exponential and logarithmic functions

42
EXPONENTIAL AND LOGARITHMIC FUNCTIONS PRECALCULUS CHAPTER 3 1

Upload: others

Post on 04-Dec-2021

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Exponential and Logarithmic Functions

EXPONENTIAL AND LOGARITHMIC

FUNCTIONSPRECALCULUS

CHAPTER 3

1

Page 2: Exponential and Logarithmic Functions

β€’ This Slideshow was developed to accompany the textbook

β€’ Precalculus

β€’ By Richard Wright

β€’ https://www.andrews.edu/~rwright/Precalculus-RLW/Text/TOC.html

β€’ Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy [email protected]

Slides created by Richard Wright, Andrews Academy [email protected]

2

Page 3: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONSIn this section, you will:

β€’ Evaluate exponential functions with base b.

β€’ Graph exponential functions with base b.

β€’ Evaluate and graph exponential functions with base e.

3

Page 4: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Exponential function

β€’ 𝑦 = π‘Ž βˆ™ 𝑏π‘₯

β€’ a is initial amount (y-int)

β€’ b is base

β€’ x is exponent

β€’ If b > 1

β€’ Exponential Growth

β€’ If 0 < b < 1

β€’ Exponential Decay

4

Page 5: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Domain: All real numbers

β€’ Range: (0, ∞)

β€’ Horizontal Asymptote:

β€’ y = 0

β€’ y-intercept: (0, 1)

5

Page 6: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Transformations

β€’ 𝑦 = π‘Ž βˆ™ 𝑏π‘₯βˆ’β„Ž + π‘˜

β€’ a vertical stretch

β€’ If a is negative, then reflected over x-axis

β€’ h moves right

β€’ k moves up

β€’ Domain: All Real

β€’ Range:

β€’ (k, ∞) if a > 0

β€’ (-∞, k) if a < 0

β€’ HA: y = k

β€’ y-int: (0, a + k) if h = 0

6

Page 7: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Graph by making a table

β€’ Graph 𝑦 = 4βˆ’π‘₯ + 3

β€’ Decay

β€’ HA: y = 3

7

Page 8: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Exponential functions are one-to-one

β€’ Each x gives a unique y

β€’ Solve 16 = 2π‘₯+2

16 = 2π‘₯+2

24 = 2π‘₯+2

Exponents must be equal4 = π‘₯ + 22 = π‘₯

8

Page 9: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Solve 1

3

π‘₯= 81

1

3

π‘₯

= 34

1

3

π‘₯

=1

3

βˆ’4

Exponents must be equalπ‘₯ = βˆ’4

9

Page 10: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Natural Base

β€’ e β‰ˆ 2.718281828…

β€’ 𝑓 π‘₯ = 𝑒π‘₯

Slope of any tangent line to e^x is e^x

10

Page 11: Exponential and Logarithmic Functions

3-01 EXPONENTIAL FUNCTIONS

β€’ Compound Interest

β€’ 𝐴 = 𝑃 1 +π‘Ÿ

𝑛

𝑛𝑑

β€’ A = current amount

β€’ P = principle (initial amount)

β€’ r = yearly interest rate (APR)

β€’ n = number of compoundings per year

β€’ t = years

β€’ Compounded Continuously

β€’ 𝐴 = π‘ƒπ‘’π‘Ÿπ‘‘

β€’ 𝑒 = 1 +1

𝑛

𝑛

β€’ When 𝑛 β†’ ∞

11

Page 12: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONSIn this section, you will:

β€’ Evaluate logarithmic functions with base b.

β€’ Evaluate logarithmic functions with base e.

β€’ Use logarithmic functions to solve real world problems.

12

Page 13: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONS

β€’ 𝑓 π‘₯ = log𝑏 π‘₯

β€’ β€œlog base b of x”

β€’ Logarithms are inverses of exponential functions

β€’ 𝑦 = log𝑏 π‘₯ ↔ π‘₯ = 𝑏𝑦

β€’ Logarithms are exponents!

