exploring the equation of state of neutron-rich matter ...jul 10, 2007  · nuclear physics @ the...

32
The National Superconducting Cyclotron Laboratory @Michigan State University Betty Tsang Exploring the Equation of state of neutron-rich matter with Heavy Ion Reactions International Workshop on Nuclear Dynamics on heavy ion reactions and neutron stars, July 10-14, 2007, Beijing, China Outline: NSCL/MSU Reaction programs @ NSCL Rare Isotope Productions Transfer Reactions Equation of state of neutron-rich matter current experimental status Refining reaction theories Fragment systematics Transport Equation simulations Summaries and Outlooks

Upload: others

Post on 14-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • The National Superconducting

    Cyclotron Laboratory@Michigan State University

    Bet ty Tsang

    Exploring the Equation of state of neutron-rich matter with Heavy Ion Reactions

    International Workshop on Nuclear Dynamics on heavy ion

    reactions and neutron stars, July 10-14, 2007, Beijing, China

    Outline:

    NSCL/MSU

    Reaction programs @ NSCL

    Rare Isotope Productions

    Transfer Reactions

    Equation of state of neutron-rich matter – current

    experimental status

    Refining reaction theories

    Fragment systematics

    Transport Equation simulations

    Summaries and Outlooks

  • Michigan

    The National Superconducting Cyclotron Laboratory @ Michigan State University

  • A national user facility for rare isotope research and education in nuclear science, astro-nuclear physics, accelerator physics, and societal applications

    ~ 300 employees, incl. 50 undergraduate and 50 graduate students, 25 faculty

    User group of over 600 CCF users

    The National Superconducting

    Cyclotron Laboratory@Michigan State University

  • Nuclear Physics @ the K500K1200 Facility (CCF)

    Nuclear Reactions:

    •Rare Isotope Productions

    •Transfer Reactions

    •Equation of state of neutron-

    rich matter

    •Refining reaction theories

    Nuclear Structure:

    •Accessibility of driplines

    •Physics of weakly bound nuclei

    •Isospin dependence of nuclear

    properties

    •Evolution of shell structures

    •etc

    Accelerator Physics

    •RIA related research

    Nuclear Astrophysics

    •Synthesis of elements

    •Evolution of supernovae

    •Neutron star physics

  • National Superconducting Cyclotron Laboratory

    K500

    World’s first superconducting cyclotron (1982)

    K1200World’s most powerful superconducting cyclotron (1989)

    A1900

    Coupled Cyclotron Facility (2000)

  • Rare Isotope Production Mechanism• Primary beams: 40,48Ca,

    58,64Ni at 140 MeV per nucleon; unstable 68Ni, 69Cu and 70Zn beams at 90 MeV per nucleon and 86Kr at 64 MeV per nucleon

    • ~2000 cross-sections

    • EPAX over-predicts isotopes at the p/n extremes

    • Study of production model suggests that sequential decays wash out the details of the prefragment stage of the reactions

    40Ca+Be

    48Ca+Be

  • Relation between cross-sections and average

    binding energy (BE/A)

    Mass measurements

    of rare isotopes

    Sensitivity ~TOF

    Extrapolation of

    cross-sections to n-

    rich and dripline

    isotopes

    Can be described

    with the use of

    statistical or phase

    space model

  • Neutron Number N

    Pro

    ton

    Nu

    mb

    er Z

    3/2AaAaB SV 3/1)1(

    A

    ZZaC

    A

    ZAasym

    2)2(

    Symmetry Energy in Nuclei

    Inclusion of surface

    terms in symmetry

    2

    23/2 )2()(

    A

    ZAAaAa SV

    symsym

    Hub

    ble

    ST

    Crab Pulsar

  • Size & Structure of Neutron Star depends on EOS

    D. Page

    EOS influenceR,M relationship

    maximum mass.

    cooling rate.

    core structure

  • Birth of a Neutron Star

    July 4, 1054, China

    July 5, 1054, N. America

    Cra

    b P

    uls

    ar

  • R. Lacey

    E/A (, ) = E/A (,0) + 2S() = (n- p)/ (n+ p) = (N-Z)/A

    Danielewicz, Lacey, Lynch, Science 298,1592 (2002)Results from Au+Au flow

    (E/A~1-8 GeV) measurements

    include constraints in

    momentum dependence of the

    mean field and NN cross-

    sections

    Heavy ion collisions :

  • Isospin Dependence of the Nuclear Equation of State

    • The density dependence of

    symmetry energy is largely

    unconstrained.

