(fabaceae) plants: an update - signpost e...

49
Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com 93 Phenolic constituents and traditional uses of Cassia (Fabaceae) plants: An update Avijit Mondal C/O Professor G. Brahmachari’s Laboratory of Natural Products & Organic Synthesis, Department of Chemistry, Visva-Bharati (a Central University), Santiniketan-731235, West Bengal, India. E-mail: [email protected] *Corresponding author Copy right: Avijit Mondal Conflict of interests: There is no conflict of interests Received: April 15, 2015 Accepted: July 20, 2015 Manuscript: MS-JOBC-2014-11-03 (Article-3) REVIEW ARTICLE OPEN ACCESS

Upload: doankhuong

Post on 10-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

93

Phenolic constituents and traditional uses of Cassia

(Fabaceae) plants: An update

Avijit Mondal

C/O Professor G. Brahmachari’s Laboratory of Natural Products & Organic Synthesis, Department of

Chemistry, Visva-Bharati (a Central University), Santiniketan-731235, West Bengal, India. E-mail:

[email protected]

*Corresponding author

Copy right: Avijit Mondal

Conflict of interests: There is no conflict of interests

Received: April 15, 2015

Accepted: July 20, 2015

Manuscript: MS-JOBC-2014-11-03 (Article-3)

REVIEW ARTICLE OPEN ACCESS

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

94

Abstract

The present review covers an up-to-date literature on

Cassia species which is a large tropical genus with

about 600 species of herbs, shrubs and trees. The

botanical classification, ethno-pharmacology, and

phenolic constituents of Cassia plants, as well as the

traditional applications of distinct medicinally active

plant materials are discussed in detail.

Keywords

Anthraquinones, Flavononids, Ethnopharmacology

Natural sources, Taxonomical classifications.

1. Introduction

Cassia (family: Fabaceae) [1-4] species are annual

under shrub grows all over the tropical countries and

grows well in wasteland as a rainy season weed. It

grows in low lying coastal area, river banks, abundant

in waste places and other moist places like

uncultivated fields. It is commonly known as

‘Cassias’. Genera Cassia and Senna are both known

in systems of traditional medicine. Cassia plants are

widely distributed throughout India, and occupy a

significant position in traditional systems of medicine.

A number of plant species are in use as folk medicines

in the treatment of various ailments. A number of

works on chemical and pharmacological aspects of

genus Cassia have already been done. Here an

attempt, for the first time as per our record, has been

made to compile an up-to-date report covering

phenolic chemical constituents, botany to

ethnobotany, traditional uses and also biological and

pharmacological activities of Cassia plants. This

review is anticipated to boost the ongoing research in

this direction.

2. Botanical Aspects

Cassia or Senna [1, 2] is an annual fetid herb. It also

includes shrubs and trees. The leaves are in green

color, pinnate with opposite paired leaflets, distinctly

petiole, conical at one end, ovate, oblong and base

oblique [3]. The inflorescences are racemes at the

ends of branches or emerging from the leaf axils. The

flower has five sepals and five usually yellow petals.

There are ten straight stamens. The stamens may be

different sizes, and some are staminodes. Pods are

subteret or 4 angled, very slende, 6-12 inch long,

incompletely septate, membranous with numerous

brown oblong rhombohedral seeds [4].

3. Taxonomical Background

The taxonomical classification [1, 2] of Cassia plants

are shown below:

Kingdom : Plantae

Order : Fabales

Family : Fabaceae

Subfamily : Caesalpinioideae

Tribe : Cassieae

Subtribe : Cassiinae

Genus : Cassia

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

95

About 50 species [7] of the genus Cassia are known;

some common species are cited here:

C. absus, C. abbreviata, C. alata, C. acutifolia, C.

angustifolia, C. artemisioides, C. auriculata, C.

biflora, C. garrettiana, C. niarginata, S. rugosa, C.

floribunda, C. glauca, C. sophera, C. nigrican, C.

siamea, C. podocarpa, C. nodosa, C. renigera, C.

nomame, C. kleinni, C. multijugata, Senna, C.fistula,

C. tora, C. marginata, C. laevigata, S. didymobotrya,

C. torosa C. roxburghii, C. pudibunda, C.

greggii, C. italica, C. javanica, C. grandis, C.

obtusifolia, C. occidentalis, C. hirsuta, C. sieberiana,

S. obliqua, C. quinquangulata, C. mimosoide, C.

racemosa, Senna multiglandulosa.

4. PHENOLIC CONSTITUENTS OF CASSIA

The phytochemical investigation of the genus Cassia,

as carried out so far, has afforded a good number of

phenolics, previously known from other natural

sources or isolated as new phytochemicals. These

compounds are of varying structural skeletons and are

classified into anthraquinones (1-134; Fig. 1) (Table

1), flavonoids (135-213; Fig. 2) (Table 2), chromones

(214-242; Fig. 3) (Table 3), proanthocyanidins (243-

257; Fig. 4) (Table 4), naphthopyrones (258-281; Fig.

5) (Table 5), xanthonoids (282-289a; Fig. 6) (Table

6), miscellaneous (290-342; Fig. 7) (Table 7).

In Figures, some common abbreviations, as shown below, have been used.

