experiments in biochemistry/molecular biologywps.aw.com/wps/media/objects/2238/229…  · web...

46
Experiments in Biochemistry/Molecular Biology I. Techniques and Procedures Chromatography A laboratory experiment to demonstrate the principles of bio-ligand affinity chromatography: the purification of chicken muscle AMP aminohydrolase by phosphocellulose chromatography, M. Hahn and H. Husic, Biochem. Educ. 17, 94-96 (1989). Demonstration of chromatographic techniques using minicolumns, D. Miller et al., Biochem. Educ. 19, 33-34 (1991). Separation utilizing gel filtration and ion-exchange chromatography, S. Russo and A. Radcliffe, J. Chem. Educ. 68, 168-171 (1991). An inexpensive gel-filtration chromatography experiment, H. Rowe, J. Chem. Educ. 70, 415-417 (1993). Isolation of lactoferrin by immobilized metal ion affinity chromatography (IMAC), A. Calvo and F. Batista-Viere, Biochem. Educ. 22, 50- 52 (1994). Rapid microscale isolation and purification of yeast alcohol dehydrogenase using Cibacron blue affinity chromatography, C. Morgan and N. Moir, J. Chem. Educ. 73, 1040-1041 (1996). 1

Upload: phamdung

Post on 17-Mar-2018

222 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Experiments in Biochemistry/Molecular Biology

I. Techniques and Procedures

Chromatography

A laboratory experiment to demonstrate the principles of bio-ligand affinity chromatography: the purification of chicken muscle AMP aminohydrolase by phosphocellulose chromatography, M. Hahn and H. Husic, Biochem. Educ. 17, 94-96 (1989).

Demonstration of chromatographic techniques using minicolumns, D. Miller et al., Biochem. Educ. 19, 33-34 (1991).

Separation utilizing gel filtration and ion-exchange chromatography, S. Russo and A. Radcliffe, J. Chem. Educ. 68, 168-171 (1991).

An inexpensive gel-filtration chromatography experiment, H. Rowe, J. Chem. Educ. 70, 415-417 (1993).

Isolation of lactoferrin by immobilized metal ion affinity chromatography (IMAC), A. Calvo and F. Batista-Viere, Biochem. Educ. 22, 50-52 (1994).

Rapid microscale isolation and purification of yeast alcohol dehydrogenase using Cibacron blue affinity chromatography, C. Morgan and N. Moir, J. Chem. Educ. 73, 1040-1041 (1996).

A Problem-solving approach to chromatography in the biochemistry lab, F. Gorga, J. Chem. Educ. 77, 264-266 (2000).

Chromatofocusing, T. Makovec, Biochem. Mol. Biol. Educ. 28, 203-206 (2000).

Survey of biochemical separation techniques, M. Nilsson, J. Chem. Educ. 84,112-115 (2007).

Chromatographic separation of two proteins, J. Szeberenyi, Biochem. Mol. Biol. Educ. 35, 71-72 (2007).

HPLC determination of caffeine and paraxanthine in urine: An assay for cytochrome P450 1A2 activity, L. Furge and K. Fletke, Biochem. Mol. Biol. Educ. 35, 138-144 (2007).

1

Page 2: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Computational Biochemistry

ENZYPLOT: a microcomputer assisted program for teaching enzyme kinetics, F. Leone et al., Biochem. Educ. 23, 35-37 (1995). Molecular modeling and experimental verification of the relative stability of DNA base pairs: a biochemistry laboratory experiment, S. Burgess et al., Biochem. Educ. 24, 230-231 (1996).

Structural analysis and modeling of proteins on the web, D. Leon, S. Uridil, and J. Miranda, J. Chem. Educ. 75, 731-734 (1998).

Teaching Bioinformatics, H. Salter, Biochem. Educ. 26, 3-10 (1998).

Using the computer in biochemical research, R. Boyer, Modern Experimental Biochemistry, 3rd ed., p. 211-225 (2000), Benjamin Cummings (San Francisco).

Integrating computational chemistry into a project-oriented biochemistry laboratory experience: a new twist on the lysozyme experiment. R. Peterson, J. Cox, J. Chem. Educ. 78, 1551-1555 (2001).

Integrating Internet assignments into a Biochemistry/Molecular Biology laboratory course, R. Kaspar, Biochem. Mol. Biol. Educ. 30, 36-39 (2002).

Introduction to interpretation of stochastic parameters: computer-intensive procedures for evaluation of data in enzyme kinetics, K. Tenekedjiev and K. Kolev, Biochem. Mol. Biol. Educ. 30, 414-418 (2002).

BioMoleculesAlive.org: The biochemistry and molecular biology digital library update, P. Craig, Biochem. Mol. Biol. Educ. 31, 151-152 (2003).

Photochemical oxidation of bilirubin to biliverdin, W. Coleman, J. Chem. Educ. 83, 1329-1330 (2006).

Utilization of integrated Michaelis-Menten equation to determine kinetic constants, R. Bezerra and A. Dias, Biochem. Mol. Biol. Educ. 35, 145-150 (2007).

Molecular models of DNA, W. Coleman, J. Chem. Educ. 84, 809-810 (2007).

Molecular models of resveratrol, W. Coleman, J. Chem. Educ. 84, 1161- 1162 (2007).

Lysozyme thermal denaturation and self-interaction, J. Schwinefus et al., J. Chem. Educ. 85, 117-120 (2008).

2

Page 3: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Vertical and horizontal integration of bioinformatics education, L. Furge et al., Biochem. Mol. Biol. Educ. 37, 26-36 (2009).

Electrophoresis

SDS-agarose gel electrophoresis in a simple procedure for determining high molecular weight protein oligomerization, M. Brownleader et al., Biochem. Educ. 22, 155-158 (1994).

Capillary electrophoresis: a fast and simple method for the determination of the amino acid composition of proteins, P. Weber and D. Buck, J. Chem. Educ. 71, 609-611 (1994).

An inexpensive agarose gel electrophoresis system, D. Betsch and J. Beard, Biochem. Educ. 27, 48-50 (1999).

Electrophoretic transfer technique to detect and identify amylases in polyacrylamide gels, V. Mulimani and S. Thippeswamy, Biochem. Mol. Biol. Educ. 29, 250-254 (2001).

Determination of a diffusion coefficient by capillary electrophoresis, K. Williams, B. Adhyaru, I. German, and T. Russell, J. Chem. Educ. 79, 1475- 1476 (2002).

Agarose gel electrophoresis system in the classroom. J. De Mattos et al. Biochem. Mol. Biol. Educ. 32, 254-257 (2004).

An SDS-PAGE examination of protein quaternary structure. J. Powers et al. J. Chem. Educ. 82, 93-95 (2005).

Determination of the subunit molecular mass and composition of alcohol dehydrogenase by SDS-PAGE, B. Nash, J. Chem. Educ. 84, 1508-1511 (2007).

Metal-catalyzed cleavage of tRNA-Phe, S. Kirk et al., J. Chem. Educ. 85, 676-678 (2008).

General Techniques (solutions, statistics, etc.)

Preparing solutions in the biochemistry lab, J. Risley, J. Chem. Educ. 68, 1054-1055 (1991).

3

Page 4: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Automated data collection from manual Hitachi model U-1100 spectrophoto- meters and analysis by means of Excel spreadsheets, D. Titheridge et al.,

Biochem. Educ. 23, 91-96 (1995).

Concepts and skills in the biochemistry/molecular biology lab, R. Boyer, Biochem. Mol. Biol. Educ. 31, 102-105 (2003).

Teaching undergraduates to write scientific papers, L. Tomaska, ASBMB Today, May, 20-21 (2007).