    • Pressure, i.e. EOS is rather

    uncertain even at 0.

    E/A (,) = E/A (,0) + 2S()

    = (n- p)/ (n+ p) = (N-Z)/A

    a/s

    2 A/EP

    -20

    -10

    0

    10

    20

    30

    0 0.1 0.2 0.3 0.4 0.5 0.6

    EOS for Asymmetric Matter

    Soft (=0, K=200 MeV)asy-soft, =1/3 (Colonna)asy-stiff, =1/3 (PAL)

    E/A

    (M

    eV)

    (fm-3

    )

    =(n-

    p)/(

    n+

    p)

    PAL: Prakash et al., PRL 61, (1988) 2518.

    Colonna et al., Phys. Rev. C57, (1998) 1410.

    Brown, Phys. Rev. Lett. 85, 5296 (2001)

    Neutron matter EOS

    E/A (, ) = E/A (,0) + 2S() = (n- p)/ (n+ p) = (N-Z)/A

  • • Surface symmetry energy in mass formulae:

    – Difficult to disentangle from Coulomb and bulk symmetry energy.

    • Energies of GDR and pigmy dipole resonances:

    – Extraction is model dependent.

    • Difference between neutron and proton rms radii in nuclei:

    – Sensitive to dS/d=0– Accuracy of present results are disputed.

    – PREX experiment at JLAB.

    • (limited precision: rms,n0.06 fm)

    • Asymmetry dependence of isoscaler GMR:

    – Sensitive to d2S/d2=0

    • All above observables are sensitive to ~0• Isoscaling in Heavy Ion collisions: Y1(N,Z)/Y2(N,Z)exp(N+Z)

    – 4(Csym/T)D(Z/A)2

    – Sensitive to sequential decays

    Nuclei and the density dependence of the symmetry energyConstraints and possible measurements

    NP

    0

    0.02

    0.04

    0.06

    0.08

    0.1

    -2 0 2 4 6 8 10 12

    n (fm

    -3)

    p (fm

    -3)

    n (

    fm-3

    )

    R (fm)

    208Pb

  • Probes of the symmetry energy with HIC

    • Low densities (

  • 80-380

    420-620

    n/p Experiment 124Sn+124Sn; 112Sn+112Sn; E/A=50 MeV

    Scattering Chamber

    Famiano et al

  • N-detection – neutron wall

  • p-detection: Scattering Chamber

    3 particle telescopes

    (p, d, t, 3He, …)

    WU MicroBall

    (b determination)

    ~6in

  • n/p Double Ratios (central collisions)

    •Role of isoscaler emission:

    –Effect of cluster production

    clear and theoretically

    reproduced by QMD.?

    124Sn+124Sn;Y(n)/Y(p)112Sn+112Sn;Y(n)/Y(p)

    Double

    Rat

    io

    Double Ratiominimize systematic errors

    Center of mass EnergyImQMD: Y.X. Zhang

    IBUU04: B.A. Li

  • xAB, yAB experimental or

    theoretical observable for AB

    yAB= a xAB+b

    Ri(xAB )= Ri(yAB )

    Rami et al., PRL, 84, 1120 (2000)

    BBAA

    BBAAABi

    xx

    xxxR

    2/)(2

    Isospin Diffusion--Isospin Transport Ratio

    No isospin diffusion between

    symmetric systems124

    124112

    112

    Isospin diffusion occurs only

    in asymmetric systems A+B124

    112

    Non-isospin diffusion effects

    same for A in A+B & A+A ;same for B in B+A & B+B

    Non-isospin transport effects are “cancelled”??

    Ri = 1

    Ri = -1

  • Isotope Distribution Experiment

    MSU, IUCF, WU collaboration

    Sn+Sn collisions involving 124Sn, 112Sn at E/A=50 MeV

    Miniball + Miniwall

    4 multiplicity arrayZ identification, A

  • Emission patterns of 7Li & 7Be from 124Sn+112Sn; E/A=50 MeV

    V//

    CM

    0

    Y(7Li) enhanced from 124Sn Y(7Be) enhanced from 112Sn

  • Isospin transport observable

    Ratio Y(7Li)/Y(7Be)

    Mainly dominated by Coulomb

    112Sn+124Sn

    V//(au)

    Y(7Li) enhanced from 124Sn

    Y(7Be) enhanced from 112Sn

    How to observe isospin transport ?

