experimental)procedure) results)...raoultella&terrigena)& fs152) rhizosphere) south,it...

1
INTRODUCTION The use of efficient inoculants is considered an important strategy for sustainable management and for reducing chemical inputs in agriculture. Plant GrowthPromo<ng Microbes (PGPMs) are important determinants of soil fer<lity and plant health for their poten<al to improve crop produc<vity and nutri<onal quality, as well as resistance to plant pathogens and environmental stresses and plant tolerance to abio<c stresses. Nevertheless, in open field numerous bio<c and abio<c factors may hinder their plant growthpromo<ng efficacy and reproducibility, limi<ng their successful use in agriculture. AIM OF THE PRESENT WORK: Iden<fy efficient microbial formula<ons to be applied as bioinoculants in arable crops in Italy and Germany i.e. WHEAT, MAIZE, POTATO and TOMATO Table 1. Microorganisms selected by literature survey EXPERIMENTAL PROCEDURE RESULTS T2.2 Evaluation of PGPMs effect on plant performance in pot experiments T2.3 T2.4 T2.1 Design, formulation and optimization of effective microbial consortia inoculants PGPMs efficacy field testing with respect to crop productivity and plant health Protocols for PGPMs field application maize wheat tomato potato WP1 WP3 WP4 WP6 WP4 WP7 WP1 WP2: Improvement of PGPMs field applicaPon efficiency and reproducibility Work Package 2 of SIMBA project is aimed to exploit the full poten<al of PGPMs for sustainable crop produc<on by op<mizing the efficacy and reproducibility of field applica<ons. Table 2. CompaPbility among selected bacterial strains MC: Microbial Consor<um (A or B); MC_AMF (consor<um of arbuscolar mychorrizal fungi) : Acaulospora morrowiae CL290, Septoglomus constrictum FL328, Gigaspora gigantea PA125; BS (Bios<mulant compounds): a combina<on of seaweed plant and compost extracts, humic substances, plantmicrobial signal compounds. On the leY (B) and in the middle (C): examples of incompa<bility/compa<bility between T. harzianum TH01 and four bacterial strains. On the right: examples of incompa<bility/compa<bility between T. harzianum ATCC48131 and four bacterial strains. Figure 1. Bacteriabacteria compaPbility On the leY, examples of compa<bility between B. ambifaria MCI7 and tested bacteria. In the middle and on the right, example of incompa<bil<y between B. licheniformis PS141 and Bacillus sp. BV84. Figure 2. Bacteriafungus compaPbility Table 5. Selected microbial consorPa A. Bevivino 1 *, S. Tabacchioni 1 , P. Ambrosino 2 , S. Passato 2 , G. GiovanneY 3 , D. Neuhoff 4 , M. Caldara 5 , N. Marmiroli 5 , S.J. Sørensen 6 , J. Nesme 6 , A. Sczyrba 7 , A. Schlüter 7 , A. Brunori 1 , A. Pihlanto *Corresponding: [email protected] SIMBA: Design, formulaPon and opPmizaPon of plant growthpromoPng microbes for their use as microbial consorPa inoculants Figure 3. PrebioPc test of biosPmulant compounds Twentythree strains were crosschecked through in vitro assays and ranked by compa<bility: High : microorganisms compa<ble with > 20 strains; Moderate: microorganisms compa<ble with 16 to 19 strains; Low: microrganisms compa<ble with 12 to 15 strains 1 ENEA, Italian Na-onal Agency for New Technologies, Energy and Sustainable Economic Development, Department for Sustainability, Rome, Italy; 2 AGRIGES srl, San Salvatore Telesino (BN), Italy; 3 CCS AOSTA srl, Italy; 4 Ins-tute of Crop Science and Resource