoftheturbulenceincreaseinthewakeofthesebuildings.InitsAnnexA.4,thiscodepresentsaconservativeproceduretodeterminethewindspeedbasedontheheightoftheneighboringbuilding,analyzingparameterssuchastheheightofthebuildingunderstudyanditssmallercross‐sectionaldimension.

Inordertoincreaseknowledgeregardingtheinterferenceofneighboringbuildingsintheactionofthewindonanotherbuilding,thepresentstudyinvestigatedtheeffectsoftheinterferenceofaneighboringbuilding,withidenticalgeometriccharacteristicstothebuildingunderstudy,ontheresultingmeanforcesinthedirectionsoftheXandYaxes,basemomentaroundtheXandYaxesandtorsionaroundtheaxisofthebuildingunderstudy.Forthedatacollection,thevariationofthewindincidencewasperformedfrom0o‐345o,withincrementsof15o.Inadditiontothewinddirection,thedistancefromtheneighboringbuildingwasvariedconsideringfourcontoursofdistancesandthreealignmentsbetweenedificationinstudyandneighboringbuilding.Thediscussionoftheresultsispre‐sentedthroughgraphicsthatrepresenttheaerodynamiccoefficientsforeachoneofthestudiedloadingmecha‐nismscomparingtheresultsofthebuildingconsideredinisolationwiththebuildingsubjecttotheinterferenceofaneighbor.Forapossiblecomparisonwithresultsofotherresearchers,thegeometryofthebuildingsfollowedthesameproposalstandardizedbytheCommonwealthAdvisoryAeronauticalResearchCouncil CAARC .

2EXPERIMENTALPROGRAM

2.1Simulationofthenaturalwind

TheexperimentalprogramwasdevelopedattheLaboratóriodeAerodinâmicadasConstruções BuildingAer‐odynamicsLaboratory oftheUniversidadeFederaldoRioGrandedoSul FederalUniversityofRioGrandedoSul ,herein identified by LAC‐UFRGS, located in the city of Porto Alegre, Brazil. The testswere performed at Prof.JoaquimBlessmannboundarylayerwindtunnel.Thistunnelhastwotestsectionswithdimensions1.30mx0.90mx9.32mand2.50mx2.10mx12.00m,beingsuitableforthecorrectsimulationoftheatmosphericlayerwherethebuildingsaretested Blessmann,1990 .A1:406scalemodelwasbuiltandaboundarylayerwindflowwassimu‐latedwiththecharacteristicsindicatedinFigure1.

2.2Detailsofmodelandinstrumentation

Twobuildingswereconsidered.Theinstrumentedmodelwasnamedthemainbuildingandtheotherneigh‐boringbuildingwasnamedthemutemodel,bothwithidenticaltransversalsectionandheightinscaletothemodelproposedbyCAARC.Considering thescale factor, thereducedmodelsused in the testhadacrosssectionwith75mmx112mmandaheightof450mm.Themainbuildinghadatotalof280pressuretapsspreadovertenverticallevels.Ateachlevelsevenpressuretapswerearrangedperfaceofthebuilding,ascanbeobservedinFigure2.Figure3showsthedifferentpositionsofthemutemodel,aswellasthedeviationsconsideredinthisstudy.Threealignmentshavebeendetermined,withalignmentV1coincidingwiththeYdirectionofthemainbuilding,align‐mentV2isparalleltothediagonalofthemainbuildingbutdisplacedsothatitsprojectioninthisdirectiondoesnotoverlapthemainbuilding.Finally,thealignmentV3hasthesamedirectionasthediagonalofthemainbuildinganditisalignedtoit.Inadditiontothesealignmentsspacingswereestablisheddirectlyrelatedtotheheightofthemainbuilding.EachspacingcorrespondedtothedistancebetweenthecenterofthestudybuildingandtheboundaryoftheoutlineofacirclewhosediameterwascalculatedbyreferencetotheheightHofthemainbuilding.Intotal,fourcontourswithdiametersof1.0H,1.5H,2.0Hand2.5H,denominatedbyD1,D2,D3andD4respectively.Theneigh‐boringbuildingwaspositioned,foreachalignment,inalocationimmediatelyoutsideeachcontour,totalingtwelvedistinctvicinities,threeforeachcontour.Foreachvicinity,twenty‐fourwindincidenceswereconsidered,startingwiththe0odirectionandvarying15ofromthereuntilcompletingaturnat345o,resultinginatotalof288casestudies.