Ligand Binding

Spectrophotometric determination of the binding constants of succinate and chloride to glutamic oxalacetic transaminase, A. Parody-Morreale et al., J.

Chem. Educ. 67, 988-991 (1990).

The binding of coomassie brilliant blue to bovine serum albumin, J. Sohl and A. Splittgerber, J. Chem. Educ. 68, 262-264 (1991).

Evaluation of the Hill coefficient from Scatchard and Klotz plots, A. Sabouri and A. Moosavi-Movahedi, Biochem. Educ. 22, 48-49 (1994).

Fluorescence measurements of ethidium binding to DNA, K. Strothkamp and R. Strothkamp, J. Chem. Educ. 71, 77-81 (1994).

Analysis of receptor-ligand interactions, A. Attie and R. Raines, J. Chem. Educ. 72, 119-121 (1995).

A ligand-binding study based on a protein assay method, H. Chial et al., J. Chem. Educ. 72, 76-78 (1995).

Binding of bilirubin to goat serum albumin: determination of binding constants, S. Tayyab and V. Trivedi, Biochem. Educ. 23, 98-100 (1995). The shapes of Scatchard plots for systems with two sets of binding sites, A. Bordbar et al., Biochem. Educ. 24, 172-175 (1996).

Fluorescent measurement of TNS binding to calmodulin, J. Buccigross et al., J. Chem. Educ. 73, 275-278 (1996).

Binding of proflavin to chymotrypsin, H. Hendrickson, Biochem. Educ. 27, 118-121 (1999).

Study of protein-ligand Binding by fluorescence, M. Moller and A. Denicola, Biochem. Mol. Biol. Educ., 30, 309-312 (2002).

4

Page 5: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Teaching receptor theory to biochemistry undergraduates, M. Benore- Parsons and K. Sufka, Biochem. Mol. Biol. Educ. 31, 85-92 (2003).

Equilibrium gel filtration chromatography for the measurement of protein- ligand binding in the undergraduate biochemistry laboratory. D. Craig, J. Chem. Educ. 82, 96-98 (2005).

Quantitative determination of DNA-ligand binding using fluorescence spectroscopy, E. Healy, J. Chem. Educ. 84, 1304-1307 (2007).

Molecular models of DAPI, W. Coleman, J. Chem. Educ. 84, 1307 (2007).

Steady-state fluorescence anisotropy to investigate flavonoids binding to proteins, C. Ingersoll and C. Strollo, J. Chem. Educ. 84, 1313-1316 (2007).

UV thermal melting curves of tRNA-Phe in the presence of ligands, S. Kirk et al., J. Chem. Educ. 85, 674-676 (2008

Spectroscopy

Fluorescence quenching of albumin. A spectrofluorimetric experiment, M. Montero et al. Biochem Educ. 18, 99-101 (1990).

Using high field NMR to determine dehydrogenase stereospecificity with respect to NADH, S. Mostad and A. Glasfeld, J. Chem. Educ. 70, 504-506 (1993).

NMR titration used to observe specific proton dissociation in polyprotic tripeptides, J. Yarger, R. Nieman, and A. Bieber, J. Chem. Educ. 74, 243-245 (1997).

Resonance energy transfer in peptides: A biophysical laboratory experiment, A. Hundzinski and B. Anderson, J. Chem. Educ. 76, 416-418(1999).

Proton NMR Studies of the conformation of an octapeptide, A. Rehart and J. Gerig, J. Chem. Educ. 77, 892-895 (2000).

Carboxyfluorescin fluorescence experiments, S, Massou, R. Albigot, and M. Prats, Biochem. Educ. 28, 171-173 (2000).

Protein tryptophan accessibility studied by fluorescence quenching, M. Moller and A. Denicola, Biochem. Mol. Biol. Educ. 30, 175-178 (2002).

The free energy of denaturation of lysozyme: an undergraduate experiment in biophysical chemistry, W. Kurtin and J. Lee, Biochem. Mol. Biol. Educ. 30, 244-247 (2002).

5

Page 6: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Labeling of Proteins with Fluorescent Probes, V. Levi and F. Flecha, Biochem. Mol. Biol. Educ. 31, 333-336 (2003).

Investigation of model cell membranes with Raman spectroscopy, N. Craig, W. Fuchsman, and N. Lacuesta, J. Chem. Educ. 80, 1282-1288 (2003).

Fundamentals of biomolecule analysis by electrospray ionization mass spectrometry. A. Weinecke and V. Ryzhov, J. Chem. Educ. 82, 99-102.

A rapid method for the determination of the percentage of aliphatic versus vinyl hydrogen atoms and levels of trans fatty acids in triacylglycerols, M. Mosher et al., The Chemical Educator, 11, 1-3 (2006).

Spectroscopic measurement of the redox potential of cytochrome c for the undergraduate biochemistry laboratory, D. Craig and E. Nichols, J. Chem. Educ. 83,1325-1327 (2006).

Accessible NMR experiments studying the hydrodynamics of 15-N- enriched ubiquitin at low fields, L. Thompson and D. Rovnyak, Biochem. Mol. Biol. Educ. 35, 49-56 (2007).

Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time, A. Kausaite et al., Biochem. Mol. Biol. Educ. 35, 57-63 (2007).

Complexation of copper (II) ion with tetraglycine as followed by electronic absorption spectroscopy, E. Garribba and G. Micera, J. Chem. Educ. 84, 832-835 (2007).

Quantitative measurement of trans-fats by infrared spectroscopy, E. Walker et al., J. Chem. Educ. 84, 1162-1165 (2007).

Absorption and scattering coefficients: a biophysical-chemistry experiment using reflectance spectroscopy, G. Cordon and M. Lagorio, J. Chem. Educ. 84, 1167-1171 (2007).

Quantitative determination of DNA-ligand binding using fluorescence spectroscopy, E. Healy, J. Chem. Educ. 84, 1304-1307 (2007).

Molecular models of DAPI, W. Coleman, J. Chem. Educ. 84, 1307 (2007).

Steady-state fluorescence anisotropy to investigate flavonoids binding to proteins, C. Ingersoll and C. Strollo, J. Chem. Educ. 84, 1313-1316 (2007).

6

Page 7: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

A project-based biochemistry laboratory promoting the understanding and uses of fluorescence spectroscopy in the study of biomolecular structures and interactions, N. Briese and H. Jakubowski, Biochem. Mol. Biol. Educ. 35, 272-279 (2007).

Lactate dehydrogenase kinetics and inhibition using a microplate reader, J. Powers et al., Biochem. Mol. Biol. Educ. 35, 287-292 (2007).

An improved method for studying the enzyme-catalyzed oxidation of glucose using luminescent probes, W. Bare et al., J. Chem. Educ. 84, 1511-1515 (2007).

Incorporating biological mass spectrometry into undergraduate teaching labs, Part I: identifying proteins based on molecular mass, I. Arnquist and D. Beussman, J. Chem. Educ. 84, 1971-1974 (2007).

Lysozyme thermal denaturation and self-interaction, J. Schwinefus et al., J. Chem. Educ. 85, 117-120 (2008).

Fluorescence spectroscopy of tRNA-Phe Y base in the presence of Mg(2+) and small ligand molecules, S. Kirk et al., J. Chem. Educ. 85, 678-680 (2008).

Using FRET to measure the angle at which a protein bends DNA, J. Kugel, Biochem. Mol. Biol. Educ. 36, 541-546 (2008).

Identifying gel-separated proteins using in-gel digestion, mass spectrometry, and database searching, D. Beussman et al., Biochem. Mol. Biol. Educ. 37, 49-55 (2009).

II. Isolation and Analysis of Biomolecules Amino acids/peptides/proteins/antibodies

Application of gel filtration for fractionation and molecular weight determination of proteins, O. Malhotra and A. Kumar, Biochem. Educ. 17, 148-150 (1989).