Conserva-on, Dept. Agroecology & Organic Farming Rheinische FriedrichWilhelmsUniversität Bonn, Germany; 5 SITEIA.PARMA, Interdepartmental Centre for Food Safety, Technologies and Innova-on for Agrifood Department of Chemistry, Life Sciences and Environmental Sustainability; University of Parma, Parma, Italy; 6 Department of Biology, University of Copenhagen, Copenhagen, Denmark; 7 Center for Biotechnology – CeBiTec, Bielefeld University,, Germany; 8 Natural Resources Ins-tute Finland (Luke), Helsinki, Finland Other WP2 parPcipants: C. Cantale 1 , A. Fiore 1 , A. Del Fiore 1 , C. Nobili 1 , O. PresenP 1 , S. Frusciante 1 , P. Guarino 2 , C. GiovanneY 3 , E. Maestri 5 , T. Evison 7 comprensive literature survey selec<on of PGPMs in vitro compa<bility tests set up of microbial consor<a pot experiments BIOFECTOR and VALORAM strains highlighted, respec<vely, in green and yellow. Table 3. CompaPbility between bacterial strains and T. harzianum ATCC48131 and TH01 + = compa<ble combina<on; = incompa<ble combina<on; nc= unclear interac<on; nd = not determined BACTERIAL STRAINS FUNGAL STRAINS Trichoderma harzianum ATCC48131 Trichoderma harzianum TH 01 A. brasilense CD nc - A. brasilense NCCB78036 + - A. chrococcum DSM2286 + nc A. chrococcum LS132 - - A. chrococcum LS163 + - A. radiobacter AR39 + + A. vinelandii DSM2289 - - Bacillus sp. BV84 + - B. amyloliquefaciens BA41 + + B. amyloliquefaciens LMG9814 + + B. licheniformis PS141 - - B. pumilus LMG24415 + ND B. sub?lis LMG23370 + + B. sub?lis LMG24418 + ND B. ambifaria MCI7 + + B. ambifaria PHP7 + + Rahnella aqua?lis BB23T3/d + - K. pastoris PP59 - - P. tropica MDIIIAzo225 - nc P. granadensis A23/T3c - - Pseudomonas sp. PN53 + - P. fluorescens DR54 - nc R. terrigena FS152 + - B C Microorganism Strain Origin Country of isolaPon ProperPes Acaulospora morrowiae CL290 Rhizosphere STATI UNITI PGP Agrobacterium radiobacter AR 39 soil near peach tree Ascoli Piceno, IT biocontrol / PGP Azospirillum brasiliense CD/ATTC 29710 Cynodon dactylon rhizosphere USA NfixaPon Azospirillum brasiliense NCCB 78036 soil under soy field India NfixaPon Azospirillum lipoferum CRT1 field grown maize FR NfixaPon Azotobacter chroococcum 76A soil South IT Nitrogen fixaPon Azotobacter chroococcum DSM 2286 unknown unknown Nitrogen fixaPon Azotobacter chroococcum LS132 Rhizosphere South IT NfixaPon Azotobacter chroococcum LS163 Rhizosphere South IT NfixaPon Azotobacter chroococcum S5 unknown Iran NfixaPon Azotobacter vinelandii DSM 2289 unknown unknown NfixaPon Bacillus sp. BV84 Grape leafs Ascoli Piceno, IT biocontrol/PGP Bacillus amyloquefaciens BA41 Wheat rhizosphere Ascoli Piceno, IT biocontrol/PGP Bacillus amyloquefaciens FZB42 plant pathogen infested soil DE biocontrol/PGP Bacillus amyloquefaciens LMG 9814 soil UK alphaamylase , alphaglucosidase, iso amylase producPon Bacillus atrophaeus ABI02A Berlin, DE PGP Bacillus licheniformis PS141 Rhizosphere South IT Indole acePc acid (IAA) producPon Bacillus megaterium M3 rice unknown PsolubilisaPon Bacillus megaterium PMC 1855 unknown unknown PsolubilisaPon Bacillus pumilus LMG 24415 soil Ecuador PGP Bacillus simplex R49538 unknown Ecuador PGP/IAA producPon Bacillus sub-lis FZB24 WG Berlin, DE PGP Bacillus sub-lis LMG 23370 Forest soil India PGP/ biocontrol against Rhizoctonia solani Bacillus sub-lis LMG 24418 soil Ecuador PGP Bacillus sub-lis OSU142 pepper unknown NfixaPon, biocontrol Burkholderia ambifaria