    BBAA

    BBAAABi

    xx

    xxxR

    2

  • 112Sn+124Sn

    Coulomb & other

    (preequilibrium &

    sequential) effects

    are “cancelled”

    BBAA

    BBAAABi

    xx

    xxxR

    2

    Rami et al., PRL, 84, 1120 (2000)

    Isospin Transport Ratio

  • Transport Equation Simulations

    • Diffusion occurs within

    120 fm/c.

    • More mixing with soft S()

    – consistent with large

    Esym at

  • Transport Equation Simulations

    • Explicit secondary decay correction gives same result.

    • Stiff S() favored.

    • Momentum-isospin dependence?

    Tsang et al. PRL 92, 062701(2004)

    esymint

    (/0

    g=2

    SKM

  • Constraints from Isospin Diffusion Data

    M.B. Tsang et. al.,PRL 92, 062701 (2004)

    L.W. Chen, C.M. Ko, and B.A. Li,PRL 94, 032701 (2005)

    C.J. Horowitz and J. Piekarewicz,PRL 86, 5647 (2001)

    B.A. Li and A.W. Steiner,nucl-th/0511064

  • Summary & Outlook I: Improve

    measurements on n/p double ratios

    and transport model calculations

    Investigate model

    dependencies of the

    isospin dependent in-

    medium cross sections

    and effective masses

    that must be better

    constrained.

    ImQMD : Y.X. Zhang,

    Z.H. Li

    BUU: Y.X. Zhang, P.

    Danielewicz

  • Summary and Outlook II : Tightening the constraints at

    sub-saturation density

    • Improving and understanding better the impact parameter determination.

    • Changing the incident energy

    • Improving the constraints on S(0), m*?

    • Improving the constraints on the isospin dependent in-medium cross sections.

    • Investigating with other observables

    ImQMD : Y.X. Zhang, Z.H. Li

    BUU: Y.X. Zhang, P. Danielewicz

  • Experiment Correlation functions with HiRA

    • Calculations predict the height and

    width of proton-proton correlations

    are sensitive to the density

    dependence of the asymmetry term.

    – width provides more accurate

    information than height.

    Chen

    et al., PR

    L 9

    0 1

    62701 (2

    003).

    Verd

    e (2004)

  • The High Resolution Array (HiRA)

    32 strips v. (front)Beam

    Si-DE 65 m

    32 strips v (front)

    Si-E 1.5 mm

    pixel

    32 strips h. (back)

    A State-Of-The-Art Silicon Detector Array for studying transfer reactions, resonance spectroscopy, interferometry, …

  • Extrapolation of neutron-rich isotope cross-sections from 140

    MeV per nucleon 48Ca and 64Ni beam

    M. Mocko, Z.Y. Sun, L. Andronenko, M. Andronenko, F. Delaunay,

    M. Famiano, W. A. Friedman, V. Henzl, D. Henzlova, H. Hui, X.

    D. Liu, S. Lukyanov, W. G. Lynch, A. M. Rogers, M. B. Tsang, and

    M. S. Wallace

    64 MeV per nucleon 86Kr beam

    N. Imai,4 H. Iwasaki,5 T. Motobayashi,4 M. Niikura,6 T. Onishi,5

    H. Sakurai,5 H. Suzuki,5 E. Takeshita,7 S. Takeuchi,4

    Isospin fractionation in nuclear multifragmentation

    H.S. Xu, M.B. Tsang, T.X. Liu, X.D. Liu, W.G. Lynch,

    W.P.Tan and G. Verde, L. Beaulieu, B. Davin, Y.

    Larochelle, T. Lefort, R.T. de Souza, R. Yanez, V.E.

    Viola, R.J. Charity, and L.G. Sobotka, Phys. Rev. Lett.

    85, 716 (2000).

  • Isospin diffusion observables in heavy ion reactions

    T.X. Liu, W.G. Lynch, X.D. Liu, R. Shomin, W.P. Tan, M.B. Tsang, G.

    Verde, A. Wagner, H.F. Xi, H.S. Xu,

    B. Davin, Y. Larochelle, R. T. de Souza, (Indiana University)

    R.J. Charity, and L.G. Sobotka, (Washington University)

    The High Resolution Array (HiRA) for rare isotope beam experiments

    M.S. Wallace, M.A. Famiano, M.-J. van Goethem, F. Delauney, A. Rogers,

    W.G. Lynch, J. Clifford, J. Lee, S. Labostov, M. Mocko, L. Morris, B.E. Nett,

    D.J. Oostdyk, R. Krishnasamy and M.B. Tsang,

    R.D. de Souza, S. Hudan IUCF,

    R.J. Charity, J. Elson and L.G. Sobotka, Washington University,

    A. Moroni, INFN Milano, Italy