exploring the shape of the dose-response function

35
Exploring the Shape of the Dose- Response Function

Upload: gregory-roxbury

Post on 14-Dec-2015

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Exploring the Shape of the Dose-Response Function

Exploring the Shape of the Dose-Response Function

Page 2: Exploring the Shape of the Dose-Response Function

Traditional approach to dose-response analysis The “step function”

Alternative: “Flexible” regression line Spline regression

Examples: logistic/linear/Cox

Outline

Page 3: Exploring the Shape of the Dose-Response Function

Example: Sleep-Disordered Breathing and Stroke

Study: the Sleep Heart Health Study

Data set: cross-sectional

Exposure variable: apnea-hypopnea index (AHI)

Dependent variable: self-reported stroke

Potential confounders: known stroke risk factors

Page 4: Exploring the Shape of the Dose-Response Function

Data set

Observations: N=5,192

Self-reported stroke: N=204

Mean Percentile Distribution 5th 25th 50th 75th 95th

8.9 0.2 1.4 4.5 11.3 34.1

Apnea- Hypopnea Index (AHI)

Page 5: Exploring the Shape of the Dose-Response Function

Traditional Approach: Categorical Analysis

Categorization dummy coding

AHI Q2 Q3 Q4

0 - 1.4 0 0 0

1.5 - 4.5 1 0 0

4.6 - 11.3 0 1 0

>11.3 0 0 1

Page 6: Exploring the Shape of the Dose-Response Function

Traditional Approach: Step Function

Model:

Log odds (stroke) = 1 + 2Q2 + 3Q3 + 4Q4 + Z

Maximum Likelihood Estimates:

Log odds (stroke) =

(-9.924) + (0.301)Q2 + (0.344)Q3 + (0.454)Q4 + Z

Page 7: Exploring the Shape of the Dose-Response Function

Adjusted Odds Ratios of Prevalent STROKEby Quartile of the Apnea-Hypopnea Index

AHI Quartile

1.0 (ref.) 1.35(0.84 - 2.18)

1.41(0.88 - 2.26)

1.57(0.98 - 2.53)

I II III IV

Page 8: Exploring the Shape of the Dose-Response Function

Traditional Approach: Step Function

1.0 1.35 1.41 1.57

0.1

1

10

Adj. OR

Q1 Q2 Q3 Q4

AHI Quartile

Page 9: Exploring the Shape of the Dose-Response Function

Traditional Approach: “Step Function”

Log odds (stroke) = 1 + 2Q2 + 3Q3 + 4Q4 + Z

AHI Fitted Model

0 - 1.4 Log (odds of stroke) = 1 + Z

1.5 - 4.5 Log (odds of stroke) = 1 + 2 + Z

4.6 - 11.3 Log (odds of stroke) = 1 + 3 + Z

> 11.3 Log (odds of stroke) = 1 + 4 + Z

Page 10: Exploring the Shape of the Dose-Response Function

Traditional Approach: “Step Function”

Log odds (stroke) = 1 + 2Q2 + 3Q3 + 4Q4 + Z

AHI Fitted Model

0 - 1.4 Log (odds of stroke) = -9.924 + Z

1.5 - 4.5 Log (odds of stroke) = -9.623 + Z

4.6 - 11.3 Log (odds of stroke) = -9.580 + Z

> 11.3 Log (odds of stroke) = -9.470 + Z

Page 11: Exploring the Shape of the Dose-Response Function

Traditional Approach: Step Function

-9.470 + Z

-9.580 + Z

-9.924 + Z

Log odds (stroke)

-9.623 + Z

0 1.4 4.5 11.3 AHI

Page 12: Exploring the Shape of the Dose-Response Function

Unrealistic assumptions A “step function” We actually don’t believe it; our mind tries to draw an

imaginary smooth line through the step

Choice of categories could influence the shape

Test for trend Not a test for monotonic dose-response Statistical hypothesis testing

Step Function: Problems

Page 13: Exploring the Shape of the Dose-Response Function

Alternative: “Flexible” Regression Line

Spline Regression

Categorize (specify cutoff points)(as in categorical analysis)

Fit the regression line in segments (as in categorical analysis)

Enforce continuity at the junctions (knots) (new)

Page 14: Exploring the Shape of the Dose-Response Function

EXAMPLE: Linear Spline Regression

Log odds (stroke)

0 1.4 4.5 11.3 AHI

Page 15: Exploring the Shape of the Dose-Response Function

Linear Spline Regression

Log odds (stroke)

0 1.4 4.5 11.3

Page 16: Exploring the Shape of the Dose-Response Function

Linear Spline Regression

Fit two straight regression lines

Ensure continuity at the knot (AHI=1.4)

Method:

Define a new variable, SS=0, if AHI<1.4

S=AHI-1.4, if AHI>1.4

Page 17: Exploring the Shape of the Dose-Response Function

Log odds (stroke) = 0 + 1(AHI)+ 2(S)+ Z

To the left of the knot: S=0

Log odds (stroke) = 0 + 1(AHI) + Z

To the right of the knot: S=AHI-1.4

Log odds (stroke) = 0 + 1(AHI) + 2(AHI-1.4) + Z

= 0 -1.4 2 + (1+ 2)AHI + Z

Different slopes

Identical predicted value at the knot (AHI=1.4)

Linear Spline Regression

Page 18: Exploring the Shape of the Dose-Response Function

More Flexible Spline Regression

Quadratic spline

AHI + AHI2

Cubic spline

AHI + AHI2 + AHI3

Page 19: Exploring the Shape of the Dose-Response Function

Basic quadratic spline: Step #1

Determine cutpoints (C1, C2, C3) on the exposure scale (4 categories)