MCI7 Maize rhizosphere Lazio, IT PGP Burkholderia ambifaria PHP7/LMG 11351 Maize rhizosphere FR PGP Gigaspora gigantea PA125 Rhizosphere STATI UNITI PGP Gigaspora rosea NY328A Rhizosphere STATI UNITI PGP Komagataella pastoris PP59 Grape rhizosphere Ascoli Piceno, IT PGP Paenibacillus sp R47065 unknown Ecuador PGP/IAA producPon Paraburkholderia tropica MDIIIAzo225 Maize rhizosphere Caserta, IT Nitrogen fixaPon Pseudomonas granadensis A23/T3c soil Lazio, IT PGP Pseudomonas fluorescens DR54 Sugar beet rhizosphere Holeby, DK biocontrol Pseudomonas pu-da P120/08 soil Ecuador PGP Pseudomonas sp. PN53 Grass rhizosphere Ascoli Piceno, IT PGP Rahnella aqua-lis BB23/T4d soil Lazio, IT PGP Raoultella terrigena FS152 Rhizosphere South, IT Phytase acPvity, siderophore producPon Septoglomus constrictum FL328 Rhizosphere STATI UNITI PGP Streptomyces sp. SA 51 Rhizosphere Liguria, IT biocontrol Trichoderma gamsii 6085 unculPvated soil Crimea, UA biocontrol Trichoderma harzianum OmG08 Orchid roots Bernburg, DE P solubilisaPon Trichoderma harzianum OmG16 Bernburg, DE PsolubilisaPon Trichoderma harzianum T6776 soil Pisa, IT biocontrol/PGP Trichoderma harzianum TH01 Grass soil and rhizosphere Ascoli Piceno, IT PGP Trichoderma harzianum CBS 354.33/ATCC 48131 soil USA chiPnase producPon, biocontrol CombinaPon MC MC_AMF BS C1 X C2 X X C3 X X C4 X X X Figure 5. PGP effect of consorPum B on maize plants Table 6. Microbial combinaPon Greenhouse experiments were carried out in sterile sandy loam/loess from organic farm Wiesengut (Germany). Maize seeds (cv. Benedic<o) were coated with microbial consor<um B. On the leY, the effect on root growth (at 8 days); on the right , the effect on shoot growth (at 13 days). Prebio<c effects of BS1 (Plantderived protein hydrolysate) on germina<on and growth of our beneficial consor<a in starva<on condi<ons (WA, water agar) to be used to rapidly increase the number of microorganisms when applied in the soil. BACTERIAL STRAINS WITH HIGH COMPATIBILITY BACTERIAL STRAINS WITH MODERATE COMPATIBILITY BACTERIAL STRAINS WITH LOW COMPATIBILITY A. chrococcum LS132 A. chrococcum DSM2286 Bacillus spp. BV84 A. chrococcum LS163 A. brasilense CD B. amyloliquefaciens LMG 9814 A. radiobacter AR39 A. brasilense NCCB 78036 B. amyloliquefaciens BA41 A. vinelandii DSM2289 B. ambifaria MCI7 B. pumilus LMG24415 Enterobacter spp. BB23t3/d B. ambifaria PHP7 B. sub?lis LMG 23370 R. terrigena FS152 B. licheniformis PS141 B. sub?lis LMG24418 K. pastoris PP59 P. fluorescens DR54 P. granadensis A23/T3c P. fluorescens PN53 P. tropica MDIIIAzo225 MICROBIAL CONSORTIA (MC) MICROORGANISMS A Trichoderma harzianum TH01 Pseudomonas granadensis A23/T3c Paraburkholderia tropica MDIII Azo225 Bacillus licheniformis PS141 Azotobacter chrococcum LS132 Pichia pastoris PP59 B Bacillus amyloliquefaciens LMG9814 Pseudomonas fluorescens DR54 Bacillus sp. BV 84 Rahnella aqua?lis BB23T3/d Azotobacter vinelandii DSM2289 MAIZE Control + Commercial product + biochar + Seeds coated + Seeds coated +AMF + Seeds coated + Seeds coated +AMF + Biochar func:onalized + Biochar func.+AMF + Biochar func:onalized + Biochar func.+AMF CONSORTIUM A CONSORTIUM A CONSORTIUM B CONSORTIUM B Monitoring of microbial ac4vity also by employing Li;er bags (CCS AOSTA) Green House Experiments: 2 crops, 2 cul4vars, 2 delivery systems, 2 consor4a, with and without AMF TOMATOES MAIZE Figure 4. Ongoing potexperiments