Page 3: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 3/15

Figure1:Characteristicsofthesimulatedboundarylayerwind,withvelocityprofilepowerlawexponentp 0.23

Figure2:Equivalentfull‐scaledistributionofthepressuretapsintheCAARCbuilding unit:m

Figure3:Indicationofthepositioningoftheneighboringbuildinginthecoordinatesystemoftheexperiment

2.3DefinitionoftheForce,BaseMomentsandTorsionCoefficients

AMANOAIR500Schiltknechtelectronicmanometer,withresolutionof0.1Paandaccuracyof0.2Pawasusedtomeasuretemperatureandpressureinsidethetestchamberatthetimeoftheexperiment.InordertoobtaintheinstantaneouspressuresaScanivalveTypeZOC33‐Dantecsimultaneoustypefloatingacquisitionequipmentatanacquisitionrateof20kHzandimprecisionof0.12%wasadopted.Foreachwinddirectionandforeachtapoverthesurfaceofthemodel,8192pressurereadings,inmmH2O,wereperformedinarangeof16s.SomepicturesoftheequipmentareshowninFigure4.Fromthesepressuretimeseries,onlythemeanvaluesarepresentedinthiswork.Theaveragevaluesweredividedbytheaveragedynamicpressureintheperiodofthereadings,thusobtainingthedimensionlesspressurecoefficients.

Page 4: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 4/15

Figure4:Datareadingequipment: a Manoairandhosesconnectingtothefeetometricrings; b Scanivalvewith64

channelsofpressuremeasurementpermodule.

Theresultingforcecoefficientsinthedirectionofthemainaxeswascalculatedaccordingtoforcesactingontheareaofinfluenceofeachpressuretake,bytheproductofthedynamicpressurebythetotalareaofthewindface,Accordingtoexpressions1and2:

x

xF

y

FC

qB H 1

y

yF

x

FC

qB H 2

Atwhere:• Fx, Fy: global force in the direction of the X and Y axes; • CFx, CFy: coefficient of force in the direction of the X and Y axes; • q: dynamic wind pressure; • Bx, By: nominal dimensions of the transversal section of the building; • H: height of the building.

ThebendingmomentcoefficientsaroundtheXandYaxesweredeterminedaccordingexpressions3and4:

x

xM

x y

MC

qB B H 3

y

yM

x y

MC

qB B H 4

Atwhere:• Mx, My: Moment of flexion around the main axes X and Y; • CMx, CMy: Coefficient of flexion around the principal axes X and Y;

Torsionofthecoefficientaroundverticalmainbuildingaxisisindicatedinexpression5:

TT

x y

MC

qB B H 5

Atwhere:• MT: Torque moment around the torsion axis; • CT: Coefficient of torsion;

2.4VicinityFactor

AwaytoquantifytheinterferenceofabuildingonitsneighborwasthroughtheVicinityFactor FV .Withthevaluesofthepressurecoefficientscalculatedaccordingtotheexpressionsofthepreviousitem,theFViscalculatedastheratiobetweenthecoefficientfoundconsideringthepresenceoftheneighboringbuildingandthecoefficientconsideringtheisolatedbuilding,asshowninexpression6:

Page 5: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 5/15

with neighborhood

isolated

CFV

C 6

Atwhere:• C: Aerodynamic coefficient under study; • FV: Vicinity Factor

3RESULTSANDDISCUSSIONS

Inordertohaveaparametertocomparewiththeresultsobtainedinthisresearch,thelimitsestablishedbytheBrazilianCodeNBR6123:1988,ofAssociaçãoBrasileiradeNormasTécnicas 1988 ,wereadopted‐sincethisestablishesacriteriontoconsidertheeffectsofneighboringbuildings.InAnnexGofthecode,NB‐6123establishesthatindicateaspresentedbyexpression7mustbeapplied.Itisworthnotingthat,duetothecomplexityofdeter‐miningwindeffectsinobliquedirectionstothebuildingaxes,thecodepredictswindincidenceonlyindirectionsat0ºand90º.

*

*

1.0 1.3

3.0 1.0

sFV

ds

FVd

7

Where:• s: Distance between the confronting faces of neighboring buildings; • d*: The smaller side dimension of the building under study, or half the diagonal of the building under study. Whichever is smaller.

Figures5,6and7presentthevaluesloadsoftheloadcoefficientsforallthestudiedconfirmations.Itisob‐served that inall situations theneighboringbuilding interferes inalldue to theactionof thewind in themainbuilding,sometimesincreasingthemandatothertimesexertingaprotectiveeffectreducingthem.

Fromfigure5wecansee that theprotectiveeffectsaremoresignificantwhentheneighboringbuilding iscloserandpositionedfrontallytothestudybuildingasitcanbeseeninthedirectionofwindincidentof90o,figure5 b and c .However, itcanbeobservedthatwhentheneighborwith thesamedistance ispositionedto theleeward,inthewakeofthemainbuildingthetendencyofprotectionisinvertedandthereisasignificantincreaseofthepreviouslyreducedefforts.Evenatthewindwarditispossibletoobservethattheneighborhastheeffectofelevatingthe forcesascanbeobserved inthe incidencesof60oand120o, figure5 b and c for theneighborpositionedinthelimitofthecontourD3andD4.Inthecaseoftorsion,itwasfoundthat,theproximitybetweentheneighborspromotedtheincreaseofthistwistascanbeobservedinfigure5 e forthe75o,105oand120odirec‐tions.