Figure-1: Anthraquinones

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

96

1 R1= R8= OH; R6= R7=MeO; R2=Me

2 R1= R8= OH; R3=Me

3 R1=OH; R8= D-GlcO; R3=Me

5 R1= R6= OH; R8= MeO; R3=Me

6 R1= R8= OH; R6= MeO; R3=Me

8 R1= OH; R8= MeO; R3=Me

15 R1= R3= R6= R8= OH; R7= Vinyl; R2= Me

16 R1= R6= R8= OH; R3= Me

17 R1= R3= R8= OH; R2= Me

18 R1= R8= OH; R3= CH2OH

19 R1= R5= R6= OH; R8= -L-GlcO

21 R1= R3= [-Rha-(16)-- Glc-(16)-Galc]O;

R6= R7= R8= MeO; R2= Me

22 R1= [-Rha-(16)-- Glc-(16)-Galc]O; R3=

R6= R7= R8= MeO; R2= Me

23 R1= (2”--O-D-Mano)--D-AlO; R3= R6= R7=

R8= MeO; R2= Me

24 R1= -tetraGlcO; R8= OH; R3=Me

25 R1= R8= OH; R3=COOH

26 R8= OH; R3=Me; R1= MeO; R2= GlcO

27 R1= R6= R7= R8= MeO; R2= GlcO; R3=Me

28 R2= R8= OH; R3=Me; R1= R7= MeO; R6= GlcO

35 R1= OH; R3= Me; R7= MeO

36 R1= R2= R8= OH; R6= R7= MeO

37 R1= R3= OH; R2= Me; R6= R8= MeO

38 R3= OH; R2= Me; R6= R8= MeO; R1= GlcO

39 R3= OH; R2= Me; R6= R8= MeO; R1= Rha-

(16)- GlcO

40 R1= R8= OCOCH3; R3= COOH

41 R1= OH; R2= Me; R5= MeO

42 R2= Me; R5= MeO; R1= O--L-Rha

43 R1= R3= R6= R8= OH; R3= GlcO

44 R1= R3= OH; R6= R8= MeO; R3= Rha-(16)- GlcO

46 R1= R2= R6= R7=R8= MeO; R3= Me

52 R1= OH; R3= CH2OH; R8= GlcO

53 R1= OH; R3=COOH; R8= GlcO

54 R8= OH; R3=CH3; R1= [-D-Glc-(13)--Glc-

(16)--D-Glc]O

55 R8= OH; R3=CH3; R1= [-D-Glc-(16)--Glc-

(13)--D-Glc-(16)--D-Glc]O

56 R8= OH; R3=CH3; R1= MeO; R2= -D-GlcO

59 R1= R6= R8= OH; R3= Me; R2= O--D-Glc

60 R1= OH; R6= MeO; R3=Me; R8= O--L-Xyl

61 R1= R6= OH; R3= Me; R8= O--L-Ara

62 R1= OH; R6= MeO; R3=Me; R8= O--D-Galc

63 R1= OH; R6= MeO; R3=Me; R8= O--D-Galc-

(14)- O--D-Galc

64 R1= R5= OH; R8= MeO; R2=Me; R3= O--D-

Glc 66 R1= R6= OH; R8= MeO; R3= Me

67 R1= R8= OH; R6= MeO; R3= R7= Me

68 R2= R8= OH; R1= MeO; R3= Me

69 R1= R5= OH; R3= MeO; R7=Me

70 R1= R6= R8= OH; R3= CH2OH

71 R1= R6= R8= OH; R3= COOH

72 R2= R8= OH; R1= R6= MeO; R3= Me; R6= O--

D-Glc

73 R1= R6= R8= OH; R7= MeO; R2= O--D-Glc

74 R1= OH; R3= CH2OH; R8= O--D-Glc

79 R8= OH; R3=Me; R1= MeO

80 R1= OH; R3=Me; R8= MeO

82 R1= R8= OH; R3= R6= MeO; R2= Me; R7= Vin

83 R1= R3= OH; R5= R7= R8= MeO; R2= Me

84 R1= R2= R7= OH; R6= R8= MeO; R3= Me

85 R1= R2= R6= OH; R7= R8= MeO; R3= Me

86 R1= R8= OH; R2= Me; R3= Neohesperidoside

87 R1= R8= MeO; R3= Me

88 R1= R5= R7= OH; R3= Me

89 R1= R6= OH; R3= Me; R8= Sophoroside

92 R5= OH; R1= R4= R6= R7= MeO; R2= Me

93 R1= R5= R7= OH; R4= R6= MeO; R2= Me

94 R5= R6= OH; R1= R4= R7= MeO; R2= Me

95 R1= OH; R4= R7= MeO; R2= Me; R5= R6=

Methylenedioxy (-O-CH2-O-)

96 R5= R7= OH; R1= R4= R6= MeO; R2= CH2OH

97 R4= R5= OH; R1= R6= R7= MeO; R2= Me

98 R5= R6= OH; R4= R7= MeO; R2= Me

99 R1= R5= OH; R3= Me

100 R1= R5= OH; R3= OMe; R7= Me

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

97

101 R1= R6= OH; R3= Me; R8= O--L-Rha

102 R1= R5= R6= OH; R3= Me; R8= O--L-Rha

103 R2= OH; R1= R6= R7= R8= MeO; R3= Me

104 R2= R8= OH; R1= R6= R7= MeO; R3= Me

105 R2= R6= R8= OH; R1= R7= MeO; R3= Me

106 R1= R2= OH; R6= R7= R8= MeO; R3= Me

107 R1= R2= R8= OH; R6= R7= MeO; R3= Me

108 R1= R2= R6= R7= R8= OH;R3= Me

112 R1= R3= R4= OH; R6= R7= R8= MeO; R2= Me

113 R1= OH; R6= MeO; R3=Me; R8= O--D-Gb

114 R2= R6= R8= OH; R3= Me; R1= O--D-Glc

115 R1= R6= R7= R8= MeO; R3= Me; R2= O--D-Glc

116 R1= R6= MeO; R3=Me; R8= O--D-Glc

117 R2= R6= R8= OH; R1= MeO; R3= Me

118 R1= R4= R8= OH; R6= MeO; R3= Me; R2= O--D-

Glc

119 R6= R8= MeO; R2=Me; R3= O--D-Glc

126 R1= OH; R6= MeO; R3=CH3; R8= [-D-Glc-

(16)--Glc-(13)--D-Glc-(16)--D-Glc]O

129 R1= OH; R6= R7= R8= MeO; R3= O--D-Glc

130 R3= OH; R6= R8= MeO; R2=Me; R1= O--D-Galc

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

98

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

99

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

100

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

101

Table-1: Anthraquinones

Compound Name (Str. No.) Source Part Bioactivity Ref.

1,8-Dihydroxy-6,7-dimethoxy-2-

methylanthraquinone (1)

C. nodosa Root barks - [8]

1,8-Dihydroxy-3- methylanthraquinone

[Chrysophanol] (2)

C. fistula Seeds - [9]

C. sophera Flowers - [10]

Heartwood - [12]

Roots - [22]

C. garrettiana Heartwood

-

[11],

[25]

C. tora Seeds - [13]

C. grandis,

C. fistula,

C. nodosa,

C. renigera,

C. javanira,

C. niarginata

Leaves

-

[14]

C. nomame Aerial parts - [15]

C. podocarpa Seedlings - [16]

C. obtusifolia Hairy roots - [17]

Twigs - [21]

Leaves Antimicrob

ial activity

[31]

S. angustifolia

S. acutifolia

Leaves and

roots

-

[18]

C. siamea Heartwood - [19]

Leaves - [26]

Stem barks - [29]

S. rugosa Roots Chemotaxo

nomic

activity

[20]

C. absus Roots - [23]

C. pudibunda Roots Antimicrob

ial activity

[24]

C. occidentalis Roots - [27]

C. glauca Pods - [28]

S. angustifolia Whole plants - [111]

C. laevigata Pods - [119]

C. torosa Seedlings - [120]

C. alata Roots - [125]

C. biflora Flowers - [127]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

102

Compound Name (Str. No.) Source Part Bioactivity Ref.