Upload: others

Post on 31-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EXPERIMENTAL)PROCEDURE) RESULTS)...Raoultella&terrigena)& FS152) Rhizosphere) South,IT Phytaseacvity,siderophoreproducon) Septoglomusconstrictum& FL328) Rhizosphere) STATI)UNITI) PGP

INTRODUCTION  The  use  of  efficient  inoculants  is  considered  an  important  strategy  for  sustainable  management  and  for  reducing  chemical  inputs   in   agriculture.   Plant  Growth-­‐Promo<ng  Microbes   (PGPMs)   are   important  determinants  of   soil   fer<lity   and  plant  health  for  their  poten<al  to  improve  crop  produc<vity  and  nutri<onal  quality,  as  well  as  resistance  to  plant  pathogens  and  environmental   stresses  and  plant   tolerance   to  abio<c  stresses.  Nevertheless,   in  open  field  numerous  bio<c  and  abio<c  factors  may  hinder  their  plant  growth-­‐promo<ng  efficacy  and  reproducibility,  limi<ng  their  successful  use  in  agriculture.          

AIM  OF  THE  PRESENT  WORK:  Iden<fy  efficient  microbial  formula<ons  to  be  applied  as  bioinoculants   in  arable  crops  in  Italy  and  Germany  i.e.  WHEAT,  MAIZE,  POTATO  and  TOMATO  

Table  1.  Microorganisms  selected  by  literature  survey    

EXPERIMENTAL  PROCEDURE  

RESULTS  

T2.2 EvaluationofPGPMseffectonplantperformanceinpotexperiments

T2.3

T2.4

T2.1 Design,formulationandoptimizationofeffectivemicrobialconsortiainoculants

PGPMsefficacyfieldtestingwithrespecttocropproductivityandplanthealth

ProtocolsforPGPMsfieldapplication

maizewheat tomatopotato

WP1WP3

WP4WP6

WP4

WP7

WP1

WP2:  Improvement  of  PGPMs  field  applicaPon  efficiency  and  reproducibility  

Work   Package   2   of   SIMBA  project   is   aimed   to   exploit   the   full   poten<al   of   PGPMs   for   sustainable   crop   produc<on  by  op<mizing  the  efficacy  and  reproducibility  of  field  applica<ons.  

Table  2.  CompaPbility  among  selected  bacterial  strains  

MC:   Microbial   Consor<um   (A   or   B);   MC_AMF   (consor<um   of   arbuscolar   mychorrizal   fungi)   :   Acaulospora  morrowiae  CL290,  Septoglomus  constrictum  FL328,  Gigaspora  gigantea  PA125;  BS  (Bios<mulant  compounds):  a  combina<on  of  seaweed  plant  and  compost  extracts,  humic  substances,  plant-­‐microbial  signal  compounds.

On   the   leY   (B)   and   in   the   middle   (C):   examples   of   incompa<bility/compa<bility  between   T.   harzianum   TH01   and   four   bacterial   strains.   On   the   right:   examples   of  incompa<bility/compa<bility   between   T.   harzianum   ATCC48131   and   four   bacterial  strains.  

Figure  1.  Bacteria-­‐bacteria  compaPbility      

On   the   leY,   examples   of   compa<bility   between   B.   ambifaria   MCI7   and   tested  bacteria.   In   the   middle   and   on   the   right,   example   of   incompa<bil<y   between   B.  licheniformis  PS141  and  Bacillus  sp.  BV84.    