13

Page 14: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONS

β€’ Evaluate

β€’ Think β€œWhat exponent of the base gives the big number?”

β€’ log5 125

β€’ log21

64

Think 5π‘₯ = 12553 = 125So log5 125 = 3

Think 2π‘₯ =1

64

2βˆ’6 =1

64

So log21

64= βˆ’6

14

Page 15: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONS

β€’ Calculator

β€’ LOG β†’ log10 β†’ log

β€’ LN β†’ log𝑒 β†’ ln

β€’ Use your calculator to evaluate log 300

2.477

15

Page 16: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONS

β€’ Properties of Logarithms

β€’ log𝑏 1 = 0

β€’ log𝑏 𝑏 = 1

β€’ log𝑏 𝑏π‘₯ = π‘₯

β€’ If log𝑏 π‘₯ = log𝑏 𝑦, then π‘₯ = 𝑦

β€’ Simplify

β€’ log5 1

β€’ log𝑒 𝑒

β€’ 8log8 30

log5 1 = 0

log𝑒 𝑒 = ln 𝑒 = 1

8log8 30 = π‘₯Rewrite as an exponential

log8 π‘₯ = log8 30π‘₯ = 30

16

Page 17: Exponential and Logarithmic Functions

3-02 LOGARITHMIC FUNCTIONS

β€’ Solve

β€’ log3 π‘₯2 + 4 = log3 29

Since logs are the sameπ‘₯2 + 4 = 29π‘₯2 = 25π‘₯ = Β±5

17

Page 18: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMSIn this section, you will:

β€’ Use properties of logarithms to expand logarithmic expressions.

β€’ Use properties of logarithms to condense logarithmic expressions.

β€’ Use the change-of-base formula to evaluate logarithms.

β€’ Graph logarithmic functions.

18

Page 19: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Properties of Logarithms

β€’ Product Property: log𝑏 𝑒𝑣 = log𝑏 𝑒 + log𝑏 𝑣

β€’ Quotient Property: log𝑏𝑒

𝑣= log𝑏 𝑒 βˆ’ log𝑏 𝑣

β€’ Power Property: log𝑏 𝑒𝑛 = 𝑛 log𝑏 𝑒

19

Page 20: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Write each log in terms of ln 2 and ln 5.

β€’ ln 10

β€’ ln5

32

ln 10ln 2 βˆ™ 5ln 2 + ln 5

ln5

32

ln5

25

ln 5 βˆ’ ln 25

ln 5 βˆ’ 5 ln 2

20

Page 21: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Expand

β€’ log 3π‘₯2𝑦‒ ln

4π‘₯+1

8

log 3 + log π‘₯2 + log 𝑦log 3 + 2 log π‘₯ + log𝑦

ln 4π‘₯ + 112 βˆ’ ln 8

1

2ln(4π‘₯ + 1) βˆ’ ln 8

21

Page 22: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Condense

β€’1

3log π‘₯ + 5 log π‘₯ βˆ’ 3

β€’ 4 ln π‘₯ βˆ’ 4 βˆ’ 2 ln π‘₯

log π‘₯13 + log π‘₯ βˆ’ 3 5

log π‘₯13 π‘₯ βˆ’ 3 5

ln π‘₯ βˆ’ 4 4 βˆ’ ln π‘₯2

lnπ‘₯ βˆ’ 4 4

π‘₯2

22

Page 23: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Condense

β€’1

5log3 π‘₯ + log3 π‘₯ βˆ’ 2

1

5log3 π‘₯ + log3 π‘₯ βˆ’ 2

1

5log3 π‘₯ π‘₯ βˆ’ 2

log3 π‘₯ π‘₯ βˆ’ 215

log35π‘₯ π‘₯ βˆ’ 2

23

Page 24: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Change-of-Base Formula

β€’ log𝑏 𝑐 =logπ‘Ž 𝑐

logπ‘Ž 𝑏

β€’ Evaluate

β€’ log3 17

log 17

log 3= 2.579

24

Page 25: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Because logs are inverses of exponentials, the x and y is switched and the graph is flipped over the line y = x.