C. tora Stems - [131]

S.

didymobotrya

Pods - [30]

Leaves - [76]

8-O-D-glucopyranosyl-1-hydroxyl-3-

methylanthraquinone [Chrysophanein]

(3)

C. fistula Seeds [9]

C. obtusifolia Twigs - [21]

1,1'-Dihydroxy-3,3'-dimethyl-8,8'-

dimethoxy-6,6'-O-bianthraquinone (4)

C.

artemisioides

Root barks Antioxidan

t activity

[32]

1,6-Dihydroxy-8-methoxy-3-methyl

anthraquinone (5)

C.

artemisioides

Root barks Antioxidan

t activity

[32]

1,8-Dihydroxy-6-methoxy-3-methyl

anthraquinone [Physcion] (6)

C. grandis,

C. fistula,

C. nodosa,

C. renigera,

C. javanira,

C. niarginata

Leaves

-

[14]

C. nomame Aerial parts

& Seeds

- [15]

C. tora Seeds Antibacteri

al

[13]

C. obtusifolia

Hairy roots - [17]

Twig - [21]

Leaves - [31]

S. angustifolia,

S. acutifolia

Leaves and

roots

-

[18]

S. rugosa Roots Chemotaxo

nomic

activity

[20]

S.

multiglandulos

a

Seeds - [33]

S.

didymobotrya

Pods - [30]

C. sophera Roots - [22]

Heartwood - [12]

C. pudibunda Roots Antimicrob

ial activity

[24]

C. floribunda Leaves - [34]

C. glauca Pods - [28]

C.

artemisioides

Root barks Antioxidan

t activity

[32]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

103

Compound Name (Str. No.) Source Part Bioactivity Ref.

C. laeuigata Roots

- [115]

S. angustifolia Whole plants - [111]

C. laevigata Pods - [119]

C. torosa Seedlings - [120]

C. alata Roots - [125]

C. biflora Flowers - [127]

9-(6'-Methoxy-3'-methyl-3',8',9'-

trihydroxy-1'-oxo-1',2',3',4'-tetrahydro-

anthracene-7'-yl)-5,10-dihydroxy-2-

methoxy-7-methyl-1,4-anthraquinone

[Presengulone] (7)

S. sophera Seeds - [35]

1-Hydroxy-8-methoxy-3-

methylanthraquinone (8)

C. sophera Seeds - [35]

C.

artemisioides

Root barks Antioxidan

t activity

[32]

Physcion- 10, 10'-bianthrone (9) S. sophera Seeds - [35]

C. nomame Seeds

-

[15]

C. torosa Seeds - [122]

Floribundone-1 (10)

S. sophera Seeds - [35]

S.

multiglandulos

a

Seeds - [33]

Isosengulone (11) C. sophera,

S.

multiglandulos

a

Seeds

-

[35],

[26]

Sengulone (12)

Anhydrophlegmacin-9,10-quinones A2

(13)

Anhydrophlegmacin-9,10-quinones B2

(14)

1, 3, 6, 8-Tetrahydroxy 2-methyl 7-vinyl

anthraquinone [Sopheranin] (15)

C. sophera Heartwood

- [12]

1,6,8-Trihydroxy-3-methyl

anthraquinone [Emodin] (16)

C. sophera Heartwood

- [12]

C. tora Seeds Antibacteri

al

[13]

C. nomame Aerial parts - [15]

C. podocarpa Seedlings - [16]

S. angustifolia,

S. acutifolia

Leaves and

roots

-

[18]

C. siamea Heartwood - [19]

Leaves - [26]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

104

Compound Name (Str. No.) Source Part Bioactivity Ref.

C. obtusifolia Twig - [21]

Leaves - [31]

C. nigrican Leaves Antifeedant

activity

[36]

S.

didymobotrya

Pods - [30]

C. occidentalis Roots Antibacteri

al activity

[37]

Roots - [27]

C.

artemisioides

Root barks Antioxidan

t activity

[32]

C. javanica Leaves - [76]

C. torosa Seedlings - [120]

C. laeuigata Roots

- [115]

S. angustifolia Whole plants - [111]

C. alata Roots - [125]

C. tora Stem - [131]

1,3,8-Trihydroxy-2-methyl

anthraquinone (17)

C. alata Roots - [38]

C. multijuga Seeds - [132]

1,8-Dihydroxy-3-hydroxymethyl

anthraquinone [Aloe-emodin] (18)

C. tora Seeds Antibacteri

al

[13]

C. alata

Leaves Inhibition

against

Methicillin

-Resistant

Staphyloco

ccus aureus

(MRSA)

[39]

S. angustifolia,

S. acutifolia

Leaves and

roots

-

[18]

C. obtusifolia

Twigs - [21]

Leaves - [31]

Hairy roots - [17]

C. absus Roots - [23]

S.

didymobotrya

Leaves - [76]

S. angustifolia Whole plants - [111]

C. alata Roots - [125]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

105

Compound Name (Str. No.) Source Part Bioactivity Ref.

C. fistula Pods - [128]

1,5,6-Trihydroxy-3-methyl-

anthraquinone-8-O--L-glucoside (19)

C. reingera Barks Dyeing

property

[40]

Cassiamin (20) C. siamea Stem barks - [29]

1,3-Dihydroxy-6,7,8-trimethoxy-2-

methylanthraquinone-3-O--

rhamnopyranosyl -(16)--

glucopyranosyl (16)--

galactopyranoside (21)

C. occidentalis

Leaves

-

[42]

1-Hydroxy-3,6,7,8-tetramethoxy-2-

methylanthraquinone-1-O--

rhamnopyranosyl-(16)--

glucopyranosyl (16)--

galactopyranoside (22)

1-Hydroxy-3,6,7,8-tetramethoxy-2-

methylanthraquinone-1-O-(2"-O-D-

mannopyranosyl) --D-allopyra noside

(23)

C. javanica Stem barks - [43]

Chrysophanol-1-O-- tetraglucoside

(24)

C. tora Seeds - [13]

1,8-Dihydroxy-3- carboxyanthraquinone

[Rhein Or Cassic acid] (25)

C. podocarpa Seedlings - [16]

C. javanica Leaves - [76]

S. angustifolia Whole plants - [111]

C. alata Roots - [125]

Senna Leaves - [126]

C. fistula Pods - [128]

C. alata Leaves - [129]

C. fistula Pods and

Leaves

- [130]

Senna plants Leaves and

pods

- [116]

S. angustifolia,

S. acutifolia

Leaves and

roots

-

[18]

C. obtusifolia Twigs - [21]

C. tora Seeds Antibacteri

al

[13]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

106

Compound Name (Str. No.) Source Part Bioactivity Ref.