Figure  2.  Bacteria-­‐fungus  compaPbility      

Table  5.  Selected  microbial  consorPa  

A.  Bevivino1*,  S.  Tabacchioni1,  P.  Ambrosino2,  S.  Passato2,  G.  GiovanneY3,  D.  Neuhoff4,  M.  Caldara5,  N.  Marmiroli5,  S.J.  Sørensen6,  J.  Nesme6,  A.  Sczyrba7,  A.  Schlüter7,  A.  Brunori1,  A.  Pihlanto8§  

*Corresponding:  [email protected]  

SIMBA:  Design,  formulaPon  and  opPmizaPon  of  plant  growth-­‐promoPng  microbes  for  their  use  as  microbial  consorPa  inoculants    

Figure  3.  PrebioPc  test  of  biosPmulant  compounds      

Twenty-­‐three   strains   were   cross-­‐checked   through   in   vitro   assays   and   ranked   by  compa<bility:   High   :   microorganisms   compa<ble   with   >   20   strains;   Moderate:  microorganisms  compa<ble  with  16   to  19  strains;  Low:  micr-­‐organisms  compa<ble  with  12  to  15  strains    

1ENEA,  Italian  Na-onal  Agency  for  New  Technologies,  Energy  and  Sustainable  Economic  Development,  Department  for  Sustainability,  Rome,  Italy;  2AGRIGES  srl,  San  Salvatore  Telesino  (BN),  Italy;  3CCS  AOSTA  srl,  Italy;  4  Ins-tute  of  Crop  Science  and  Resource  Conserva-on,  Dept.  Agroecology  &  Organic  Farming    Rheinische  Friedrich-­‐Wilhelms-­‐Universität  Bonn,  Germany;  5SITEIA.PARMA,  Interdepartmental  Centre  for  Food  Safety,  Technologies  and  Innova-on  for  Agri-­‐food  -­‐  Department  of  Chemistry,  Life  Sciences  and  Environmental  Sustainability;  University  of  Parma,  Parma,  Italy;  6Department  of  Biology,  University  of  Copenhagen,  Copenhagen,  Denmark;  7Center  for  Biotechnology  –  CeBiTec,  Bielefeld  University,,  Germany;  8Natural  Resources  Ins-tute  Finland  (Luke),  Helsinki,  Finland  Other  WP2  parPcipants:  C.  Cantale1,  A.  Fiore1,  A.  Del  Fiore1,  C.  Nobili1,  O.  PresenP1,    S.  Frusciante1,  P.  Guarino2,  C.  GiovanneY3,  E.  Maestri5,  T.  Evison7  

comprensive  literature  survey                  selec<on  of  PGPMs                    in  vitro  compa<bility  tests                      set  up  of  microbial  consor<a                    pot  experiments  

BIOFECTOR  and  VALORAM  strains  highlighted,  respec<vely,  in  green  and  yellow.  

Table  3.  CompaPbility  between  bacterial  strains  and  T.  harzianum  ATCC48131  and  TH01    

+  =  compa<ble  combina<on;  -­‐  =  incompa<ble  combina<on;  nc=  unclear  interac<on;  nd  =  not  determined  

BACTERIAL  STRAINS   FUNGAL  STRAINS       Trichoderma  harzianum  ATCC48131   Trichoderma  harzianum  TH  01  A.  brasilense  CD   nc   -A.  brasilense  NCCB78036   + -A.  chrococcum  DSM2286   + nc  A.  chrococcum  LS132   - -A.  chrococcum  LS163   + -A.  radiobacter  AR39   + +A.  vinelandii  DSM2289   - -Bacillus  sp.  BV84   + -B.  amyloliquefaciens  BA41   + +B.  amyloliquefaciens  LMG9814   + +B.  licheniformis  PS141   - -B.  pumilus  LMG24415   + ND  B.  sub?lis  LMG23370   + +B.  sub?lis  LMG24418   + ND  B.  ambifaria  MCI7   + +B.  ambifaria  PHP7   + +Rahnella  aqua?lis    BB23T3/d   + -K.  pastoris  PP59   - -P.  tropica  MDIIIAzo225   - nc  P.  granadensis  A23/T3c   - -Pseudomonas  sp.  PN53   + -P.  fluorescens  DR54   - nc  R.  terrigena  FS152   + -