A review of enzyme-immunoassay and a description of a competitive enzyme-linked immunosorbent assay for the detection of immunoglobulin

concentrations, R. O’Kennedy et al., Biochem. Educ. 18, 136-140 (1990).

Isolation of the active site of cytochrome c by reverse-phase high performance liquid chromatography, P. Kenigsberg et al. , J. Chem. Educ. 67, 177-179 (1990).

7

Page 8: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Western blotting with a concanavalin A-horseradish conjugate, E. Snyder and R. Fall, Biochem. Educ. 18, 147-148 (1990).

Insulin: HPLC mapping of protease digestion products, M. Vesting, J. Chem. Educ. 68, 958-960 (1991).

Isolation and characterization of bovine milk α-lactalbumin by IMAC, R. Boyer, J. Chem. Educ. 68, 430-432 (1991), and Modern Experimental Biochemistry, 3rd ed. p. 257-278, (2000), Benjamin Cummings (San Francisco).

Identification of amino acids in unknown dipeptides: a derivatization with 9-fluorenylmethyl chloroformate and HPLC, C. Clapp et al., J. Chem. Edu. 69, A122 (1992).

Determination of distances between chromophores in proteins: a resonance- energy transfer experiment, G. Gonzalez, Biochem. Educ. 22,150-151 (1994).

A fast and inexpensive western blot for the undergraduate laboratory, S. Farrell and L. Farrell, J. Chem. Educ. 73, 740-744 (1995).

Derivation of the thermodynamic parameters involved in the elucidation of protein thermal profiles, A. Saarboury and A. Moosavi-Movahedi, Biochem. Educ. 23, 164-166 (1995).

Experimental determination of the free energy of unfolding of proteins, S. Tayyab et al., Biochem. Educ. 23, 162-165 (1995).

Use of monoclonal antibodies in ELISA assays, J. Johnson, et al., Biochem. Educ. 24, 50-52 (1996).

Labeling histidines in cytochrome c, A. Bonser and O. Moe, J. Chem. Educ. 73, 794-797 (1996).

Isolation and purification of calmodulin from bovine brain, J. Buccigross et al., J. Chem. Educ. 73, 273-276 (1996). Protein structure and chromatographic behavior: The separation and characterization of four proteins using gel filtration and ion-exchange chromatography and gel electrophoresis, M. Chakravarthy, L. Snyder, T. Vanyo, J. Holbrook, and H. Jakubowski, J. Chem. Educ. 73, 268-272 (1996).

An experiment on the succinylation of wheat gluten and its consequences for pH-solubility, D. Fouques and M-C Ralet, Biochem. Educ. 24, 232-233 (1996).

Purification of horse heart cyt c by ion exchange, P. Mabrouk, J. Chem. Educ. 73, A149 (1996).

8

Page 9: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Microburger biochemistry: extraction and spectral characterization of myoglobin from hamburger, S. Bylkas and L. Andersson, J. Chem. Educ. 74, 426-429 (1997).

An introduction to research in protein folding for undergraduates, C. Jones, J, Chem. Educ. 74, 1306-1310 (1997).

Simulated western blot for the science curriculum, P. Cummings, Biochem. Educ. 25, 39-40 (1997).

A simple immunoassay-based system capable of detecting antibody raised against human IgG, G. Walsh et al., Biochem. Educ. 26, 157-160 (1998).

Enzyme-linked antibodies: A laboratory introduction to the ELISA, G. Anderson and L. McNellis, J. Chem. Educ. 75, 1275-1278 (1998).

Isolation of gamma-globulin (IgG) from serum: a task that encourages students to consolidate concepts on protein structure and properties, A.

Assis-Pandochi et al., Biochem. Educ. 26, 63-65 (1998).

Biochemical characterization of transducin, the G protein of bovine retina, J. Muschietti et al., Biochem. Educ. 26, 77-81 (1998).

Investigating lipoproteins, M. Gillett, Biochem. Educ. 27, 51-54 (1999).

Green Fluorescent Protein Isoforms: Exercises to integrate molecular biology, biochemistry, and biophysical chemistry, B. Hicks, J. Chem. Educ. 76, 409-

416 (1999). A convenient and highly specific western blot experiment for introductory biochemistry, C. Fenk, S. Grooms, and D. Gerbig, J. Chem. Educ. 77, 373-

375 (2000).

A simple method for immunodetection of membrane-associated proteins, K. Daghastanli, R. Ferreira, G. Thedei, and P. Ciancaglini, Biochem. Mol. Biol. 28, 256-260 (2000).

Identification of serum glycoproteins by SDS-PAGE and western blotting, R. Boyer, Modern Experimental Biochemistry, 3rd ed., p. 321-332 (2000) Benjamin Cummings (San Francisco).

A practical approach to the choice of a suitable detergent and optimal conditions for solubilizing a membrane protein, H. Santos and P. Ciancaglini, Biochem. Educ. 28, 178-182 (2000).

9

Page 10: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Complete Analysis of a Biologically Active Tetrapeptide: A project utilizing thin-layer chromatography and tandem quadrupole mass spectrometry, J. LeFevre and D. Dodsworth, J. Chem. Educ. 77, 503-505 (2000). A Biochemical Study of Noncovalent Forces in Proteins using Phycocyanin from Spirulina, B. Heller and Y. Gindt, J. Chem. Educ. 77, 1458-1460 (2000).

Structural analysis of a dipeptide, R. Boyer, Modern Experimental Bio- chemistry, 3rd ed. p. 227-242, (2000), Benjamin Cummings (San Francisco).

Structural Studies of Phycobiliproteins from Spirulina: Combining spectroscopy, thermodynamics, and molecular modeling in an undergraduate biochemistry experiment, A. Taylor and S. Feller, J. Chem. Educ. 79, 1467- 1470 (2002).

Assessment of the purification of a protein by ion exchange and gel permeation chromatography, M. Pugh and E. Schultz, Biochem. Mol. Biol. Educ. 30, 179-183 (2002).

Identifying a Protein by MALDI-TOF Mass Spectrometry, A. Counterman, M. Thompson, and D. Clemmer, J. Chem. Educ. 80, 177-180 (2003).

Preparing undergraduates to participate in the post-genome era: A capstone laboratory experience in proteomics, E. Eberhardt, Biochem. Mol. Biol. Educ. 31, 402-409 (2003).

Bringing proteomics into the lab, F. Carvalho and M. Gillespie, Biochem. Mol. Biol. Educ. 31, 46-51 (2003).

Teaching proteomics, L. Plesniak and E. Bell, Biochem. Mol. Biol. Educ. 31, 127-130 (2003).

Purification of colored photosynthetic proteins for understanding protein isolation principles, M. Bes, J. Sancho, M. Peleato, M. Medina, C. Gomez- Moreno, and M. Fillat, Biochem. Mol. Biol. Educ. 31, 119-122 (2003).

Isolation of chicken immunoglobulins (IgY) from egg yolk, J. Goldring and T. Coetzer, Biochem. Mol. Biol. Educ. 31, 185-187 (2003).

Salt fractionation of plasma proteins: a procedure to teach principles of protein chemistry, A. Spadaro, A. Assis-Pandochi, Y. Lucisano-Valim, and Z. Rothschild, Biochem. Mol. Biol. Educ. 31, 249-252 (2003).

Cytochrome c: A biochemistry laboratory course, J. Vincent and S. Woski, J. Chem. Educ. 82, 1211-1214 (2005).

10

Page 11: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Spectroscopic measurement of the redox potential of cytochrome c for the undergraduate biochemistry laboratory, D. Craig and E. Nichols, J. Chem. Educ. 83,1325-1327 (2006).