C. grandis,

C. fistula,

C. nodosa,

C. renigera,

C. javanira,

C. niarginata

Leaves

-

[14]

Gluco-obtusifolin (26) C. obtusifolia

Seeds Platelet

anti-

aggregator

y activity

[44]

Twigs - [21]

Gluco-chrysoobtusin (27) C. obtusifolia

Seeds Platelet

anti-

aggregator

y activity

[44]

Twigs - [21]

Gluco-aurantioobtusin (28) C. obtusifolia

Seeds Platelet

anti-

aggregator

y activity

[51]

Twigs - [28]

Physcion-9-anthrone (29) C. nomame

Seeds

-

[22]

Emodin-9-anthrone (30)

1,8-Dihydroxy-3-methyl-9(10H)-

anthracenone-10-oxyhexadecanoate

[Kleinioxanthrone-3 ] (31)

C. kleinii Roots Antihepatot

oxic

Activity

[52]

2,6,7-Trihydroxy-1,8-dimethoxy-3-

methyl-9(10H)-anthracenone-10-

oxydecanoate [Kleinioxanthrone-4]

(32)

C. kleinii Roots Antihepatot

oxic

activity

[52]

1,8-Dihydroxy-3-methyl -6-methoxy-

9(10H)- anthracenone-10-oxydecanoate [Kleinioxanthrone-1] (33)

C. kleinii

Aerial parts

-

[53]

1,8-Dihydroxy-3-methyl-9(10H)-

anthracenone-10-oxytetradecanoate [Kleinioxanthrone-2] (34)

1-Hydroxy-7-methoxy-3-

methylanthraquinone (35)

C. obtusifolia

Hairy roots - [24]

Twigs - [28]

Leaves - [38]

1,2,8-Trihydroxy-6,7-

dimethoxyanthraquinone (36)

C. obtusifolia

Hairy roots - [24]

Leaves Antimicrob [38]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

107

Compound Name (Str. No.) Source Part Bioactivity Ref.

ial activity

1,3-Dihydroxy-6,8-dimethoxy-2-methyl

anthraquinone (37)

C. multijuga Seeds - [139]

3-Hydroxy-6,8-dimethoxy-2-

methylanthraquinone-1-O-β-

D(+)glucopyranoside (38)

Rutinoside(39)

Diacerein (40) Senna Leaves - [133]

1-Hydroxy-5-methoxy-2-

methylanthraquinone (41)

C. tora Stems - [138]

5-Methoxy-2-methylanthraquinone-1-O-

α-L-rhamnoside (42)

1,3,5,8-Tetrahydroxy-2-methyl

anthraquinone 3-O-glucoside (43)

C. marginata Roots - [123]

1,3-Dihydroxy-6,8-dimethoxy-2-methyl

anthraquinone 3-O-rhamnosyl-(1→6)-

glucopyranoside (44)

Sennoside A (45) S. angustifolia

and S.

acutifolia

Leaves and

roots

-

[18]

C. angustifolia Whole plants Intestinal

bioavailabil

ity

[56],

[126]

C. fistula Pods and

Leaves

- [130]

1,2,6,7,8-Trimethoxy-3-methyl

anthraquinone (46)

C. obtusifolia Seeds

-

[50]

Sennoside B (47) S. angustifolia

and S.

acutifolia

Leaves and

roots

-

[18]

C. angustifolia Whole plants Intestinal

bioavailabil

ity

[56],

[126]

C. fistula Pods and

Leaves

- [130]

Sennoside C (48) S. angustifolia

and S.

acutifolia

Leaves and

roots

-

[18]

Sennoside D (49)

Sennidin A (50) S. angustifolia

and S.

acutifolia

Leaves and

roots

-

[18]

Sennidin B (51) S. angustifolia Leaves and - [18]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

108

Compound Name (Str. No.) Source Part Bioactivity Ref.

and S.

acutifolia

roots

C. angustifolia

Whole plants

Intestinal

bioavailabil

ity

[56]

Aloeemodin-8-glucoside (52) S. angustifolia

and S.

acutifolia

Leaves and

roots

-

[18]

Rhein-8-glucoside (53)

1-[(-D-Glucopyranosyl-(13)-O--D-

glucopyranosyl-(16)-O--D-

glucopyranosyl)oxy]-8-hydroxy -3-

methyl-9,10-anthraquinone (54)

C. tora

Seeds

Protective

effect on

primary

cultured

hepatocytes

against

carbon

tetrachlorid

e toxicity

[47]

1-[(-D-Glucopyranosyl-(16)-O--D-

glucopyranosyl-(13)-O--D-

glucopyranosyl-(16)-O--D-gluco

pyranosyl)oxy]-8-hydroxy-3-methyl-

9,10-anthraquinone (55)

Protective

effect on

primary

cultured

hepatocytes

against

carbon

tetrachlorid

e toxicity

[47]

2-(-D-Glucopyranosyloxy)-8-hydroxy-

3-methyl-1-methoxy-9,10-

anthraquinone (56)

C. tora Seeds Protective

effect on

primary

cultured

hepatocytes

against

carbon

tetrachlorid

e toxicity

[47]

4,4'-Bis(1,3-dihydroxy-2-methyl-6,8-

dimethoxyanthraquinone) (57)

C. siamea

Heartwood

- [19]

1,1'-Bis(4,5-dihydroxy-2-methyl

anthraquinone) (58)

Alaternin-2-O--D-glucopyranoside

(59)

C. tora Seeds - [48]

Physcion-8-O-α-L-xylopyranoside (60) C. marginata Seeds - [100]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

109

Compound Name (Str. No.) Source Part Bioactivity Ref.