FortheV2alignmentsituation,itisobservedthat,asforthealignmentV1,theneighboringbuildingpromotessituationsofprotectiveeffect that ismoreefficientwhen it is to thewindward, in a frontaldirectionandwithsmallerdeviationsascanbeseeninthefigure6 a and d forthedirectionsintherangeof30°to60°.Itisobservedthat,exceptforthementioneddirections,agreatpartoftheresults,withtheneighborpositionedtothewindward,ortotheleeward,theresultsarepresentedlargerthanthevaluesconsideringtheisolatedmainbuildingdemon‐stratingtheinfluenceoftheneighboringbuildingonthemainloading.

ForV3alignmenttheprotectioneffectisobservedatlargerintervalsasshowninFigure7 b and c betweenthe15°and75°directions.Itisalsoobservedthatfordirectionsimmediatelyafterwardsthereisasignificantin‐creaseoftheloadsmodallydualtheVenturieffectcausedbythetwobuildingsraisingthewindvelocityandgen‐eratingtheincreaseofthepressuresinthemainbuilding.Inthecaseoftorsionthereisareversalofdirectioninrelationtowhatoccurswiththebuildingconsideredseparately,focusingontherangeofdirectionsbetween30°and75°.

Tables1,2and3presentananalysisoftheresultscollectedinthetestsforthedeterminationoftheforcecoefficientsfortheXandYdirections.Theamountofdatacollectedisprovidedforeacheffort,thenumberofresultsdiscarded,thenumberofresultsthatwerewithinthelimitsofVicinityFactorestablishedbytheBrazilianwindcode,thenumberofresultsthatwereabovetheselimits,andtheintensityofvicinityfactorsthatwereabovethecodelimits.Thesesamecriteriawereusedintheelaborationoftables4to6forthemomentsinthebasearoundtheaxesXandY,andforthetables7to9forthecalculationofthetorsion.ThediscardedresultsareresultsofvaluesofVicinityFactorsthatwereveryhighvaluesinsomespecificdirections,however,withoutinfactmakinga

Page 6: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 6/15

greateffortinsuchdirections.Becauseitisaratiobetweentwovalues,whathappenedinthesesituationswasadivisionbyanumberveryclosetozero,whichcouldleadtoamisleadinganalysisoftheotherresults.

Tables1to5showthatmostoftheresultsconsideredvalidareabovethelimitsestablishedinthecode,reach‐ing84.7%,82.4%and78.3%foralignmentsV1,V2andV3respectively.Alsoalargedistributioncanbeseenfromtheseresultsalongthefour‐laneintensitiesproposedforallstudiedspacings.

Figure5:LoadcoefficientsforthealignmentV1: a ResultantforceinthedirectionoftheXaxis; B ResultantforceinthedirectionoftheYaxis; C BasemomentaroundaxisX; D MomentatthebaseabouttheYaxis; E Aroundthe

CAARCverticalcentralaxis.

Page 7: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 7/15

Figure6:LoadcoefficientsforthealignmentV2: a ResultantforceinthedirectionoftheXaxis; B ResultantforceinthedirectionoftheYaxis; C BasemomentaroundaxisX; D MomentatthebaseabouttheYaxis; E Aroundthe

CAARCverticalcentralaxis.

Page 8: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 8/15

Figure7:LoadcoefficientsforthealignmentV3: a ResultantforceinthedirectionoftheXaxis; B ResultantforceinthedirectionoftheYaxis; C BasemomentaroundaxisX; D MomentatthebaseabouttheYaxis; E Aroundthe

CAARCverticalcentralaxis.

 

Page 9: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 9/15

Table1:ResultsofvicinityfactorsfortheresultingforceintheXandYdirectionsforthealignmentV1

Vicinity Results Dis‐

cardedre‐sults

FVwithinthelimitsofthe

code

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐FX‐V1D1

24

1 1 22 0 8 7 7

FV‐FY‐V1D1 1 9 14 1 4 5 4

FV‐FX‐V1D2 1 1 22 1 6 10 5

FV‐FY‐V1D2 3 3 18 5 9 3 1

FV‐FX‐V1D3 1 1 22 0 10 8 4

FV‐FY‐V1D3 1 4 19 0 13 3 3

FV‐FX‐V1D4 1 3 20 0 6 11 3

FV‐FY‐V1D4 2 3 19 2 14 2 1

Table2:ResultsofvicinityfactorsfortheresultingforceintheXandYdirectionsforthealignmentV2