- 23 -

Figura 7. Piastra controllo di Tricoderma harzianum TH01 (A). Test compatibilità Tricoderma

harzianum TH01 con ceppi batterici LMG23370 = B. subtilis, BA41 = B. amyloliquefaciens, PS141 = B. licheniformis, PN53 = Pseudomonas sp. (B). Test compatibilità Tricoderma harzianum TH01 con ceppi batterici LMG9814 = B. amyloliquefaciens, BV84 = Bacillus sp., PHP7 = B. ambifaria, A23T3/C = P. granadensis (C).

Figura 8. Test di compatibilità Tricoderma harzianum ATCC48131 con i ceppi batterici AR39 = A. radiobacter, DSM2286 = A. vinelandii, BV84 = Bacillus sp., LMG23370 = B. subtilis, BA41 = B.

amyloliquefaciens, PN53 = Pseudomonas sp., MCI7 = B. ambifaria, LS163 = A. chroococcum.

4.4 Consorzi Microbici Sulla base dei test di compatibilità e nell’ottica dello sviluppo di bioinoculanti multifunzionali, è stato possibile formulare tre diversi consorzi microbici che dovranno successivamente essere testati sulle specie vegetali di interesse (Tabella 5). Le principali funzioni svolte dagli stessi comprendono:

1) Biocontrollo: T. harzianum TH01, Bacillus sp. BV84, P. fluorescens DR54

A B C

- 23 -

Figura 7. Piastra controllo di Tricoderma harzianum TH01 (A). Test compatibilità Tricoderma

harzianum TH01 con ceppi batterici LMG23370 = B. subtilis, BA41 = B. amyloliquefaciens, PS141 = B. licheniformis, PN53 = Pseudomonas sp. (B). Test compatibilità Tricoderma harzianum TH01 con ceppi batterici LMG9814 = B. amyloliquefaciens, BV84 = Bacillus sp., PHP7 = B. ambifaria, A23T3/C = P. granadensis (C).

Figura 8. Test di compatibilità Tricoderma harzianum ATCC48131 con i ceppi batterici AR39 = A. radiobacter, DSM2286 = A. vinelandii, BV84 = Bacillus sp., LMG23370 = B. subtilis, BA41 = B.

amyloliquefaciens, PN53 = Pseudomonas sp., MCI7 = B. ambifaria, LS163 = A. chroococcum.

4.4 Consorzi Microbici Sulla base dei test di compatibilità e nell’ottica dello sviluppo di bioinoculanti multifunzionali, è stato possibile formulare tre diversi consorzi microbici che dovranno successivamente essere testati sulle specie vegetali di interesse (Tabella 5). Le principali funzioni svolte dagli stessi comprendono:

1) Biocontrollo: T. harzianum TH01, Bacillus sp. BV84, P. fluorescens DR54

A B C Microorganism   Strain   Origin   Country  of  isolaPon   ProperPes  

Acaulospora  morrowiae   CL290   Rhizosphere   STATI  UNITI   PGP  Agrobacterium  radiobacter     AR  39   soil  near  peach  tree   Ascoli  Piceno,  IT   biocontrol  /  PGP  Azospirillum    brasiliense   CD/ATTC  29710   Cynodon  dactylon  rhizosphere     USA   N-­‐fixaPon  Azospirillum    brasiliense    NCCB  78036   soil  under  soy  field   India   N-­‐fixaPon  Azospirillum  lipoferum     CRT1   field  grown  maize   FR   N-­‐fixaPon  