Emodin-8-O-α-L-arabinopyranoside

(61)

1-Hydroxy-6-methoxy-3-

methylanthraquinone 8-O--

D-galactopyranoside (62)

C. laeuigata Roots

- [115]

1-Hydroxy-6-methoxy-3-

methylanthraquinone 8-O-- D-

galactosyl-(14)-O--D-galacto

pyranoside (63)

C. laevigata Pods - [119]

1,5-Dihydroxy-8-methoxy-2-methyl-

anthraquinone-3-O-β-D-(+)-

glucopyranoside (64)

C. alata Roots - [38]

Physcoin-9-anthrone (65) C. torosa Seeds - [122]

Questin (66) C. obtusifolia Twigs - [21]

Seeds - [50]

C. occidentalis Roots

- [27]

C. torosa - [49]

7-Methylphyscion (67) C. obtusifolia

C. obtusifolia

Twigs

- [21]

Obtusifolin (68) - [21]

Leaves - [31]

1,5-Dihydroxy-3-methoxy-7-

methylanthraquinone (69)

C. obtusifolia

Twigs - [21]

Leaves Antimicrob

ial activity

[31]

Citreorosein (70) C. nigrican

Leaves Antifeedant

activity

[36]

Emodic acid (71) Leaves Antifeedant

activity

[36]

Aurantio-obtusin-6-O--D-

glucopyranoside (72)

C. obtusifolia Seeds - [51]

1-Demethylaurantioobtusin-2-O--D-

glucopyranoside (73)

C. obtusifolia Seeds -

[51],

[52]

Aloe-emodin-8-O-glucoside (74) C. angustifolia Leaves - [61]

Knipholone (75) S.

didymobotrya

Pods

-

[30]

10-Hydroxy-10-(physcion-7'-yl)-

chrysophanol anthrone (76)

5,10-Dihydroxy-2-methyl-9-(physcion-

7'-yl)-l,4-anthraquinone (77)

(S)-5,7'-Biphyscion 8--D-glucoside

[Torososide A] (78)

C. torosa Leaves - [55]

1-O-Methylchrysophanol (79) C. obtusifolia

Leaves - [31]

Hairy roots - [17]

8-O-Methylchrysophanol (80) C. obtusifolia Hairy roots - [17]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

110

Compound Name (Str. No.) Source Part Bioactivity Ref.

Twigs - [21]

Leaves - [31]

1,2-Dihydro-1,3,8-trihydroxy-2-methyl

anthraquinone [Roxburghinol] (81)

C. roxburghii Leaves - [57]

1,8-Dihydroxy-3,6-dimethoxy-2-

methyl-7-vinylanthraquinone (82)

C. sophera

Root barks

-

[58]

1,3-Dihydroxy-5,7,8-trimethoxy-2-

methylanthraquinone (83)

1,2,7-Trihydroxy-6,8-dimethoxy-3-

methylanthraquinone (84)

C. sophera

Heart wood - [59]

1,2,6-Trihydroxy-7,8-dimethoxy-3-

methylanthraquinone (85)

Heart wood - [59]

1,8-Dihydroxy-2-methylanthraquinone-

3-neohesperidoside (86)

Roots - [22]

Chrysophanol dimethyl ether (87) C. pudibunda Roots Antimicrob

ial activity

[24]

1,5,7-Trihydroxy-3-

methylanthraquinone [Alatinone] (88)

C. alata Stems - [60]

Emodin-8-O-sophoroside (89) C. angustifolia Leaves - [61]

Floribundone-2 (90) C. floribunda Leaves - [34]

Anhydrophlegmacin (91)

5-Hydroxy-1,4,6,7-tetramethoxy-2-

methyl anthraquinone (92)

C. greggii

Roots

-

[62]

1,5,7-Trihydroxy-4,6-dimethoxy-2-

methyl anthraquinone (93)

5,6-Dihydroxy-1,4,7-trimethoxy-2-

methyl anthraquinone (94)

1-Hydroxy-4,7-dimethoxy-5,6-

methylenedioxy-2-methyl

anthraquinone (95)

5,7-Dihydroxy-1,4,6-trimethoxy-2-

hydroxymethyl anthraquinone (96)

4,5-Dihydroxy-1,6,7-trimethoxy-2-

methyl anthraquinone (97)

5,6-Dihydroxy-4,7-dimethoxy-2-methyl

anthraquinone (98)

1,5-Dihydroxy-3-methyl anthraquinone

(99)

C. italica

Whole plants

- [64]

1,5-Dihydroxy-3-methoxy-7-methyl

anthraquinone (100)

Antimicrob

ial and

antitumour

activity

[64]

1,6-Dihydroxy-3-methylanthraquinone- C. javanica Root barks - [65]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

111

Compound Name (Str. No.) Source Part Bioactivity Ref.

8-O--L-rhamnopyranoside (101)

1,5,6-Trihydroxy-3-

methylanthraquinone-8-O--L-

rhamnopyranoside (102)

Chryso-obtusin (103) C. obtusifolia

Seeds

-

[50]

Obtusin (104)

Aurantio-obtusin (105)

1-Desmethyl chryso-obtusin (106)

1-Desmethyl obtusin (107)

1-Desmethyl aurantio-obtusin (108)

Chrysophanol-10,10'-bianthrone (109)

Aloe-emodin dianthrone 8,8'-di-O-

glucoside (110)

C. angustifolia Leaves - [61]

Racemochrysone (111) C. racemosa Stem barks - [104]

1,3,4-Trihydroxy-6,7,8-trimeth oxy-2-

meth yl anthraquinone (112)

C. grandis Pods - [136]

Physcoin-8-O--D-gentiobioside (113) C. torosa Seeds - [54]

Alaternin-1-O--D-glucopyranoside

(114)

C. obtusifolia

Seeds -

[66]

Chryso-obtusin-2-O--D-

glucopyranoside (115)

Physcoin-8-O--D-glucopyranoside

(116)

2-Hydroxyemodin-1-methylether (117) C. tora Seeds - [139]

1,2,4,8-Tetrahydroxy-6-methoxy-3-

methyl

anthraquinone-2-O-β-D-

glucopyranoside (118)

C. grandis Seeds - [137]

3-Hydroxy-6,8-dimethoxy-2-methyl

anthraquinone-3- O-β-D-

glucopyranoside (119)

C. grandis Seeds - [137]

Phlegmacin A2 (120) C. torosa Roots - [49],

[122] Phlegmacin B2 (121)

Chrysophanol benzanthrone (122) C. garrettiana Heartwood - [25]

Chrysophanol dianthrone (123)

(-)-11-Deoxyaloin (124)

4-Methyl-6,8-dihydroxy-7H-benz[de]-

anthracen-7-one [Cassialoin] (125)

Physcoin-8-O--D-glucopyranosyl-(1→

6)--D-gluco pyranosyl (1→3)--D-

glucopyranosyl-(1→6)--D-

C. torosa Seeds Anti-

allergic

[67]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

112

Compound Name (Str. No.) Source Part Bioactivity Ref.