Survey of biochemical separation techniques, M. Nilsson, J. Chem. Educ. 84,112-115 (2007).

Accessible NMR experiments studying the hydrodynamics of 15-N- enriched ubiquitin at low fields, L. Thompson and D. Rovnyak, Biochem. Mol. Biol. Educ. 35, 49-56 (2007).

Surface plasmon resonance label-free monitoring of antibody antigen interactions in real time, A. Kausaite et al., Biochem. Mol. Biol. Educ. 35, 57-63 (2007).

Chromatographic separation of two proteins, J. Szeberenyi, Biochem. Mol. Biol. Educ. 35, 71-72 (2007).

Western blot analysis to illustrate relative control levels of the lac and ara promoters in E. coli, B. Nielsen et al., Biochem. Mol. Biol. Educ. 35, 133- 137 (2007).

Steady-state fluorescence anisotropy to investigate flavonoids binding to proteins, C. Ingersoll and C. Strollo, J. Chem. Educ. 84, 1313-1316 (2007).

A project-based biochemistry laboratory promoting the understanding and uses of fluorescence spectroscopy in the study of biomolecular structures and interactions, N. Briese and H. Jakubowski, Biochem. Mol. Biol. Educ. 35, 272-279 (2007).

Determination of the subunit molecular mass and composition of alcohol dehydrogenase by SDS-PAGE, B. Nash, J. Chem. Educ. 84, 1508-1511 (2007).

Incorporating biological mass spectrometry into undergraduate teaching labs, Part I: identifying proteins based on molecular mass, I. Arnquist and D. Beussman, J. Chem. Educ. 84, 1971-1974 (2007).

Lysozyme thermal denaturation and self-interaction, J. Schwinefus et al., J. Chem. Educ. 85, 117-120 (2008).

An integrated protein chemistry laboratory: Chlorophyll and chlorophyllase K. Arkus and J. Jez, Biochem. Mol. Biol. Educ. 36, 125-128 (2008).

11

Page 12: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Teaching protein purification and characterization techniques: A student- initiated, project-oriented biochemistry laboratory course, G. MacDonald, J. Chem. Educ. 85, 1250-1253 (2008).

Identifying gel-separated proteins using in-gel digestion, mass spectrometry, and database searching, D. Beussman et al., Biochem. Mol. Biol. Educ. 37, 49-55 (2009).

Carbohydrates

Changes in carbohydrate content during fruit ripening—a new approach of teaching carbohydrate chemistry in biochemistry course, P. Chaimanee and O. Suntornwat, Biochem. Educ. 22, 101-102 (1994).

Guidelines for determining the glycosylation characteristics of glycoconjugates by simple procedures, J. Cabezas, Biochem. Educ. 23, 168-170 (1995).

Change in carbohydrate content during chickpea cooking: a new approach of teaching of carbohydrate chemistry in biochemistry course, V. Mulimani, S. Thippeswamy and Ramalingam, Biochem. Educ. 25, 44-45 (1997). Carbohydrate Analysis: Can we control the ripening of bananas?, S. Deal, C. Farmer, and P. Cerpovicz, J. Chem. Educ. 79, 479-480 (2002).

Lipids

Isolation and spectrophotometric characterization of photosynthetic pigments, R. Boyer, Biochem. Educ. 18, 203-206 (1990), and Modern Experimental Biochemistry, 3rd ed., p. 333-344, (2000) Benjamin Cummings. (San Francisco).

Erythrocyte storage as a model for lipid peroxidation studies. An experi- mental assay for students of biochemistry and molecular biology, M. Llanillo et al., Biochem. Educ. 22, 158-161 (1994).

Purification and characterization of triacylglycerols in natural oils, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 303-320 (2000), Benjamin Cummings (San Francisco).

Determination of the Fatty Acid Content of Biological Membranes: A highly versatile GC-MS Experiment, E. Schultz and M. Pugh, J. Chem. Educ. 78, 944-946 (2001).

12

Page 13: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Differential scanning calorimetric study of bilayer membrane phase transitions, S. Ohline, M. Campbell, M. Turnbill, and S. Kohler, J. Chem. Educ. 78, 1251-1257 (2001).

An improved method for the extraction and thin-layer chromatography of chlorophyll a and b from spinach. H. Quach, R. Steeper, and G. Griffin, J. Chem. Educ. 81, 385-387 (2004).

A rapid method for the determination of the percentage of aliphatic versus vinyl hydrogen atoms and levels of trans fatty acids in triacylglycerols, M. Mosher et al., The Chemical Educator, 11, 1-3 (2006).

Quantitative measurement of trans-fats by infrared spectroscopy, E. Walker et al., J. Chem. Educ. 84, 1162-1165 (2007).

Molecular models of resveratrol, W. Coleman, J. Chem. Educ. 84, 1161- 1162 (2007).

A project-based biochemistry laboratory promoting the understanding and uses of fluorescence spectroscopy in the study of biomolecular structures and interactions, N. Briese and H. Jakubowski, Biochem. Mol. Biol. Educ. 35, 272-279 (2007).

III. Isolation and Characterization of Enzymes

Enzyme kinetics—the steady state observed, P. Buckley et al., Biochem. Educ. 18, 101-102 (1990).

Determining the conformation of a ligand bound to an enzyme: application of NMR spectroscopy in drug design, D. Craik et al., J. Chem. Educ. 68, 258-260 (1991).

An NMR study of the stereochemistry of the fumarase-catalyzed hydration of fumaric acid, J. Olsen and R. Olsen, J. Chem. Educ. 68, 436-439 (1991).

Versatile partial purification of glucose 6-phosphate dehydrogenase by ion- exchange chromatography, J. Keller et al., J. Chem. Educ. 68, 265-268 (1991).

A biochemistry project to study mushroom tyrosinase, M. Rodriquez and W. Flurkey, J. Chem. Educ .69, 767-769 (1992).

Purification of lysozyme by linear salt gradient and SDS gel electrophoresis, M. Hurst et al., J. Chem. Educ. 69, 850-852 (1992).

13

Page 14: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Probing denaturation by simultaneously monitoring residual enzyme activity and intrinsic fluorescence, T. Silverstein and L. Blomberg, J. Chem. Educ. 69, 852-855 (1992).

Polyphenoloxidase: an enzyme widespread in fruits, S. Garcia and A. Buzaleh, Biochem. Educ. 22, 152-153 (1994).

The hydrolysis of p-nitrophenyl acetate: a versatile reaction to study enzyme kinetics, J. Anderson, J. Chem. Educ. 71, 715-717 (1994).

Testing the α-amylase inhibitor of the common bean, J. Moreno et al., J. Chem. Educ. 71, 350-352 (1994).

A kinetic study of yeast alcohol dehydrogenase, R. Utecht, J. Chem. Educ. 71, 436-438 (1994).

Designing a coupled assay system for aspartate aminotransferase, P. Arnold and G. Parslow, Biochem. Educ. 23, 40-41 (1995).

A rapid and inexpensive procedure for the determination of proteolytic activity, S. Castro and A. Cantera, Biochem. Educ. 23, 41-43 (1995).

Nucleophilic and enzymic catalysis of p-nitrophenylacetate hydrolysis, M. Head et al., J. Chem. Educ. 72, 184-186 (1995).

A practical experiment on enzyme immobilization and characterization of the immobilized derivatives, A. Manjon et al., Biochem. Educ. 23, 213-216 (1995).

An experiment on the chemical modification of essential tryptophan residues of barley β-amylase, V. Mulimani and J. Lalitha, Biochem. Educ. 23, 218-219 (1995).