Azotobacter  chroococcum     76A   soil     South  IT   Nitrogen  fixaPon  Azotobacter  chroococcum     DSM  2286   unknown   unknown   Nitrogen  fixaPon  Azotobacter  chroococcum     LS132   Rhizosphere   South  IT   N-­‐fixaPon  Azotobacter  chroococcum     LS163   Rhizosphere   South  IT   N-­‐fixaPon  Azotobacter  chroococcum   S-­‐5   unknown   Iran   N-­‐fixaPon  Azotobacter  vinelandii     DSM  2289     unknown   unknown   N-­‐fixaPon  

Bacillus  sp.     BV84   Grape  leafs     Ascoli  Piceno,  IT   biocontrol/PGP  Bacillus  amyloquefaciens     BA41   Wheat  rhizosphere   Ascoli  Piceno,  IT   biocontrol/PGP  Bacillus  amyloquefaciens     FZB42   plant  pathogen  infested  soil   DE   biocontrol/PGP  

Bacillus  amyloquefaciens     LMG  9814   soil   UK   alpha-­‐amylase  ,    alpha-­‐glucosidase,  iso-­‐amylase  producPon  

Bacillus  atrophaeus     ABI02A         Berlin,  DE   PGP  Bacillus  licheniformis     PS141   Rhizosphere   South  IT   Indole  acePc  acid  (IAA)  producPon    Bacillus  megaterium     M3   rice   unknown   P-­‐solubilisaPon  Bacillus  megaterium     PMC  1855   unknown   unknown   P-­‐solubilisaPon  Bacillus  pumilus     LMG  24415   soil     Ecuador   PGP  Bacillus  simplex     R49538   unknown   Ecuador   PGP/IAA  producPon  Bacillus  sub-lis     FZB24  WG       Berlin,  DE   PGP  

Bacillus  sub-lis     LMG  23370   Forest  soil   India   PGP/  biocontrol  against    Rhizoctonia  solani  

Bacillus  sub-lis     LMG  24418   soil   Ecuador   PGP  Bacillus  sub-lis     OSU-­‐142   pepper   unknown   N-­‐fixaPon,  biocontrol  

Burkholderia  ambifaria     MCI7   Maize  rhizosphere   Lazio,  IT   PGP  Burkholderia  ambifaria     PHP7/LMG  11351   Maize  rhizosphere   FR   PGP  Gigaspora  gigantea     PA125       Rhizosphere   STATI  UNITI   PGP  Gigaspora  rosea     NY328A   Rhizosphere   STATI  UNITI   PGP  

Komagataella  pastoris     PP59   Grape  rhizosphere     Ascoli  Piceno,  IT   PGP  Paenibacillus  sp     R47065   unknown   Ecuador   PGP/IAA  producPon  

Paraburkholderia  tropica     MDIIIAzo225   Maize  rhizosphere   Caserta,  IT   Nitrogen  fixaPon  Pseudomonas  granadensis     A23/T3c   soil   Lazio,  IT   PGP  Pseudomonas  fluorescens     DR54   Sugar  beet  rhizosphere   Holeby,    DK   biocontrol  Pseudomonas  pu-da     P1-­‐20/08   soil     Ecuador   PGP    Pseudomonas  sp.     PN53   Grass  rhizosphere     Ascoli  Piceno,  IT   PGP  Rahnella  aqua-lis   BB23/T4d   soil   Lazio,  IT   PGP  Raoultella  terrigena     FS152   Rhizosphere   South,  IT   Phytase  acPvity,  siderophore  producPon  

Septoglomus  constrictum   FL328   Rhizosphere   STATI  UNITI   PGP  Streptomyces  sp.     SA  51   Rhizosphere   Liguria,  IT   biocontrol  

Trichoderma  gamsii     6085   unculPvated  soil   Crimea,  UA   biocontrol  Trichoderma  harzianum     OmG-­‐08   Orchid  roots   Bernburg,  DE   P-­‐  solubilisaPon  Trichoderma  harzianum     OmG-­‐16       Bernburg,  DE   P-­‐solubilisaPon  Trichoderma  harzianum     T6776   soil   Pisa,  IT   biocontrol/PGP  Trichoderma  harzianum     TH01   Grass  soil  and  rhizosphere   Ascoli  Piceno,  IT   PGP  Trichoderma  harzianum     CBS  354.33/ATCC  48131   soil     USA   chiPnase  producPon,  biocontrol  