Vicinity Results Dis‐

cardedre‐sults

FVwithinthelimitsofthe

code

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐FX‐V2D1

24

1 5 18 2 9 4 3

FV‐FY‐V2D1 1 4 19 2 7 7 3

FV‐FX‐V2D2 1 5 18 3 9 4 2

FV‐FY‐V2D2 1 4 19 0 8 9 2

FV‐FX‐V2D3 1 4 19 3 10 4 2

FV‐FY‐V2D3 1 3 20 1 10 8 1

FV‐FX‐V2D4 1 5 18 1 11 4 2

FV‐FY‐V2D4 2 3 19 1 7 9 2

Table3:ResultsofvicinityfactorsfortheresultingforceintheXandYdirectionsforthealignmentV3

Vicinity Results Dis‐

cardedresults

FVwithinthelimitsofthecode

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐FX‐V3D1

24

0 5 19 4 8 3 4

FV‐FY‐V3D1 1 6 17 2 6 4 5

FV‐FX‐V3D2 1 4 19 3 7 6 3

FV‐FY‐V3D2 1 6 17 0 10 4 3

FV‐FX‐V3D3 1 5 18 2 9 5 2

FV‐FY‐V3D3 1 4 19 2 9 5 3

FV‐FX‐V3D4 1 4 19 4 9 4 2

FV‐FY‐V3D4 1 5 18 0 9 6 3

Tables4to6presenttheresultsinrelationtothemomentsaroundtheaxesofthebase.Alsoforthiseffortit

isclearthatthegreatmajorityoftheresultscollectedareabovethelimitsproposedbytheBraziliancode.Inthiscase,88.1%,84.5%and80.4%oftheresultsfoundforalignmentsV1,V2andV3respectivelywereabovetheselimits.Evenwith thevariationofdistancebetween themainbuildingand theneighboringbuilding, theresultsfound in this alignment,whichexceeded the codeative limit, alsopresent themselves inawelldistributedwayamongtheintensityrangesproposedinthisstudy. 

Page 10: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 10/15

Table4:ResultsofvicinityfactorsformomentuminthebasearoundtheXandYdirectionsforthealignmentV1

Vicinity Results Dis‐

cardedresults

FVwithinthelim‐itsofthecode

FVabovethecodelimits

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐MX‐V1D1

24

2 8 14 1 4 5 4

FV‐MY‐V1D1 1 1 22 0 9 6 7

FV‐MX‐V1D2 2 4 18 7 7 3 1

FV‐MY‐V1D2 1 1 22 1 7 9 5

FV‐MX‐V1D3 2 3 19 3 11 3 2

FV‐MY‐V1D3 1 1 22 1 12 6 3

FV‐MX‐V1D4 1 3 20 2 14 3 1

FV‐MY‐V1D4 1 3 20 0 8 9 3

Table5:ResultsofvicinityfactorsformomentuminthebasearoundtheXandYdirectionsforthealignmentV2

Vicinity Results Dis‐

cardedresults

FVwithinthelim‐itsofthecode

FVabovethecodelimits

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐MX‐V2D1

24

1 3 20 2 6 8 4

FV‐MY‐V2D1 2 5 17 1 11 3 2

FV‐MX‐V2D2 2 2 20 0 8 9 3

FV‐MY‐V2D2 2 4 18 3 10 3 2

FV‐MX‐V2D3 1 3 20 1 10 8 1

FV‐MY‐V2D3 1 4 19 2 12 3 2

FV‐MX‐V2D4 1 2 21 2 7 9 3

FV‐MY‐V2D4 1 5 18 2 10 4 2

Table6:ResultsofvicinityfactorsformomentuminthebasearoundtheXandYdirectionsforthealignmentV3

Vicinity Results Dis‐

cardedresults

FVwithinthelim‐itsofthecode

FVabovethecodelimits

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐MX‐V3D1

24

1 6 17 2 7 2 6

FV‐MY‐V3D1 0 5 19 3 9 5 2

FV‐MX‐V3D2 2 5 17 0 10 4 3

FV‐MY‐V3D2 1 3 20 4 9 5 2

FV‐MX‐V3D3 1 4 19 2 9 6 2

FV‐MY‐V3D3 1 5 18 2 11 3 2

FV‐MX‐V3D4 1 5 18 0 10 5 3

FV‐MY‐V3D4 1 3 20 5 10 3 2

Tables7to9presenttheresultsfoundforthetorsionalmomentaroundtheaxisofthemainbuilding.Itcanbe

observedthattheamountofdiscardedresultsissignificantlyhigherthaninthecaseofotherefforts.Thisisduetothebehaviorofthebuildinginrelationtothiseffortinwhichtherearemanyinversionsofthetorsiondirectionwiththevariationofthedirectionofwindincidence,ascanbeobservedinFigures5 e ,6 e and7 e .Alsoforthiseffort,mostoftheresultswereabovethecodeativelimits,reaching63.0%,47.8%and54.7%foralignmentsV1,V2andV3respectively.Inthecaseoftorsion,agreaterdistributionofresultswithaVicinityFactorintensityisobservedabove1.6,especiallywhentheneighborispositionedfrontallytothemainbuilding.