Kinetic study of the enzyme urease from Dolichos biflorus, K. Natarajan, J. Chem. Educ. 72, 556-558 (1995).

Teaching biochemistry to wildlife management and oceanology students: kinetics of LDH isozymes in brook charr, P. Rioux and P. Blier, Biochem. Educ. 23, 38-39 (1995). An assay procedure for determining the rate of an enzyme reaction lacking an optical signal: validity of coupled enzyme assays, O. Malhotra et al., Biochem. Educ. 24, 56-59 (1996).

Zymography of extracellular matrix proteases, A. Quesada et al., Biochem. Educ. 24, 170-171 (1996).

14

Page 15: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

An experiment on the denaturation of α-chymotrypsin by an anionic sur- factant, sodium dodecyl sulfate (SDS), V. Mulimani and J. Lalitha, Biochem. Educ. 24, 52-54 (1996). A rapid and inexpensive procedure for the determination of amylase activity, V. Mulimani and J. Lalitha, Biochem. Educ. 24, 234-235 (1996).

Spectrofluorimetric visualization of the progress of an enzymatic reaction, C. Saldanha and J. Martins-Silva, Biochem. Educ. 24, 235-236 (1996).

Regiospecific ester hydrolysis by orange peel esterase, T. Bugg, A. Lewin, and E. Catlin, J. Chem. Educ. 74, 105-107 (1997).

Inhibition of cholinesterase by insecticides, L. Lai and J. Ho, Biochem. Educ. 25, 235-237 (1997).

The thermodynamic stability and catalytic activity of yeast alcohol dehydrogen- ase at different pH values, R. Tabor and J. Ladwig, Biochem. Educ. 25, 169- 170 (1997).

A simple laboratory experiment for the teaching of the assay and kinetic characterization of enzymes, L. Vicario, D. Casti, and A. Iglesias, Biochem. Educ. 25, 106-109 (1997).

A novel approach to practical enzymology teaching: a conductimetric investigation of arginase, inorganic pyrophosphatase, aliphatic esterase, ornithine carbamyl transferase, and arginosuccinate lyase activities from mammalian liver, A. Lawrence et al., Biochem. Educ. 26, 56-62 (1998).

Immobilized lactase in the biochemistry laboratory, M. Allison and C. Bering, J. Chem. Educ. 75, 1278-1281 (1998).

Purification of bovine carbonic anhydrase by affinity chromatography, C. Bering and J. Kuhns, J. Chem. Educ. 75, 1021-1025 (1998).

A 19-F NMR study of enzyme activity, K. Peterman, K. Lentz, and J. Duncan, J. Chem. Educ. 75, 1283-1285 (1998).

The competitive inhibition of yeast alcohol dehydrogenase by 2,2,2-trifluoro- ethanol, R. Tabor, Biochem. Educ. 26, 239-242 (1998).

Kinetics of Papain: An introductory biochemistry laboratory experiment, K. Cornely, E. Crespo, M. Earley, R. Kloter, A. Levesque,and M. Pickering, J. Chem. Educ. 76, 644-646 (1999).

15

Page 16: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Enzymic browning in potatoes: a simple assay for a polyphenol oxidase catalyzed reaction, J. Busch, Biochem. Educ. 27, 171-173 (1999).

Kinetic analysis of tyrosinase, R. Boyer, Modern Experimental Biochemistry 3rd ed. p.279-302, (2000), Benjamin Cummings (San Francisco).

Chemical cross-linking analysis of calcium-ATPase from rabbit skeletal muscle, B. Murray and K. Ohlendieck, Biochem. Educ. 28, 41-46 (2000).

Probing the active site of yeast alcohol dehydrogenase through microscale yeast-mediated reductions of acetophenone and acetylpyridines, M. Lee et al. J. Chem. Educ. 77, 363-366 (2000).

Demonstration of the principles of enzyme-catalyzed reactions using alkaline phosphatase, N. Price and B. Newman, Biochem. Mol. Biol. Educ. 28, 207-210 (2000).

The determination of chitinase activity of grapes, N. Byrne, M. Duxbury, and N. Sharpe, Biochem. Mol. Biol. Educ. 29, 144-146 (2001).

Aminotransferase from insect cells, H. Erwin, G. de Ridder, and P. Barton, Biochem. Mol. Biol. Educ. 29, 196-198 (2001).

A novel and innovative biochemistry laboratory: crystal growth of hen egg white lysozyme, J. Chem. Educ. 79, 366-369 (2002).

Optimization of kinetic parameters of enzymes, R. Heinrich, E. Melendez- Hevia, and H. Cabezas, Biochem. Mol. Biol. Educ. 30, 184-188 (2002).

Kinetic studies with alkaline phosphatase in the presence and absence of inhibitors and divalent cations, R. Dean, Biochem. Mol. Biol. Educ. 30, 401- 407 (2002).

Preparation, purification, and secondary structure determination of Bacillus circulans xylanase. A modular laboratory incorporating aspects of molecular biology, biochemistry, and biophysical chemistry, S. Russo and L. Gentile, J. Chem. Educ. 83, 1850-1852 (2006).

HPLC determination of caffeine and paraxanthine in urine: An assay for cytochrome P450 1A2 activity, L. Furge and K. Fletke, Biochem. Mol. Biol. Educ. 35, 138-144 (2007).

Utilization of integrated Michaelis-Menten equation to determine kinetic constants, R. Bezerra and A. Dias, Biochem. Mol. Biol. Educ. 35, 145-150 (2007).

16

Page 17: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

From egg to crystal: a practical on purification, characterization, and crystallization of lysozyme for bachelor students, V. Olieric et al. Biochem. Mol. Biol. Educ. 35, 280-286 (2007).

Lactate dehydrogenase kinetics and inhibition using a microplate reader, J. Powers et al. Biochem. Mol. Biol. Educ. 35, 287-292 (2007).

An improved method for studying the enzyme-catalyzed oxidation of glucose using luminescent probes, W. Bare et al., J. Chem. Educ. 84, 1511-1515 (2007).

Immobilized -galactosidase in the biochemistry laboratory, V. Mulimani and K. Dhananjay, J. Chem. Educ. 84, 1974-1976 (2007).

Thermal and chemical denaturation of Bacillus circulans xylanase, L. Gentile et al., Biochem. Mol. Biol. Educ. 36, 428-432 (2008).

Red seaweed enzyme-catalyzed bromination of bromophenol red: An inquiry- based kinetics laboratory experiment for undergraduates, P. Jittam et al., Biochem. Mol. Biol. Educ. 37, 99-105 (2009).

IV. Metabolism/Regulation/Transport

The energetics of aerobic versus anaerobic respiration, T. Champion and R. Schwenz, J. Chem. Educ. 67, 528-530 (1990).

Use of DCPIP in a colorimetric method to investigate electron transport in crude heart mitochondrial extracts, A. Myers, Journal of Biol. Educ. 24, 123- 126 (1990).

Mitochondria from rat liver: method for rapid preparation and study, C. Heisler, Biochem. Educ. 19, 35-38 (1991).

An experiment on glycogen biosynthesis in E. coli, A. Lodeiro et al, Biochem. Educ. 22, 213-214 (1994).

Demonstration of the regulation of phosphorylase by reversible phosphorylation and allosteric effectors, R. Toomik et al., Biochem. Educ. 22, 205-207 (1994).

An experiment illustrating catabolite repression in yeast, W. Baker, Biochem

17

Page 18: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Educ. 23, 216-217 (1995).

Light-induced proton transport through chloroplast membranes, J. Ho and E. Po, Biochem. Educ. 24, 179-180 (1996).

Following glycolysis using 13-C NMR, T. Mega, C. Carlson, and D. Cleary, J. Chem. Educ. 74, 1474-1476 (1997).