CombinaPon   MC   MC_AMF   BS      

C-­‐1   X  

C-­‐2   X   X  

C-­‐3   X   X  C-­‐4   X   X   X  

Figure  5.  PGP  effect  of  consorPum  B  on  maize  plants    Table  6.  Microbial  combinaPon    

Greenhouse   experiments   were   carried   out   in   sterile   sandy   loam/loess   from  organic   farm  Wiesengut   (Germany).  Maize   seeds   (cv.  Benedic<o)  were  coated  with  microbial  consor<um  B.  On  the  leY,  the  effect  on  root  growth  (at  8  days);  on  the  right  ,  the  effect  on  shoot  growth  (at  13  days).      

Prebio<c   effects   of   BS1   (Plant-­‐derived   protein   hydrolysate)   on   germina<on   and  growth  of  our  beneficial  consor<a  in  starva<on  condi<ons  (WA,  water  agar)  to  be  used  to  rapidly  increase  the  number  of  microorganisms    when  applied  in  the  soil.  

BACTERIAL  STRAINS  WITH  HIGH  COMPATIBILITY  

BACTERIAL  STRAINS  WITH  MODERATE  COMPATIBILITY  

BACTERIAL  STRAINS  WITH  LOW  COMPATIBILITY  

A.  chrococcum  LS132   A.  chrococcum  DSM2286   Bacillus  spp.  BV84    A.  chrococcum  LS163   A.  brasilense  CD   B.  amyloliquefaciens  LMG  9814    A.  radiobacter  AR39     A.  brasilense  NCCB  78036     B.  amyloliquefaciens  BA41    A.  vinelandii    DSM2289   B.  ambifaria  MCI7   B.  pumilus  LMG24415  Enterobacter  spp.  BB23t3/d     B.  ambifaria  PHP7   B.  sub?lis  LMG  23370    R.  terrigena  FS152     B.  licheniformis  PS141   B.  sub?lis  LMG24418  

K.  pastoris  PP59   P.  fluorescens  DR54    P.  granadensis  A23/T3c    P.  fluorescens  PN53  

P.  tropica  MDIIIAzo225      

MICROBIAL  CONSORTIA  (MC)   MICROORGANISMS    

A  

Trichoderma  harzianum  TH01  Pseudomonas  granadensis  A23/T3c  Paraburkholderia  tropica  MDIII  Azo225  Bacillus  licheniformis  PS141  Azotobacter  chrococcum  LS132  Pichia  pastoris  PP59  

B  

Bacillus  amyloliquefaciens  LMG9814  Pseudomonas  fluorescens  DR54  Bacillus  sp.  BV  84  Rahnella  aqua?lis  BB23T3/d  Azotobacter  vinelandii  DSM2289  

MAIZE&

Control'''''+'Commercial'product'''''''''''+'biochar'&&&&&&&&&&&&&&&&&&&&&&&+&Seeds'coated'''''''''''''''''''''''''''+'Seeds'coated'+AMF''''''''''''''''''''''''''''''+'Seeds'coated'''''''''''''''''''''''''''''''''+'Seeds'coated'+AMF'&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&+'Biochar'func:onalized''''''''''''''''''''''''''''''''''''''''+'Biochar'func.+AMF'''''''''''''''''''''''''''''''''''''''''''+'Biochar'func:onalized'''''''''''''''''''''''''''''''''''''''''''''''+'Biochar'func.+AMF'&&&&&&&&&

CONSORTIUM'A'

CONSORTIUM'A'

CONSORTIUM'B'

CONSORTIUM'B'

Monitoring& of&m i c r o b i a l&ac4vity&also&by&e m p l o y i n g&L i ; e r& b a g s&(CCS&AOSTA)&

Green'House'Experiments:&2&crops,&2&cul4vars,&2&delivery&systems,&2&consor4a,&with&and&without&AMF&&

TOMATOES'

MAIZE'

Figure  4.  Ongoing  pot-­‐experiments