glucopyranoside [Toroside B] (126)

Cassiamin A (127) C. siamea

Leaves

-

[26]

Cassiamin B (128)

1,3-Dihydroxy-6,7,8-

trimethoxyanthraquinone-3-O-β - D-

glucopyranoside (129)

C. grandis Seeds - [137]

3-Hydroxy-6,8-dimethoxy-2-

methylanthraquinone-1-O--D-

galactoside (130)

C. auriculata Heartwood - [68]

1,1',3,8,8'-Pentahydroxy-3',6-dimethyl

(2,2'-bianthracene)-9,9',10,10'-tetrone

(131)

C. siamea

Root barks

-

[70]

7-Chloro-1,1',6,8,8'-pentahydroxy-3,3'-

dimethyl-(2,2'-bianthracene)-9,9',10,10'-

tetrone (132)

Chloro-cassiamin A(133)

4,4'-Bis(1,3,8-trihydroxy-2-methyl-6-

methoxyanthraquinone) (134)

C. hirsuta Seeds - [63]

Figure-2: Flavonoids

135 R2=R4=R8=R9=OH;

136 R2=R8=R9=OH; R6= OMe; R4= -L-Rha

(12)-O--D-Galc

138 R2= R7= R8= OH; R4= OMe; R1= -D-

GlcO

139 R1=R2= R4= R8=OH;

140 R2= R4= R8=OH; R1= GbO

141 R2= R4= R8=OH; R1= Glc

142 R2= R4= R8=OH; R1=RhaO

143 R2= R4= R8=OH; R1=MeO

144 R1= R2= R8=OH; R4=MeO

146 R2= OH; R4= R8= R9= MeO; R1= -L-

RhaO

148 R1=R2= R9=OH; R4= R8= MeO

149 R2= R9=OH; R4= R8= MeO; R1= RhaO

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

113

150 R2= R4= R8= R9=OH; R1= -L-Rha

(1→2)-D-Glc (1→6)-D-Galc

151 R2= R4= R8=OH; R1= -L-Rha (1→2)-

D-Glc (1→6)-D-Galc

152 R1=R6=OH; R4= R5=R8= OMe; R2= O-{-

D-Glc (1→2)}-D-Galc

153 R2=R8= OH; R4= O--D-Al

154 R8=OH; R5=R7= OMe; R2= O-Rha; R4=

O--Xyl (14)--D-Galc

155 R1=R2=R4=R8=OH; R6=R9= OMe

156 R2= O--D-Xyl; R4=O--L-Rha-(13)-O-

-L-Arab

157 R2= R7=R8= OH; R1= -L-Rha; R4=-O--

D-Glc -(13)-O-D-Xyl

158 R4= R7= R8= OH; R3= OMe; R2= --L-

Arab-(14)-O--L-Rha-(13)-O--D-

Galc

178 R2= R4= R7= R8= OH; R1= R3= OMe

179 R1= R2= R8= OH; R4= OMe

181 R1= R2= R4= R8= R9=OH

182 R2= R4= R8= R9=OH; R1=O--D-Glc

(61)--L-Rha

183 R2= R4= OH; R8= OMe; R3= R53= Me

184 R2= R4= R8= OH; R1= R7= OMe

185 R2= R4= R8= OH; R1= RutO

186 R2= R4= R8= OH; R1=O--L-Rha (12)-

-L-Rha

187 R2= R7= R8= OH; R4= OMe; R1=Galc

(14)-Galc

188 R2= R7= R8= OH; R4= OMe; R1=Galc

(16)-Galc

192 R2= R4= R8= OH; R5= Glc

193 R2= R7= R8= OH; R4= GlcO

194 R1= Rut O; R2= R7= OH; R4=RhaO;

R8=OMe

197 R2= R4= OH; R8= OMe; R7= -D-GlcO

198 R2= R4= OH; R8= OMe; R7= -D-GlcO;

R3= OlioC

199 R2= R4= R7= OH; R8=MeO; R3= -D-

OlioC; R7= -D-GlcO

200 R2= R4= R7= OH; R8=MeO

201 R2= R7= R8= OH; R4= -D-GlcO

202 R2= R4= R8= OH; R3= -D-Olio C

203 R2= R4= R7= OH; R8=MeO; R3= -D-Olio C

204 R2= R7= OH; R8= OMe; R1=--D-Galc

205 R1=R2= R4= OH; R8= OMe

206 R1=R2= R8= OH; R4= OMe

207 R1=R2= R7= R8= OH; R4= OMe

208 R1=-D-GlcO; R2= R4= R7= R8= OH

209 R2= R7= R8= OH; R4= OMe; R1= O--L-

Rha (12)--L-GlcO

210 R2 = R8= OH; R1= R3= R7= OMe; R4= O-

L-Rha (12)--L-GlcO

211 R1= R4=R8= OH; R2= OMe; R5= prenyl

212 R1= R8= OH; R4= OMe; R2= O--D-Xyl-

(14)-O--D-Glc-(14)- O--L-Rha

213 R2= R4= R8= OH; R1=O--D-Glc; R3= O-

-L-Rha

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

114

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

115

Table-2: Flavonoids

Compound Name (Str. No.) Source Part Bioactivity Ref.

Luteolin (135) C. absus Seeds Antibacterial,

antifungal

[77]

C. siamea Leaves Adenosine A1

Receptor-

Binding

Activity

[71]

C. nigrican Leaves Antifeedant

activity

[36]

C. nomame Aerial parts - [78]

C.

auriculata

Aerial parts Antioxidant

activity

[79]

C. torosa Leaves - [80]

C. biflora Flowers - [128]

5,3',4'-Trihydroxy-6-methoxy-7-O-

-L-rhamnopyranosyl-(12)-O--

D- galactopyranoside (136)

C. fistula Seeds Antimicrobial

activity

[81]

3,5,7,4'-Tetrahydroxy flavone

[Epiafzelechin] (137)

C.

sieberiana

Root barks Antioxidant

activity

[82]

Rhamnetin-3-O--D-glucoside (138) C. sophera Flowers [10]

Kaempferol (139) C. alata

Leaves Inhibition

against

Methicillin-

Resistant

Staphylococcu

s aureus

(MRSA)

[39]

C. grandis,

C. fistula,

C. nodosa,

C. renigera,

C. javanira,

C.

niarginata

Leaves

-

[14]

C.

auriculata

Aerial part Antioxidant

activity

[79]

C. javanica Leaves - [76]

C. alata Roots - [125]

Kaempferol-3-O-gentiobioside (140) C. alata

Leaves

Inhibition

against

Methicillin-

Resistant

[39]

[39] Kaempferol-3-O-β-glucopyranoside

(141)

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

116

Compound Name (Str. No.) Source Part Bioactivity Ref.