Some aspects of yeast anaerobic metabolism examined by the inhibition of pyruvate decarboxylase, E. Martin, J. Chem. Educ. 75, 1281-1283 (1998).

Photosynthesis and respiration in leaf slices, S. Brown, Biochem. Educ. 26, 164-167 (1998).

An experiment illustrating metabolic regulation in situ using digitonin permea- bolized yeast cells, A. Ponces Freire et al., Biochem. Educ. 26, 161-163 (1998).

A simple experiment demonstrating the allosteric regulation of yeast pyruvate kinase, R. Taber, A. Campbell, and S. Spencer, Biochem. Educ. 26, 73-76 (1998).

An in Vivo 13-C NMR Analysis of the Anaerobic Yeast Metabolism of 1-13-C Glucose, B. Giles, Z. Matsche, R. Egeland, R. Reed, S. Morioka, and R. Taber, J. Chem. Educ. 76, 1564-1566 (1999).

A simple experiment illustrating metabolic regulation: induction versus repression of yeast α-glucosidase, B. Stambuk, Biochem. Educ. 27, 177-180 (1999). Isolation, subfractionation, and enzymatic analysis of beef heart mitochondria, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 357-370 (2000) Benjamin Cummings (San Francisco).

The excellence of turnip mitochondrial fractions, J. Vicente and V. Madeira, Biochem. Educ. 28, 104-106 (2000).

A simple laboratory exercise illustrating active transport in yeast cells, B. Stambuk, Biochem. Mol. Biol. Educ. 28, 313-317 (2000). Photoinduced proton transport through chloroplast membranes, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 345-356 (2000), Benjamin Cummings (San Francisco).

Experimental treatment of the laws of heterogeneous catalysis with

18

Page 19: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

immobilized yeast cells, P. Grunwald, Biochem. Educ. 28, 96-99 (2000). Studying ion channels in undergraduate laboratories, A. Garrill, Biochem. Mol. Biol. Educ. 28, 318-321 (2000).

A laboratory experiment demonstrating the dynamic character of membranes, M. Pugh and E. Schultz, Biochem. Mol. Biol. Educ. 28, 322-326 (2000).

The pentose phosphate pathway in the yeasts Saccharomyces cerevisiae and Kloeckera apiculata, an exercise in comparative metabolism for food and wine science students, C. Steel, P. Grbin, and A. Nichol, Biochem. Mol. Biol. Educ. 29, 245-249 (2001).

Designer metabolic pathways in the teaching laboratory, M. Gillett, Biochem. Mol. Biol. Educ. 29, 147-151 (2001).

Kinetic analysis of glucose-6-phosphatase: an investigative approach to carbohydrate metabolism, M. Wallert, J. Foster, D. Scholnick, A. Olmschenk, B. Kuehn, and J. Provost, Biochem. Mol. Biol. Educ. 29, 199-203 (2001).

Nitrate reductase: A model system for the investigation of enzyme induction in eukaryotes, C. Pike, W. Cohen, and J. Monroe, Biochem. Mol. Biol. Educ. 30, 111-116 (2002).

Transcriptional and posttranslational regulation of a membrane nutrient transporter, B. Stambuk, Biochem. Mol. Biol. Educ. 30, 388-393 (2002).

Diphenyl carbazide restores electron transport in isolated, illuminated chloroplasts after electron transport from water has been eliminated by mild heat treatment, R. Dean and T. Pocock, Biochem. Mol. Biol. Educ. 32, 381-389 (2004).

Student-designed enzyme-linked metabolite assay kits. D. Hancock et al. Biochem. Mol. Biol. Educ. 32, 326-330 (2004).

Photochemical oxidation of bilirubin to biliverdin, W. Coleman, J. Chem. Educ. 83, 1329-1330 (2006).

Spectroscopic measurement of the redox potential of cytochrome c for the undergraduate biochemistry laboratory, D. Craig and E. Nichols, J. Chem. Educ. 83, 1325-1327 (2006).

Solar irradiation of bilirubin: An experiment in photochemical oxidation, A. Pillay and F. Salih, J. Chem. Educ. 83, 1327-1329 (2006).

Western blot analysis to illustrate relative control levels of the lac and ara promoters in E. coli, B. Nielsen et al., Biochem. Mol. Biol. Educ. 35, 133- 137 (2007).

19

Page 20: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

HPLC determination of caffeine and paraxanthine in urine: An assay for cytochrome P450 1A2 activity, L. Furge and K. Fletke, Biochem. Mol. Biol. Educ. 35, 138-144 (2007).

V. Clinical/Nutritional

Determination of urinary ammonium: a practical class experiment designed to introduce medical students to mechanisms of extracellular and intra- cellular pH homeostasis, C. Marinho and J. Barros, Biochem. Educ. 22, 215-216 (1994).

A practical approach to chemical sensors through potentiometric transducers: determination of urea in serum by means of a biosensor, E. Martinez and S. Alegret, J. Chem. Educ. 71, A67 (1994).

The role of molecular biology in characterization of α-thalassaemia, J. Howarth et al., Biochem. Educ. 24, 59-61 (1996).

Use of blood-glucose test strips for introducing enzyme electrodes and modern biosensors, J. Wang and C. Macca, J. Chem. Educ. 73, 794-797 (1996).

The analysis of riboflavin in urine using fluorescence, J. Henderleiter and R. Hyslop, J. Chem. Educ. 73, 563-565 (1996).

Working with enzymes—where is lactose digested?, S. Pope, T. Tolleson, R. Williams, R. Underhill, and R. Deal, J. Chem. Educ. 75, 761-762 (1998).

Measurement of cholesterol and vitamin C in biological samples, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 371-388 (2000), Benjamin Cummings (San Francisco).

An experiment on the apoptosis induced by polyamine adducts produced in the presence of serum amine oxidase, I. Fajardo, Biochem. Educ. 28, 110-112 (2000). Glucocorticoid-induced apoptosis: a simple set of laboratory experiments, G. Vicent, G. Lanuza, D. Romero, L. Di Croce, and A. Pecci, Biochem. Mol. Biol. Educ. 28, 307-312 (2000).

From gene to protein: Prostatic acid phosphatase: Structure and expression of gene and protein. P. Laidler et al., Biochem. Mol. Biol. Educ. 32: 400-409 (2004).

Testing for genetically modified foods using PCR. A. Taylor and S. Sajan, J. Chem.

20

Page 21: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Educ. 82, 597-599 (2005). Photochemical oxidation of bilirubin to biliverdin, W. Coleman, J. Chem. Educ. 83, 1329-1330 (2006).

Solar irradiation of bilirubin: An experiment in photochemical oxidation, A. Pillay and F. Salih, J. Chem. Educ. 83, 1327-1329 (2006).

HPLC determination of caffeine and paraxanthine in urine: An assay for cytochrome P450 1A2 activity, L. Furge and K. Fletke, Biochem. Mol. Biol. Educ. 35, 138-144 (2007).

A laboratory exercise to determine human ABO blood type by noninvasive methods, M. Martin and S. Detzel, Biochem. Mol. Biol. Educ. 36, 139-146 (2008).

VI. Molecular Biology (nucleic acids, cloning, techniques)

An introduction to restriction mapping of DNA, C. Hepfer and S. Turchi, Biochem. Educ. 17, 48-50 (1989).

The purification and translation of globin mRNA, E. Wolf, Biochem. Educ. 17, 45-47 (1989).

Restriction enzyme mapping: a simple student practical, S. Higgins et al., Biochem. Educ. 18, 144-146 (1990).

Practical molecular biology for students: an integrated approach to teaching basic techniques, B. Hames et al., Biochem. Educ. 18, 141-144 (1990).