β€’ 𝑦 = log𝑏(π‘₯ βˆ’ β„Ž)

β€’ Domain: π‘₯ > β„Ž

β€’ Range: all real

β€’ VA: π‘₯ = β„Ž

β€’ x-int: (h + 1, 0)

25

Page 26: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ To graph a logarithm

β€’ Find and graph the vertical asymptote

β€’ Make a table

β€’ Use change-of-base formula

β€’ log𝑏 π‘₯ =log π‘₯

log 𝑏

β€’ Or use the logBASE function on some TI graphing calcs

β€’ MATH β†’ logBASE

26

Page 27: Exponential and Logarithmic Functions

3-03 PROPERTIES OF LOGARITHMS

β€’ Graph 𝑦 = log2(π‘₯ + 1)

Change-of-base gives 𝑦 = log2 π‘₯ + 1 β†’ 𝑦 =log π‘₯+1

log 2

x | y-1 | Error0 | 01 | 12 | 1.583 | 24 | 2.325 | 2.586 | 2.817 | 3

27

Page 28: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONSIn this section, you will:

β€’ Use one-to-one property to solve exponential equations.

β€’ Use one-to-one property to solve logarithmic equations.

β€’ Solve general exponential equations.

β€’ Solve general logarithmic functions.

28

Page 29: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ Solve Exponential Equations

β€’ Shortcut Method

β€’ 1-to-1 method (rewrite with the same base)

β€’1

5

π‘₯= 125

1

5

π‘₯

= 125

1

5

π‘₯

=1

5

βˆ’3

π‘₯ = βˆ’3

29

Page 30: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ General Method

β€’ Take log of both sides

β€’ 5 βˆ’ 3𝑒π‘₯ = 2

β€’ 6 2𝑑+5 + 4 = 11

5 βˆ’ 3𝑒π‘₯ = 2βˆ’3𝑒π‘₯ = βˆ’3𝑒π‘₯ = 1

ln 𝑒π‘₯ = ln 1π‘₯ = 0

6 2𝑑+5 + 4 = 116 2𝑑+5 = 7

2𝑑+5 =7

6

log2 2𝑑+5 = log2

7

6

𝑑 + 5 = log27

6

𝑑 = βˆ’5 + log27

6β‰ˆ βˆ’4.778

30

Page 31: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ 𝑒2π‘₯ βˆ’ 7𝑒π‘₯ + 12 = 0

𝑒π‘₯ βˆ’ 3 𝑒π‘₯ βˆ’ 4 = 0𝑒π‘₯ βˆ’ 3 = 0 𝑒π‘₯ βˆ’ 4 = 0

𝑒π‘₯ = 3 𝑒π‘₯ = 4ln 𝑒π‘₯ = ln 3 ln 𝑒π‘₯ = ln 4

π‘₯ = ln 3 β‰ˆ 1.099 π‘₯ = ln 4 β‰ˆ 1.386

31

Page 32: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ Logarithmic Equations