These are either percentiles or some other values. That is, decide on the values of C1, C2, C3 of your choice

C1=?;

C2=?;

C3=?;

Page 20: Exploring the Shape of the Dose-Response Function

Step #2S1 = EXP2;

S2 = 0; S3 = 0; S4 = 0;

IF EXP > C1 THEN S2 = (EXP-C1)2;

IF EXP > C2 then S3 = (EXP-C2)2;

IF EXP > C3 then S4 = (EXP-C3)2;

Page 21: Exploring the Shape of the Dose-Response Function

Step #3

Step #4

Regress the dependent variable on

EXP S1 S2 S3 S4 covariates

And find the four regression equations: one per exposure category(together they form a continuous dose-response function)

Compute and display the dose-response function

Page 22: Exploring the Shape of the Dose-Response Function

C1=14;

C2=29; Example: pack-years of smoking and CHD

C3=43; EXP = pack-years

S1 = EXP**2;

S2=0; S3=0; S4=0;

IF EXP > C1 THEN S2 = (EXP-C1)**2;

IF EXP > C2 then S3 = (EXP-C2)**2;

IF EXP > C3 then S4 = (EXP-C3)**2;

Page 23: Exploring the Shape of the Dose-Response Function

PROC LOGISTIC;

MODEL DIS = EXP S1 S2 S3 S4;

Page 24: Exploring the Shape of the Dose-Response Function

Maximum Likelihood Estimates

Parameter DF Estimate

Intercept 1 -1.7022 (α)

EXP 1 -0.0203 (β0)

S1 1 0.00252 (β1)

S2 1 -0.00265 (β2)

S3 1 -0.00047 (β3)

S4 1 0.000305 (β4)

Page 25: Exploring the Shape of the Dose-Response Function

Log odds (CHD) = α + 0(EXP)+ 1(S1) + 2(S2) + 3(S3) + 4(S4)

EXP Four regression equations

< 14 Log odds (CHD) = S1=EXP2, S2=0, S3=0, S4=0

15-29 Log odds (CHD) = S1=EXP2, S2=(EXP-14)2, S3=0, S4=0

30-43 Log odds (CHD) = S1=EXP2, S2=(EXP-14)2, S3=(EXP-29)2, S4=0

>43 Log odds (CHD) = S1=EXP2, S2=(EXP-14)2, S3=(EXP-29)2, S4=(EXP-43)2

Page 26: Exploring the Shape of the Dose-Response Function

(Unrestricted) Quadratic Spline:Pack-years and CHD

-2

-1.5

-1

-0.5

0

0.5

1

0 15 30 45 60 75 90 105 120 135 150

Pack-years

log o

dds

(cas

enes

s)

Page 27: Exploring the Shape of the Dose-Response Function

-2

-1.5

-1

-0.5

0

0.5

0 15 30 45 60 75 90 105 120 135 150 165

Pack-years

log o

dds

(cas

enes

s)

Page 28: Exploring the Shape of the Dose-Response Function

Cubic Spline RegressionLog odds (stroke) vs. AHI

3 Knots: 0.2, 4.5, 34.1

-4.50

-4.00

-3.50

-3.00

-2.50

0 10 20 30 40 50

AHI

0100200

300400500600

700800900

Page 29: Exploring the Shape of the Dose-Response Function

Cubic Spline RegressionLog odds (stroke) vs. AHI

4 knots: 0.2, 1.4, 11.3, 34.1

-5.00

-4.50

-4.00

-3.50

-3.00

-2.50

0 10 20 30 40 50

AHI

0

200

400

600

800

1000

Page 30: Exploring the Shape of the Dose-Response Function

Spline Regression: Applications

Regression Dependent SAS ProcedureModel Variable

Logistic log odds (Y=1) PROC LOGISTIC

Linear mean Y PROC REG

Cox log (hazard) PROC PHREG

All models are linear functions of the predictors

Page 31: Exploring the Shape of the Dose-Response Function

Spline Regression (within PROC REG)

Systolic BP vs. AHI3 knots: 0.1, 3.6, 29.1

124.0

125.0

126.0

127.0

128.0

129.0

130.0

0 10 20 30 40 50

AHI

0

100

200

300

400

500

600

700

Page 32: Exploring the Shape of the Dose-Response Function

Spline Regression (within PROC REG)

Systolic BP vs. AHI4 knots: 0.1, 1.1, 9.5, 29.1

124.0

125.0

126.0

127.0

128.0

129.0

130.0

0 10 20 30 40 50

AHI

0

100

200

300

400

500

600

700

Page 33: Exploring the Shape of the Dose-Response Function

Spline Regression (within PROC REG)

Systolic BP vs. AHI5 knots: 0.1, 1.1, 3.6, 9.5, 29.1

124.0

125.0

126.0

127.0

128.0

129.0

130.0

0 10 20 30 40 50

AHI

0

100

200

300

400

500

600

700

Page 34: Exploring the Shape of the Dose-Response Function

Spline RegressionKey Advantages

Less restrictive assumptions More regional flexibility Does not rely on statistical hypothesis testing Not as sensitive to the choice of cutoff points Visual inspection of the dose-response pattern Might be used to guide the choice of categories

for traditional categorical analysis

Page 35: Exploring the Shape of the Dose-Response Function

Spline RegressionKey Issues

Moderately sensitive to the number of knots (especially if only 3 are specified)

What do the “bumps and valleys” really mean? Visual (subjective) interpretation

Consider the scale of the Y-axis Consider the amount of data at the tail(s) Straight line at the outermost segments