You too can be a molecular biologist: a basic cloning experiment for the undergraduate biochemistry laboratory, S. Farrell et al., J. Chem. Educ. 68, 707-709 (1991).

Field inversion agarose gel electrophoresis of DNA, D. Weller and P. Gariepy, J. Chem. Educ. 68, 81-83 (1991).

Demonstration of DNA strand breakage induced by ultraviolet light: an experiment to show molecular events in carcinogenesis, R. Russo and J. Russo, J. Chem. Educ. 70, 330-333 (1993).

The polymerase chain reaction, W. Timmer et al., and J. Villalobos, J. Chem. Educ. 70, 273-277 (1993).

PCR amplification of DNA, D. Weller, J. Chem. Educ. 71, 340-342 (1994).

21

Page 22: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Non-radioactive detection of the Staphylococcus aureus protein A gene using the polymerase chain reaction (PCR), A. Corbett et al, Biochem. Educ. 22, 52- 55 (1994).

A fast restriction enzyme experiment for the undergraduate biochemistry laboratory, S. Farrell, J. Chem. Educ. 71, 1095-1096 (1994).

A practical exercise involving RNA isolation, transfer, and hybridization, M. Marano et al., Biochem. Educ. 22, 207-210 (1994).

DNA composition analysis by nuclease digestion and HPLC, S. Wietstock, J. Chem. Educ. 72, 950-952 (1995).

An analysis of the involvement of purine ribonucleotides in eukaryotic protein synthesis, T. Lawson, J. Chem. Educ. 72, 104-106 (1995).

Determination of the solution conformation of 3’-azido-3’deoxythymidine- 5’-monophosphate (AZTMP), M. Lee, J. Chem. Educ. 73, 184-186 (1996).

Research in undergraduate instruction: a biotech lab project for recombinant protein expression in bacteria, M. Brockman, A. Ordman and A. Malcolm, J. Chem. Educ. 73, 542-544 (1996).

A laboratory class experiment illustrating basic principles of DNA cloning and molecular biology techniques, L. Perez-Pons and E. Querol, Biochem. Educ. 24, 54-56 (1996).

Restriction mapping and gene analysis, M. Simsek, Biochem. Educ. 24, 117-119 (1996).

A fast CTAB method of human DNA isolation for polymerase chain reaction applications, J. Thomas et al., Biochem. Educ. 25, 233-235 (1997).

Making your own gene library, J. Perez-Ortin et al., Biochem. Educ. 25, 237-241 (1997).

Molecular genetic diagnosis by the polymerase chain reaction, A. Beyer and M. Varsanyi, Biochem. Educ. 25, 170-173 (1997).

Isolation of nuclear, chloroplast, and mitochondrial DNA from plants, J. Day Biochem. Educ. 25, 41-43 (1997).

A demonstration of genomic DNA profiling by RAPD analysis, J. Hammond and G. Spanswick, Biochem. Educ. 25, 109-111 (1997).

22

Page 23: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Detection of non-B-DNA secondary structures by S1 nuclease digestion, M. del Olmo et al., J. Chem. Educ. 75, 762-764, (1998).

Synthesis and Purification of a Hammerhead Ribozyme and a Fluorescein- Labeled RNA Substrate. A Biochemistry Laboratory: Part 1, C. Chow and S. Somne, J. Chem. Educ. 76, 648-651 (1999).

Monitoring Hammerhead Ribozyme-Catalyzed Cleavage with a Fluorescein- Labeled Substrate: Effects of magnesium ions and antibiotic inhibitors, C. Chow, S. Somne, and B. zllano-Sotelo, J. Chem. Educ. 76, 651-653 (1999).

A Structure-Function Study of RecA, J. Gegner, N. Spruill, and L. Plesniak, J. Chem. Educ. 76, 1562-1564 (1999).

RNA isolation from plant tissues, M. Claros and F. Canovas, Biochem. Educ. 27, 110-113 (1999).

An experiment illustrating DNA-protein interactions using nuclear extracts from chicken erythrocytes, B. Garat, Biochem. Educ. 27, 232-236 (1999).

Chromatin Isolation and DNA Sequence Analysis in Large Undergraduate Laboratory Sections, A. Hagerman, J. Chem. Educ. 76, 1426-1429 (1999).

A guided experimental approach to practical molecular pharmacology teaching: demonstration of sequence selectivity of DNA-binding drugs by arrested polymerase chain reaction, R. Gambari, Biochem. Educ. 28, 100-103 (2000). DNA Topology Analysis in the Undergraduate Biochemistry Laboratory, M. Keck, J. Chem. Educ. 77, 1471-1474 (2000).

Extraction and characterization of bacterial DNA, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 399-414 (2000), Benjamin Cummings (San Francisco).

Plasmid DNA isolation and characterization by electrophoresis, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 415-430 (2000), Benjamin Cummings (San Francisco). The action of restriction endonucleases on plasmid or viral DNA, R. Boyer, Modern Experimental Biochemistry, 3rd ed. p. 431-442 (2000), Benjamin Cummings (San Francisco).

A laboratory exercise designed to teach medical students about reverse- transcription polymerase chain reaction, M. Fay, N. Chandar, and S.

23

Page 24: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Viselli, Biochem. Mol. Biol. Educ. 29, 234-238 (2001). Restriction enzyme mapping of bacterial urease genes: using degenerate primers to expand experimental outcomes, K. Reed, Biochem. Mol. Biol. Educ. 29, 239-244 (2001). Biocatalytic Lactone Generation in Genetically Engineered E. coli and Identification of Products by Gas Chromatography-Mass Spectroscopy, C. Slawson, R. Potter, and J. Stewart, J. Chem. Educ. 78, 1533-1535, (2001).

Identification of Yeast V-ATPase Mutants by Western Blots Analysis of Whole Cell Lysates, K. Parra-Belky, J. Chem. Educ. 79, 1348-1351 (2002).

Detection of genetically modified organisms in food by DNA extraction and PCR amplification, L. Thion, C. Vossen, B. Couderc, M. Erard, and B. Clemencon, Biochem. Mol. Biol. Educ. 30, 51-55 (2002).

Introducing students to DNA, H. Streicher and A. Brodte, Biochem. Mol. Biol. Educ. 30, 104-105 (2002).

Use of chloroplast rRNA gene to introduce basic molecular biology techniques, B. Nielsen and S. Echols, Biochem. Mol. Biol. Educ. 30, 408-413 (2002).

Identification of Forensic Samples via Mitochondrial DNA in the Undergraduate Biochemistry Laboratory, J. Millard and A. Pilon, J. Chem. Educ. 80, 444-446 (2003).

A novel, inexpensive, and highly sensitive experiment for demonstration of DNA damage in human leukocytes by single cell electrophoresis (comet assay), B. Manjunatha, G. Manjunatha, C. Sarika, K. Roopa, and G. Naik, Biochem. Mol. Biol. Educ. 31, 34-36 (2003).

Crime scene investigations, K. Lounsbury, Biochem. Mol. Biol. Educ. 31, 37-41 (2003).

A laboratory exercise in comparative DNA analysis, L. Brown, Biochem. Mol. Biol. Educ. 31, 177-179 (2003).

Photoinduced oxidative DNA damage revealed by an agarose gel nicking assay, V. Shafirovich, C. Singh, and N. Geacintov, J. Chem. Educ. 80, 1297-1300 (2003).

Outcomes of a research-driven laboratory and literature course designed to enhance undergraduate contributions to original research, M. Rasche, Biochem. Mol. Biol. Educ. 32, 101-107 (2004).