Page 11: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 11/15

Table7:ResultsoftorsionaroundtheCAARCforV1alignment

Vicinity Results Dis‐

cardedresults

FVwithinthelimitsofthecode

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐CT‐V1D1

24

6 7 11 0 4 3 4

FV‐CT‐V1D2 5 3 16 3 6 2 5

FV‐CT‐V1D3 2 2 20 3 5 4 8

FV‐CT‐V1D4 2 3 19 3 8 4 4

Table8:ResultsofthetorsionaroundtheCAARCforthealignmentV2

Vicinity Results Dis‐

cardedresults

FVwithinthelimitsofthecode

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐CT‐V2D1

24

7 9 8 2 4 2 0

FV‐CT‐V2D2 7 10 7 1 5 1 0

FV‐CT‐V2D3 6 8 10 5 3 2 0

FV‐CT‐V2D4 4 7 13 4 6 3 0

Table9:ResultsoftorsionaroundCAARCforV3alignment

Vicinity Results Dis‐

cardedresults

FVwithinthelimitsofthecode

FVabovethecodelim‐

its

FVintensityabovecodelimits

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

FV‐CT‐V3D1

24

8 9 7 2 3 0 2

FV‐CT‐V3D2 10 7 7 2 3 2 0

FV‐CT‐V3D3 5 7 12 4 5 3 0

FV‐CT‐V3D4 4 7 13 4 5 4 0

Tables10to13presentthedataoftheeffortsforvicinityproposalsV1,V2andV3positionedattheboundary

ofthecontoursofD1toD4respectively.Sumsofallresultsobtainedinallassaysaregiven.ThelimitsofNBR‐6123havebeentakenasreference,wherecontourswithspacingsbetween0.17Hand1.0Hareconsidered,whereHrepresentstheheightofthebuilding.Thenumberofresultsthatwerewithinthelimitsproposedbythecodewerehighlighted,aswellasthevaluesthatexceededtheselimits,includingindicatingthepercentageoftheseinrelationtotheresultsconsideredvalid.Asinthetablespresentedabove,theresultsofVFthatexceededthecodelimitsaredividedintofourintervalswhere,inadditiontotheamountofresultsineachinterval,therespectivepercentageoftheseresultsispresentedinrelationtothetotalofreadingsoutofcode,besidestheaccumulatedpercentageofresultscomparedwiththetotalofreadingsconsidered,inordertoverifyfromwhichindextheresultswouldbecontemplatedbytheconfidenceinterval CI .

Manyresearchersperformedworkwithinthisrangeproposedbycode.MorethanhalfofthevicinitypositionsproposedbyThepmongkornetal 2002 wereinthisrange.Forasinglewinddirection,similartothe90ºdirectionofthisstudy,theyfoundinterferenceindexesofupto2.6forthemomentaroundtheXaxis,indexof3.4forthemomentaroundtheYaxisandindexof1.9fortorsion.TangandKwok 2004 usedsettingsverysimilartothoseofThepmongkornandintheirevaluationsforawinddirectionequivalentto90º,verifiedthatthepresenceofaneighboringbuildingproduceddisplacementswithinterferenceindexofupto1.6inthesamewinddirection,1.8inthecaseoftransversedisplacements,andindeterminingthetorsionangletheyfoundtheindexof1.9.Oliveira2009 workedwithspacingsbetween0.25Hto0.6H.Studyingthedynamiceffectsofthewindactingfrontallytothebuilding,equivalenttothedirection90ºofthepresentstudy,whereitfoundindicesofincrementofthetrans‐versal,longitudinalandtorsioninthebuildingsuperiorto2.0,andinsomecasesthisindexreachedmuchhigher

Page 12: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 12/15

levels.Fontoura 2014 workedwithspacingsof0.25Hand0.63H,includingthepresenceofotherbuildingswithdifferentheightsanddifferentpositions.Theeffortsstudiedbyitreachedelevationratesof1.6fortheresultingforce,2.0forbaseflexionand2.2forthetorsionmoment.