β€’ Shortcut Method

β€’ 1-to-1 Property

β€’ ln π‘₯ βˆ’ ln 3 = 0

ln π‘₯ βˆ’ ln 3 = 0ln π‘₯ = ln 3π‘₯ = 3

32

Page 33: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ General Method

β€’ Exponentiate both sides

β€’ 6 + 3 ln π‘₯ = 4

β€’ log4 π‘₯ + log4(π‘₯ βˆ’ 9) = 1

6 + 3 ln π‘₯ = 43 ln π‘₯ = βˆ’2

ln π‘₯ = βˆ’2

3

𝑒ln π‘₯ = π‘’βˆ’23

π‘₯ = π‘’βˆ’23 β‰ˆ 0.513

log4 π‘₯ + log4(π‘₯ βˆ’ 9) = 1log4 π‘₯ π‘₯ βˆ’ 9 = 1

4log4 π‘₯ π‘₯βˆ’9 = 41

π‘₯ π‘₯ βˆ’ 9 = 4π‘₯2 βˆ’ 9π‘₯ βˆ’ 4 = 0

π‘₯ =9 Β± 92 βˆ’ 4 1 βˆ’4

2 1

π‘₯ =9 Β± 97

2β‰ˆ 9.424,βˆ’0.424

33

Page 34: Exponential and Logarithmic Functions

3-04 SOLVING EXPONENTIAL AND LOGARITHMIC EQUATIONS

β€’ Graphical method

β€’ If the other methods don’t apply

β€’ Make = 0

β€’ Find the x-int

β€’ Solve log2 π‘₯ = ln 2π‘₯

log2 π‘₯ βˆ’ ln 2π‘₯ = 0Graph and find x-int

π‘₯ = 4.786

34

Page 35: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELSIn this section, you will:

β€’ Use exponential growth and decay models.

β€’ Use the Gaussian model.

β€’ Use the logistic growth model.

β€’ Use logarithmic models.

35

Page 36: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

Exponential Growth 𝑦 = π‘Žπ‘’π‘π‘₯ Exponential Decay 𝑦 = π‘Žπ‘’βˆ’π‘π‘₯

36

Page 37: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ Suppose a population growing according to the model 𝑃 = 800𝑒0.03𝑑

where t is in years.

β€’ What is the initial size?

β€’ How long to double?

Let 𝑑 = 0.

𝑃 = 800𝑒0.03 0 = 800

1600 = 800𝑒0.03𝑑

2 = 𝑒0.03𝑑

ln 2 = ln 𝑒0.03𝑑

ln 2 = 0.03𝑑𝑑 = 23.10 π‘¦π‘Ÿπ‘ 

37

Page 38: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ Radioactive decay

β€’ 𝑦 = π‘Žπ‘’βˆ’π‘π‘₯

β€’ 𝐴 = 𝐴0π‘’π‘˜π‘‘

β€’ Half-life

β€’ Time it takes for Β½ of the material to decay

Very complicated, but we will use a simple modelThe dating method depends on the initial conditions. These are not really known for prehistorical situations.

38

Page 39: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ C14 has a half-life of 5700 years. If a sample starts with 3 g of C14, how much will remain after 100 years?

Find decay constant

𝐴 = 𝐴0π‘’π‘˜π‘‘

1.5 = 3π‘’π‘˜ 5700

1

2= π‘’π‘˜ 5700

ln1

2= ln π‘’π‘˜ 5700

ln1

2= π‘˜ 5700

π‘˜ β‰ˆ βˆ’1.216 Γ— 10βˆ’4

Find model

𝐴 = 3𝑒 βˆ’1.216Γ—10βˆ’4 𝑑

Plug in 100 years

𝐴 = 3𝑒 βˆ’1.216Γ—10βˆ’4 (100) β‰ˆ 2.97 𝑔

39

Page 40: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ Gaussian Model β€œThe Curve”

β€’ Normal Distribution

β€’ 𝑦 = π‘Žπ‘’βˆ’π‘₯βˆ’π‘ 2

𝑐

Average

40

Page 41: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ Logistic Growth Model

β€’ Used for population

β€’ 𝑦 =π‘Ž

1+π‘π‘’βˆ’π‘Ÿπ‘₯

41

Page 42: Exponential and Logarithmic Functions

3-05 EXPONENTIAL AND LOGARITHMIC MODELS

β€’ Logarithmic Models

β€’ 𝑦 = π‘Ž + 𝑏 ln π‘₯

β€’ 𝑦 = π‘Ž + 𝑏 log π‘₯

β€’ Richter Scale

β€’ Earthquake magnitude

β€’ Decibels

β€’ Loudness of sound

42