Staphylococcu

s

aureus(MRSA

)

Kaempferol-3-rhamnoside (142) S.

didymobotry

a

Leaves - [76]

Kaempferol-3-methylether (143) C. javanica Leaves - [76]

Kaempferol-7-methylether (144) C. javanica Leaves - [76]

Leucocyanidin-4'-O-methylether-3-

O--D-galactopyranoside (145)

C. javanica Flowers - [118]

Quercetin-3',4',7-trimethylether-3-

O--L-rhamnopyranoside (146)

Dihydrorhamnetin-3-O--D-

glucopyranoside (147)

Quercetin 7,4'-dimethyl ether

(Ombuin) (148)

C. laeuigata Roots

- [115],

[114]

3-O-(2-rhamnosylglucosyl)-ombuin

(149)

C. laeuigata Roots

- [114]

Quercettin-3-O--L-

rhamnopyranosyl(1→2)-D-

glucopyranosyl (1→6)-D-

galactotopyranoside (150)

C.

marginata

Stems

-

[83]

Kaempferol-3-O--L-

rhamnopyranosyl(1→2)--D-

glucopyranosyl (1→6)-D-

galactotopyranoside (151)

3,2'-Dihydroxy-7,8,4'-

trimethoxyflavone-5-O-{-D-

glucopyranosyl (1→2)}-D-

galactotopyranoside (152)

C.

occidentalis

Whole plants

-

[84]

Apigenin-7-O--D- aloopyranosside

(153)

5,7,4'-Trihydroxy-8,3'-

dimethoxyflavone-5-O--L-

rhamnopyranosyl-7-O--D-

xylopyranosyl-(14)-O--D-

galactopyranoside (154)

C. absus

Seeds

Antibacterial,

antifungal

[77]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

117

Compound Name (Str. No.) Source Part Bioactivity Ref.

3,5,7,4'-Tetrahydroxy-2', 5'-

dimethoxy flavone (155)

5,7-Dihydroxyflavone-5-O--D-

xylopyranosyl-7-O--L-

Rhamnopyranosyl-(13)-O--L-

arabinopyranoside (156)

C.

occidentalis

Seeds Antimicrobial [41]

3,5,7,3',4'-Pentahydroxyflavone-3-

O--L-rhamnopyranosyl-7-O--D-

glucopyranosyl-(13)-O--D-xylo

pyranoside (157)

C.

occidentalis

Seeds Antimicrobial [41]

5,7,3',4'-Tetrahydroxy-6-

methoxyflavone-5-O--L-

arabinopyranosyl-(14)-O--L-

rhamnopyranosyl-(13) -O--D-

galactopyranoside (158)

C.

occidentalis

Seeds Antimicrobial [41]

Cassiaoccidentalin A (159) C.

occidentalis

Aerial parts

-

[85]

Cassiaoccidentalin B (160)

Cassiaoccidentalin C (161)

(2R,3S)-2,3-trans-4',7-

Dihydroxyflavan-3-ol

[Guibortinidol] (162)

C.

abbreviata

Heartwood

-

[86]

4',7-Di-O-methyl-3-O-acetyl

guibourtinidol (163)

(2R,3R)-4',7-Dihydroxyflavan-3-ol

(164)

(2S,3S )-4',7-Dihydroxyflavan-3-ol

(165)

(2S,3R )-4',7-Dihydroxyflavan-3-ol

(166)

4,4 '-Tri-O-methoxymethyl-retro-

chalcone (167)

2,4,4'-Tri-O-methoxymethyl-retro-

dihydro- chalcone (168)

3,4',7-Tri-O-acetyl

guibourtinidol(169)

2,4-trans -7,4'-Dihydroxy-4-

methoxyflavan (170)

C.

abbreviata

Whole plants - [87]

2,4-trans-4',7- Diacetoxy-4-

methoxyflavan (171)

C.

abbreviata

Whole plants - [87]

Guibourtinidol-(48)-

epiafzelechin (172)

C.

abbreviata

Barks

-

[88]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

118

Compound Name (Str. No.) Source Part Bioactivity Ref.

Guibourtinidol-(48)-

epiafzelechin (173)

Guibourtinidol-()-catechin

(174)

Guibourtinidol-(8)epicatechin

(175)

ent-Guibourtinidol-(8)-

epicatechin (176)

5-Hydroxy-6,7,3',4',5'-

pentamethoxyflavanone 5-O--L-

rhamnopyranoside (177)

C. renigera

Stem barks

-

[69]

Quercetagetin-3,6-dimethyl ether

(178)

3,5,4'-Trihydroxy-7-methoxyflavone

(179)

C. sophera Leaves - [124]

3,5,7,3',4'-Pentahydroxy flavan [(+)

Catechin] (180)

C. fistula Pods - [110]

C. fistula Barks Antidiabetic

activity

[90]

Quercetin (181) C. sophera Heart wood - [59]

C. absus Leaves - [23]

C.

auriculata

Aerial parts Antioxidant

activity

[79]

C. laevigata Flowers - [91]

C. glauca Pods - [28]

C.

garrettiana

Heartwood [11]

C. javanica Leaves - [76]

C. javanica Flowers - [118]

Rutin (182) C. absus Leaves - [23]

C. hirsuta Flower - [92]

5,7-Dihydroxy-4'-methoxy-6,8-

dimethylflavone [Matteucinol] (183)

C.

occidentalis

Leaves

-

[93]

5,7,4'-Trihydroxy-3,6,3'-

trimethoxyflavone [Jaceidin] (184)

Kaempferol-3-O-rutinoside (185) C.

auriculata

Aerial parts Antioxidant

activity

[79]

C. hirsuta Flowers - [92]

Kaempferol-3-O--L-

rhamnopyranosyl(12)--L-

rhamnopyranoside (186)

C. hirsuta Flowers - [92]

Rhamnetin-3-galactosyl(14)-

galactopyranoside (187)

C. laevigata

Flowers

-

[91]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

119

Compound Name (Str. No.) Source Part Bioactivity Ref.