24

Page 25: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Preparation, purification, and secondary structure determination of Bacillus circulans xylanase. A modular laboratory incorporating aspects of molecular biology, biochemistry, and biophysical chemistry, S. Russo and L. Gentile, J. Chem. Educ. 83, 1850-1852 (2006).

Western blot analysis to illustrate relative control levels of the lac and ara promoters in E. coli, B. Nielsen et al., Biochem. Mol. Biol. Educ. 35, 133- 37 (2007).

Molecular models of DNA, W. Coleman, J. Chem. Educ. 84, 809-810 (2007).

Using restriction mapping to teach basic skills in the molecular biology lab, L. Walsh et al., Biochem. Mol. Biol. Educ. 35, 199-205 (2007).

Quantitative determination of DNA-ligand binding using fluorescence spectroscopy, E. Healy, J. Chem. Educ. 84, 1304-1307 (2007).

Molecular models of DAPI, W. Coleman, J. Chem. Educ. 84, 1307 (2007).

A project-based biochemistry laboratory promoting the understanding and uses of fluorescence spectroscopy in the study of biomolecular structures and interactions, N. Briese and H. Jakubowski, Biochem. Mol. Biol. Educ. 35, 272-279 (2007).

Probing changes in the conformation of tRNA-Phe: an integrated biochemistry laboratory course, S. Kirk et al., J. Chem. Educ. 85, 666-674 (2008).

UV thermal melting curves of tRNA-Phe in the presence of ligands, S. Kirk et al., J. Chem. Educ. 85, 674-676 (2008).

Metal-catalyzed cleavage of tRNA-Phe, S. Kirk et al., J. Chem. Educ. 85, 676-678 (2008).

Fluorescence spectroscopy of tRNA-Phe Y base in the presence of Mg (2+) and small ligand molecules, S. Kirk et al., J. Chem. Educ. 85, 678-680 (2008).

A laboratory exercise to determine human ABO blood type by noninvasive methods, M. Martin and S. Detzel, Biochem. Mol. Biol. Educ. 36, 139-146 (2008).

Using FRET to measure the angle at which a protein bends DNA, J. Kugel, Biochem. Mol. Biol. Educ. 36, 541-546 (2008).

25

Page 26: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Caenorhabditis elegans as an undergraduate educational tool for teaching RNAi, J. Andersen et al., Biochem. Mol. Biol. Educ. 36, 417-427 (2008).

A new way to introduce microarray technology in a lecture/laboratory setting by studying the evolution of this modern technology, M. Rowland-Goldsmith, Biochem. \Mol. Biol. Educ. 37, 37-43 (2009).

VII. Integrated Projects

Focusing on a single enzyme, J. Markwell, J. Chem. Educ. 70, 1018-1020 (1993).

An integrated approach to the undergraduate biochemistry laboratory, J. Harman et al., J. Chem. Educ. 72, 641-643 (1995).

An integrated biochemistry laboratory including molecular modeling,A. Wolfson, M. Hall, and T. Branham J. Chem. Educ. 73, 1026-1029 (1996).

“Research in Undergraduate Instruction “, M. Brockman, A. Ordman, and A. Campbell, J. Chem. Educ. 73, 542-544 (1996).

Utilizing isolation, purification, and characterization of enzymes as project- oriented labs for undergraduate biochemistry, S. Deal and M. Hurst, J. Chem. Educ. 74, 241-242 (1997).

A project-oriented biochemistry laboratory, P. Craig, J. Chem. Educ. 76, 1130-1135 (1999).

A single protein research integrated advanced biochemistry laboratory course: spectroscopic determination of tyrosyl side chain pK, B. Blanchette and B. Singh, Biochem. Educ. 28, 107-109 (2000).

Integrating computational chemistry into a project-oriented biochemistry laboratory experience: a new twist on the lysozyme experiment. R. Peterson, J. Cox, J. Chem. Educ. 78, 1551-1555 (2001).

The most proficient enzyme as the central theme in an integrated, research- based biochemistry laboratory, J. Smiley, Biochem. Mol. Biol. Educ. 30, 45- 50 (2002).

Development of a biochemistry laboratory course with a project-oriented goal, R. Stahelin, R. Forslund, D. Wink, and W. Cho, Biochem. Mol. Biol. Educ. 31, 106-112 (2003).

26

Page 27: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

Isolation, purification, and characterization of bovine heart and yeast cytochromes c: An integrated biochemistry laboratory experience,

B. Hunnes, Biochem. Mol. Biol. Educ. 31, 242-248 (2003).

Preparing undergraduates to participate in the post-genome era: A capstone laboratory experience in proteomics, E. Eberhardt et al., Biochem. Mol. Biol. Educ. 31, 402-409 (2003).

An undergraduate biochemistry laboratory course with an emphasis on a research experience, M. Caspers and E. Roberts-Kirchhoff, Biochem. Mol. Biol. Educ. 31, 303-307 (2003).

Advanced instrumentation projects for first-year biochemistry laboratory, M. Hall, C. Guth, S. Kohler, and A. Wolfson, Biochem. Mol. Biol. Educ. 31, 115-118 (2003).

Gene Amplification by PCR and subcloning into a GFP-fusion plasmid expression vector as a molecular biology laboratory course, J. Bornhorst, M. Deibel and Mulnix, Biochem. Mol. Biol. Educ. 32, 173-182 (2004).

Development of green fluorescent protein-based laboratory curriculum, P. Larkins and Y. Hartberg, Biochem. Mol. Biol. Educ. 33, 41-45 (2005).

Preparation, purification, and secondary structure determination of Bacillus circulans xylanase. A modular laboratory incorporating aspects of molecular biology, biochemistry, and biophysical chemistry, S. Russo and L. Gentile, J. Chem. Educ. 83, 1850-1852 (2006).

Western blot analysis to illustrate relative control levels of the lac and ara promoters in E. coli, B. Nielsen et al., Biochem. Mol. Biol. Educ. 35, 133- 137 (2007).

Using restriction mapping to teach basic skills in the molecular biology lab, L. Walsh et al., Biochem. Mol. Biol. Educ. 35, 199-205 (2007).

A project-based biochemistry laboratory promoting the understanding and uses of fluorescence spectroscopy in the study of biomolecular structures and interactions, N. Briese and H. Jakubowski, Biochem. Mol. Biol. Educ. 35, 272-279 (2007).

A streamlined molecular module for undergraduate biochemistry labs, G. Muth and J. Chihade, Biochem. Mol. Biol. Educ. 36, 209-216 (2008).

Cloning yeast actin cDNA leads to an investigative approach for the molecular

27

Page 28: Experiments in Biochemistry/Molecular Biologywps.aw.com/wps/media/objects/2238/229…  · Web view · 2009-06-23A laboratory experiment to demonstrate the principles of bio-ligand

biology laboratory, M. Black et al., Biochem. Mol. Biol. Educ. 36, 217-224 (2008).

Probing changes in the conformation of tRNA-Phe: an integrated biochemistry laboratory course, S. Kirk et al., J. Chem. Educ. 85, 666-674 (2008).

Teaching protein purification and characterization techniques: A student- initiated, project-oriented biochemistry laboratory course, G. MacDonald, J. Chem. Educ. 85, 1250-1253 (2008).

Thermal and chemical denaturation of Bacillus circulans xylanase, L. Gentile et al., Biochem. Mol. Biol. Educ. 36, 428-432 (2008).

Vertical and horizontal integration of bioinformatics education, L. Furge et al., Biochem. Mol. Biol. Educ. 37, 26-36 (2009).

RNase One gene isolation, expression, and affinity purification, C. Bailey, Biochem. Mol. Biol. Educ. 37, 44-48 (2009).

From gene mutation to protein characterization, D. Moffet, Biochem. Mol. Biol. Educ. 37, 110-115. (2009).

28