Asintheworkoftheseresearchers,itcanbeverifiedforallsituationswiththeneighboringbuildingsposi‐tionedattheborderoftheD1contour,bothinsituationswheretheyweretothewindward,andinthesituationsinwhichtheywerepositionedtotheleeward,thatagreatpartoftheresultsexceededthelimitsproposedbytheBraziliancodesinrelationtoalltheeffortsanalyzed.Onthestudiedefforts,theleastthatcontainresultsoutsidethecodelimitsisthetorsionwith51.0%isshownintable10.Allothereffortshadatleast72.0%oftheresultsabovethelimitsindicatedbythecode.Usingaconfidenceintervalinwhichatleast95%ofthepopulationoftheresultsshouldbecontemplated,inthecaseofneighborswithboundarydistanceD1,alleffortswouldrequireaVFwithanindexabove1.6,asobservedinpreviousmentionedresearchers’studies.

Studieswithneighboringbuildingspositionedatdistancesabove1.0Haremoreunusual.Thepmongkornetal2002 intheirstudy,alsoconsideredthepresenceofneighboringbuildingsforspacingsbetween1.0Hand1.5H.Inthesecases,theyfoundvicinityinterferenceindexesofupto1.7forthemomentaroundtheXaxis,from2.3formomentumaroundtheYaxisand1.5fortorsion,valueslowerthanthesituationswiththenearestvicinity,butstillabovethelimitsproposedbytheBrazilianCode.TangandKwok 2004 reachedindexesoftheorderof1.7forthedisplacementtowardsthewind,1.4fortransversedisplacementsand1.8forthetorsionangleoftheirstudy,valuesclosetothosefoundfornearestpositionedneighbors.

InsituationswheretheneighborswerepositionedattheboundaryoftheD2contour,thetwistingwasalsotheeffortthatleastpresentedresultsoutsidethecodelimitswith45.2%ofthevalidvalues,aspresentedintable11.Fortheothereffortscalculatedforthiscontouranevenmorecriticalsituationisobservedwhereatleast78.0%oftheresultswereabovethecodelimits.Usingthesameconfidenceintervalprincipleforthiscase,torsionwouldbetheonlyeffortmetwiththeuseofaVFwithanindexof1.6.ThisindexisveryclosetotheindexesfoundbyThepmongkornetal 2002 andTangandKwok 2004 intheirresearches.

Thepmongkornetal 2002 proposedfewsituationswheretheneighborwasintherangebetween1.5Hto2.0Hofdisplacement.Inthesecases,theyfoundvicinityinterferenceratesofupto1.4forthemomentaroundtheXaxis,1.5formomentumaroundtheYaxisand1.3fortorsion.Forthisregion,TangandKwok 2004 foundinter‐ferenceindexesoftheorderof1.4fordisplacementsinthewinddirection,1.5inthetransversedirectionand1.6inthetorsionangle.Itisobservedaproximitybetweentheinterferenceratesinbothresearches.

ForthesituationinwhichtheneighborswerepositionedattheboundaryoftheD3contour,thetorsioncon‐tinuesbeingtheeffort,amongthosestudies,oneofthatpresentslessresultsoutsidethecodelimits.Evenso,asignificantincreaseintheamountofresultsabovetheselimitscouldbeobservedforalleffortswherethetorsionpresented71.2%oftheaboveresultsandtheothereffortswereallabove84.0%accordingtothedatapresentedinTable12.Alsointhiscase,theVF,tomeettheconfidenceinterval,shouldbegreaterthan1.6.

Finally,thevicinityproposalspositionedattheboundaryoftheD4contour,eventhoughtheywerefurtherapart,presentedalargeamountofresultsoutsidethecodelimitswherethetorsionhadmorethan72.6%oftheresultsabovetheselimitsandtheothereffortsabove82.0%,ascanbeobservedintable13.Asintheothercontours,inthiscase,theVFwouldalsoneedtobegreaterthan1.6.

