experimental supporting information › suppdata › c9 › dt › c9dt00954j ›...

14
1 Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies. Bethany J. Crowston, James D. Shipp, Dimitri Chekulaev, Luke K. McKenzie, Callum Jones, Julia A. Weinstein, Anthony J. H. Meijer, Helen E. Bryant, Louise Natrajan, Adam Woodward and Michael D. Ward * Experimental Supporting Information mmmmcccc Fig. S1. 1 H NMR spectrum (400 MHz, d6-acetone) of Ru•E.Hb = Proton on bipyridine ligand; Hp = proton on phenanthroline ligand; Hpy = proton on pyridine ring. Fig. S2. High-resolution ES mass spectrum of Ru•E Hb Hpy Hb Hb Hp Hb Hb Hb Hb Hb Hp Hp Hp Hb / Hp Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Upload: others

Post on 08-Jun-2020

15 views

Category:

Documents


0 download

TRANSCRIPT

1

Heteronucleard-dandd-fRu(II)/Mcomplexes[M=Gd(III),Yb(III),Nd(III),Zn(II)orMn(II)]ofligandscombiningphenanthrolineandaminocarboxylatebindingsites:combinedrelaxivity,cellimagingandphotophysicalstudies.

BethanyJ.Crowston,JamesD.Shipp,DimitriChekulaev,LukeK.McKenzie,CallumJones,JuliaA.Weinstein,AnthonyJ.H.Meijer,HelenE.Bryant,LouiseNatrajan,AdamWoodwardandMichaelD.Ward*

ExperimentalSupportingInformation

mmmmcccc

Fig.S1.1HNMRspectrum(400MHz,d6-acetone)ofRu•E.Hb=Protononbipyridineligand;Hp

=protononphenanthrolineligand;Hpy=protononpyridinering.

Fig.S2.High-resolutionESmassspectrumofRu•E

Hb

Hpy

HbHbHpHbHb

HbHb

Hb

Hp

HpHpHb/Hp

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2019

2

Fig.S3.1HNMRspectrum(500MHz,d6-DMSO)ofRu•L.Hb=Protononbipyridineligand;Hp=protononphenanthrolineligand;Hpy=protononpyridinering.

Fig.S4.High-resolutionESmassspectrumofRu•L

Hp

Hpy

HbHbHbHb/HpHbHp HbHbHpHpHp

Hb/Hp

3

Fig.S5.1HNMRspectrum(400MHz,d6-acetone)ofRu•E2at298K.Hb=protononbipyridineligand,Hp=protononphenanthrolineligand,Hpy=protononpyridinering.

Fig.S6High-resolutionESmassspectrumofRu•E2

Hpy

HbHbHbHb

Hb

HpHpHbHp

4

Fig.S7.1HNMRspectrum(400MHz,D2O)ofRu•L2at298K.Hb=protononbipyridineligand,Hp=protononphenanthrolineligand,Hpy=protononpyridinering.

Fig.S8.High-resolutionESmassspectrumofRu•L2

HbHbHb

Hpy

HpHp

HpHbHbHb

Hb

5

Fig.S9.Partofthehigh-resolutionESmassspectrumofRu•Gdshowing(top)observedand(below)calculatedsignalsfor[C49H37N9O8RuGd+H]2+

Fig.S10.Partofthehigh-resolutionESmassspectrumofRu•Gd2showing(top)observedand(bottom)calculatedsignalsfor[C66H50N12O16RuGd2+2H]2+

6

Fig.S11.PartofthehighresolutionESmassspectrumofRu•Ndshowingthesignalfor[C49H37N9O8RuNd+H]2+.

Fig.S12.PartofthehighresolutionESmassspectrumofRu•Ybshowingthesignalfor[C49H37N9O8RuYb+H]2+.

7

Fig.S13.PartofthehighresolutionESmassspectrumofRu•Nd2showingthesignalfor[C66H50N12O16RuNd2+2H]2+.

Fig.S14.PartofthehighresolutionESmassspectrumofRu•Yb2showingthesignalfor[C66H50N12O16RuYb2+2H]2+.

8

Fig.S15.1HNMRspectrum(400MHz,D2O)ofRu•Znat298K.(Hb=protononbipyridineligand,Hp=protononphenanthrolineligand,Hpy=protononpyridinering).

Fig.S16.PartofthehighresolutionESmassspectrumofRu•Znshowingthesignalfor[C49H37N9O8RuZn+2H]2+.

9

Fig.S17.PartofthehighresolutionESmassspectrumofRu•Mnshowingthesignalfor[C49H37N9O8RuMn+2H]2+.

Fig.S18.1HNMRspectrum(400MHz,D2O)ofRu•Zn2at298K.(Hb=protononbipyridineligand,Hp=protononphenanthrolineligand,Hpy=protononpyridinering).

10

Fig.S19.PartofthehighresolutionESmassspectrumofRu•Zn2showingthesignalfor[C66H50N12O16RuZn2]2-.

Fig.S20.PartofthehighresolutionESmassspectrumofRu•Mn2showingthesignalfor[C66H50N12O16RuMn2]2-.

11

Fig.S21.UV/VisabsorptionspectrainMeOH,normalisedat435nm,ofRu•E(green)andRu•E2(red),emphasisingthedifferenceinthe1MLCTabsorptionregion(500–550nm).Forextinctioncoefficientsseemaintext.

Fig.S22.ExcitationspectrarecordedinD2Oat298Kof(a)Ru•Ndand(b)Ru•Nd2,monitoringexcitationat1060nminbothcases,showingoverlapofthemainfeatureoftheexcitationspectrawiththeRu-based1MLCTabsorptionmanifold.

12

Fig.S23.Decay-associatedspectraobtainedbyglobalanalysisofthetransientabsorptionspectraldataofRu•Zn(left)andRu•Mn,inwateratRT.

Fig.S24.Evolution-associatedspectra,illustratingtheappearanceoftheexperimentalTAspectraatdifferenttimedelays,forRu•Zn(left)andRu•Mn(right),inwateratRT.

13

Fig.S25.Plotofrelaxationrateofwaterprotons(s-1)vs.concentrationofGd(III)-containingcomplex(mM)forRu•Gd(reddots),Ru•Gd2(bluedots)andMagnevist(greendots)(400MHz,298K,D2O).

Fig.S26.ClonogenictoxicityassayofHeLacellsincubatedwithRu•Gd(redline)orRu•Gd2(blueline)atconcentrationsof50µMand200µMfor4h.IncubationswerecarriedoutinfullDMEDat37˚CunderanatmosphereofCO2/air(5/95,v/v)for7–10daysuntilvisiblecellcolonieshadformed.Errorbarsrepresentthestandarddeviationofsixdatapoints(three

repeatsofeachofduplicatedatasets).

14

Fig.S27.Plotofconcentration(mM)vs.relaxationrateofwaterprotons(s-1)todeterminetheconcentration-normalisedlongitudinalrelaxivityvaluesforRu•Mn(orange)andRu•Mn2(purple).ThedataforRu•Gd(red),andRu•Gd2(blue)andthecommercialMRIcontrastagentMagnevist®(green)arealsoincludedforcomparison(400MHz,298K,D2O).