Table10:ResultforcontourD1

Loads

Re‐sults

Discardedre‐sults

FVwithinthelimitsofcode

FVabovethecodelim‐

its

IntensityofFVoutofcode

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

Results

%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

FX‐D1

72

2 11 59 84.3 6 10.2 24.3 25 42.4 60.0 14 23.7 80.0 14 23.7

FY‐D1 3 19 50 72.5 5 10.0 34.8 17 34.0 59.4 16 32.0 82.6 12 24.0

T‐D1 21 25 26 51.0 4 15.4 56.9 11 42.3 78.4 5 19.2 88.2 6 23.1

MX‐D1 4 17 51 75.0 5 9.8 32.4 17 33.3 57.4 15 29.4 79.4 14 27.5

MY‐D1 3 11 58 84.1 4 6.9 21.7 29 50.0 63.8 14 24.1 84.1 11 19.0

Page 13: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 13/15

Table11:ResultforcontourD2

Loads

Re‐sults

Discardedre‐sults

FVwithinthelimitsofcode

FVabovethecodelim‐

its

IntensityofFVoutofcode

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

Results

%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

FX‐D2

72

2 9 37 80.4 6 16.2 32.6 16 43.2 67.4 10 27.0 89.1 5 13.5

FY‐D2 2 10 36 78.3 0 0.0 21.7 18 50.0 60.9 13 36.1 89.1 5 13.9

T‐D2 17 17 14 45.2 3 21.4 64.5 8 57.1 90.3 3 21.4 100.0 0 0.0

MX‐D2 4 7 37 84.1 0 0.0 15.9 18 48.6 56.8 13 35.1 86.4 6 16.2

MY‐D2 3 7 38 84.4 7 18.4 31.1 19 50.0 73.3 8 21.1 91.1 4 10.5

Table12:ResultforcontourD3

Loads

Re‐sults

Discardedre‐sults

FVwithinthelimitsofcode

FVabovethecodelim‐

its

IntensityofFVoutofcode

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

Results

%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

FX‐D3

72

3 10 59 85.5 5 8.5 21.7 29 49.2 63.8 17 28.8 88.4 8 13.6

FY‐D3 3 11 58 84.1 3 5.2 20.3 32 55.2 66.7 16 27.6 89.9 7 12.1

T‐D3 13 17 42 71.2 12 28.6 49.2 13 31.0 71.2 9 21.4 86.4 8 19.0

MX‐D3 4 10 58 85.3 6 10.3 23.5 30 51.7 67.6 17 29.3 92.6 5 8.6

MY‐D3 3 10 59 85.5 5 8.5 21.7 35 59.3 72.5 12 20.3 89.9 7 11.9

Table13:ResultforcontourD4

Loads

Re‐sults

Discardedre‐sults

FVwithinthelimitsofcode

FVabovethecodelim‐

its

IntensityofFVoutofcode

FV 1.2 1.2 FV 1.4 1.4 FV 1.6 FV 1.6

Results

%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

Acumu‐latedre‐sults%

Results

%

FX‐D4

72

3 12 57 82.6 5 8.8 24.6 26 45.6 62.3 19 33.3 89.9 7 12.3

FY‐D4 5 11 56 83.6 3 5.4 20.9 30 53.6 65.7 17 30.4 91.0 6 10.7

T‐D4 10 17 45 72.6 11 24.4 45.2 19 42.2 75.8 11 24.4 93.5 4 8.9

MX‐D4 3 10 59 85.5 4 6.8 20.3 31 52.5 65.2 17 28.8 89.9 7 11.9

MY‐D4 3 11 58 84.1 7 12.1 26.1 28 48.3 66.7 16 27.6 89.9 7 12.1

Page 14: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 14/15

4CONCLUSIONS

Thepurposeofthevicinityfactoristotakeinaccountthewindeffectscausedinacertainbuildingduethepresenceofotherbuildingsintheproximityofthisone.Ingeneral,thecriterionforpredictingtheuseofthisfactoristhedistancebetweenbuildings.

Thefinalconsiderationsmadefromtheanalysisoftheresultspresentedpreviouslyconsideredthepositionoftheneighboringbuildingaswellasitsdistancetotheinstrumentedbuilding.

Inallthesituationsanalyzedinthisstudyitwasdemonstratedthatthepresenceofabuildingaltersthewindloadsinabuildingnexttothisone.Itisevidentthatthechangesofmajorinterestforthestructuralanalyzesarethosethatpromotetheincreaseoftheloadvaluestobeconsidered.Forthisitisofgreatimportancetoknowifsuchincreaseoccur,whatwouldbethesituationsinwhichtheyoccurandwhattheintensityoftheincreases.

Withtheresultsfound,itcouldbeconcludedthatiftheneighborispositionedinthewindwardorleewardofthebuilding,thiswillgenerallypromoteanincreaseintheloadswhichwillbedeterminedbythewinddirection.

Evenconsideringfourdifferentboundarylimitsinthisstudy,forthedeterminationoftheVicinityFactor,onlyinsomecasesthestatisticalcriterionofconfidenceinterval,inwhichatleast95%oftheresultsaretobeconsid‐ered,wasmet.

Anotherpointthatcouldbeobservedisthattheintensityofeffortrequiredtocontemplatetheelevationsofeffortsoccurredinthesituationsproposedinthisstudywouldbeatleast60%ofthevaluesofeffortsfoundforabuildingconsideredasactingalone,situationadoptedbyNBR6123.

Finally,itiscleartheneedtofurtherresearchinordertoclarifytheprotectioneffectspromotedbythepres‐enceofavicinitybuildingand,mainly,thequestionofthenecessityofthemajoringefforts.Consideringthepres‐enceofmorethanonebuildingaswellastheeffectsofsoil‐structureandfluid‐structureinteractionsareparame‐tersthatcancontributesignificantlyinthisfieldofresearch.

5ACKNOWLEDGMENTS

TheauthorsaregratefulforthefinancialsupportofCNPq Brazil ,whichmadethisresearchpossible.AlsothankedisthestaffoftheLaboratóriodeAerodinâmicadasConstruçõesoftheUniversidadeFederaldoRioGrandedoSul,PortoAlegre,Brazil,fortheavailabilityanddedicationincarryingoutthetestsofthiswork.

References

Associação Brasileira deNormas Técnicas. 1988 NBR 6123: Forças devidas ao vento em edificações. Rio deJaneiro,Brasil.

Blessmann,J. 1990 .AerodinâmicadasConstruções.Sagra.PortoAlegre,Brasil.

Blessmann,J. 1985 .Buffetingeffectsonneighbouringtallbuildings.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam,v.18:105‐110.

Blessmann,J. 1992 .Neighbouringwindeffectsontwotallbuildings.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam,v.41‐44:1041‐1052.

Blocken,B.,Carmeliet,J.andStathopoulos,T. 2007 .CFDevaluationofwindspeedconditionsinpassagesbetweenparallelbuildings–effectofwall‐functionroughnessmodificationsfortheatmosphericboundarylayerflow.Jour‐nalofWindEngineeringandIndustrialAerodynamics,Amsterdam,95ed.:941‐962.

Fontoura,P.C.C.N.O. 2014 .Estudoexperimentalemtúneldeventodosefeitosdevizinhançaemedifíciosaltos.Tesededoutorado.ProgramadePós‐GraduaçãoemEstruturaseConstruçãoCivildaUnB,Brasília,Brasil:318.

Harris,C.L. 1934 .Influenceofneighboringstructuresonthewindpressuresontallbuildings.BureauofStand‐ardsJournalofResearch:103‐118.

InstitutoPortuguêsdaQualidade. 2010 .EUROCÓDIGO.Eurocódigo1‐Acçõesemestruturas.Parte1‐4:Açõesgerais‐Açõesdovento.Caparica,Portugal.

Page 15: Experimental study of the neighborhood effects on the mean

GregorioSandroVieiraetal.Experimentalstudyoftheneighborhoodeffectsonthemeanwindloadingovertwoequivalenthigh‐risebuildings

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e21 15/15

Jana,D.,Bhaduri,T.andDalui,S.K. 2015 .Numericalstudyofoptimizationofinterferenceeffectonpentagonalplanshapedtallbuilding.AsianJournalofCivilEngineering,8ed.:1123‐1153.

Kim,W.,Yoshida,A.andTamura,Y. 2015a .VariabilityofLocalWindForcesonTallBuildingsduetoNeighboringTallBuilding.14thInternationalConferenceonWindEngineering.PortoAlegre,Brazil:12.

Kim,W.,Tamura,Y.andYoshida,A. 2015b .Interferenceeffectsonaerodynamicwindforcesbetweentwobuild‐ings.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam,147ed.:186‐201.

Lam,K.M.,Zhao,J.G.andLeung,M.Y.H. 2008 .Interferenceeffectsonwindloadingofarowofcloselyspacedtallbuildings.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam,96ed.:562‐583.

Lam,K.M.,Zhao, J.G.andLeung,M.Y.H. 2011 .Wind‐induced loadinganddynamicresponseofarowof tallbuildingsunderstronginterference.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam:573‐583.

Melbourne,W.H.;Sharp,D.B. 1977 .Cross‐windresponseofstructurestowindaction.In:FOURTHINTERNA‐TIONALCONFERENCEONWINDEFFECTSONBUILDINGSANDSTRUCTURES,1975,Heathrow/UK.Proceedings.Cambridge:343‐358.

Oliveira,M.G.K. 2009 .DesenvolvimentodeumaBalançaDinâmicadeTrêsGrausdeLiberdadeparaEstudosdosEfeitosdeFlexo‐TorçãoemEdifíciosAltosSubmetidosàAçãodoVento.Tesededoutorado.ProgramadePós‐Grad‐uaçãoemEngenhariaCivildaUFRGS,PortoAlegre,Brasil:207.

Tang,U.F.,andKwok,K.C.S. 2004 .Interferenceexcitationmechanismsona3DOFaeroelasticCAARCbuildingmodel.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam:1299‐1314.

Thepmongkorn,S.,Wood,G.S.andKwok,K.C.S. 2002 .Interferenceeffectsonwind‐inducedcoupledmotionofatallbuilding.JournalofWindEngineeringandIndustrialAerodynamics,Amsterdam:1807‐1815.

Tutar,M.,andOguz,G. 2002 .Largeeddysimulationofwindflowaroundparallelbuildingswithvaryingconfigu‐rations.FluidDynamicsResearch,31ed.:289‐315.