Rhamnetin-3-galactosyl(16)-

galactopyranoside (188)

Demethyltorosaflavone C (189) C. nomame

Aerial parts

-

[78]

Demethyltorosaflavone D (190)

(±)-7,3',4'-Trihydroxyflavanone

(191)

Vitexin (192)

Luteolin-7-glucoside (193)

Tamarixetin 3-rutinoside-7-

rhamnoside (194)

C. italica - - [94]

Torosaflavone C (195) C. torosa

Leaves

Cytotoxic

activity

[95]

Torosaflavone D (196)

Domestin-3'-O--D-

glucopyranoside (197)

C. torosa

Leaves

-

[80]

Torosaflavone B-3'-O--D-

glucopyranoside (198)

Domestin-6-C--D-oliopyranosyl-

3'-O--D- glucopyranoside (199)

Domestin (200)

Luteolin-7-O-glucoside (201)

Apigenin-6-C--D-olioside

[Torosaflavone A] (202)

C. torosa

Leaves

-

[96]

Domestin-6-C--D-olioside

[Torosaflavone B] (203)

5,7-Dihydroxy-4’-methoxyflavonol-

3-O--D-galacto pyranoside (204)

C. glauca

Pods -

[28]

Kaempferide (205)

Rhamnocitrin (206) C.

garrettiana

Heartwood

- [11]

Rhamnetin (207)

Isoquercitrin (208) S.

didymobotry

a

Leaves - [76]

3,5,3′,4′-Tetrahydroxy-7-

methoxyflavone 3-O-(2″- rhamnosyl

glucoside) (209)

C.

occidentalis

Pods - [101]

5,7,4′-Trihydroxy-3,6,3′-trimethoxy-

flavone

7-O-(2″-rhamnosyl glucoside) (210)

C.

occidentalis

Pods - [101]

8-Prenyl-3,7,4'-trihydroxy-5-

methoxy flavone (211)

C. sophera Leaves - [125]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

120

Compound Name (Str. No.) Source Part Bioactivity Ref.

3,4'-Dihydroxy-7-methoxyflavone-

5-O--D-xylopyranosyl-(14)-O-

-D-glucopyranosyl-(14)-O--L–

rhamnopyranoside (212)

C. sophera Leaves Antimicrobial

activity

[125]

Kaempferol-3-O--D-

glucopyranosyl-6- O--L–

rhamnopyranoside (Javanin) (213)

C. javanica Leaves - [133]

Figure-3: Chromones

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

121

Table-3: Chromones

Compound Name (Str. No.) Source Part Bioactivity Ref.

5-Acetonyl-7-hydroxy-2-hydroxymethyl

chromone (214)

C. siamea

Leaves

- [71]

(2'S)-7-Hydroxy-5-hydroxymethyl-2-(2'-

hydroxypro pyl) chromone (215)

C. fistula

Seeds - [9]

(2'S)-7-Hydroxy-2-(2'-hydroxypropyl)-5-

methylchromone (216)

Barakol (217)

C. siamea

Leaves

- [72]

C. siamea Stems Anti-HIV and

antiTMV

[73]

2-(3-Hydroxy-1-oxopropyl)-7-hydroxy-5-

(2-oxopropyl)-4H-chromen-4-one (218)

C. siamea

Stems

Anti-HIV and

antiTMV

[73]

2-(3-Hydroxy-1-oxopropyl)-7-methoxy-5-

(2-oxopropyl)-4H-chromen-4-one (219)

2-(3-Hydroxypropyl)-7-methoxy-5-(2-

oxopropyl)-4H-chromen-4-one (220)

3-(7-Methoxy-4-oxo-5-(2-oxopropyl)-4H-

chromen-2-yl)propyl acetate (221)

7-Hydroxy-5-(2-oxopropyl)-2-[(E)-prop-1-

enyl]-4H-chromen-4-one (222)

5-Hydoxy-2-(3-hydroxypropyl)-8,8-

dimethylpyrano[2,3-f ]-chromen-4(8H)-one

(223)

2-(3-Hydroxypropyl)-5-methoxy-8,8-

dimethylpyrano[2,3-f ]-chromen-4(8H)-one

(224)

7-Hydroxy-2-methyl-5-(2-oxopropyl)-4H-

chromen-4-one (225)

C. siamea

Stems

Anti-HIV and

antiTMV

[73]

Leaves - [71]

Antiplasmodial [75]

O-methylalloptaeroxylin (226) C. siamea

Stems

Anti-HIV and

antiTMV

[73]

Perforatic acid (227)

Uncinoside A (228)

8-Methyleugenitol (229)

11-Hydroxy-sec-O-glucosylhamaudol

(230)

sec-O-glucosylhamaudol (231)

Urachromone A (232)

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

122

Compound Name (Str. No.) Source Part Bioactivity Ref.

Peucenin-7-methyl ether (233)

2-Methyl-5-(2′-hydroxypropy1)-7-

hydroxychromone- 2′-O-D-

glucopyranoside (234)

10,11-Dihydroanhydrobarakol (235) C. siamea Flowers Antiplasmodial [74]

Chrobisiamone A (236) C. siamea Leaves Antiplasmodial [75]

Cassiarin A (237)

Anhydrobarakol (238)

Cassiarin C (239) C. siamea Flowers - [74]

Cassiarin D (240)

Cassiarin E (241)

5,4'-Dihydroxy-7-methyl-3-benzyl

chromone (242)

C. nodosa Leaves - [134]

Figure-4: Proanthocyanidins

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

123

Table-4: Proanthocyanidins

Compound Name (Str. No.) Source Part Bioactivity Ref.

(+) Epiafzlechin (243) C. fistula Pods - [110]

Procyanidin B-2 (244)

(+) Epicatechin (245)

Epicatechin-(48)-ent-epicatechin (246)

Epiafzelechin-(48)-ent- epiafzelechin (247)

Epiafzelechin-(48)-epiafzelechin (248)

Epiafzelechin-(48)-epicatechin (249)

Epicatechin-(48)-ent-epiafzelechin (250)

(-) Epiafzlechin (251) C. javanica

Barks

-

[110]

(-) Epicatechin (252)

ent-Epiafzelechin-(48)-epiafzelechin (253)

ent-Epiafzelechin-(48)-epicatechin (254)

Epiafzelechin-(48)-ent-epiafzelechin-

(48)-epiafzelechin (255)

(-) Epiafzelechin-4-benzylthioether (256) C. javanica

Barks

-

[110]

(-) Epiafzelechin-4-benzylthioether (257)

Figure-5: Naphthopyrones

259 R3= R6= OH; R1= Me; R4= GlcO

261 R3= R4= OH; R1= R7= Me; R6= OMe

262 R3= OH; R1= R7= Me; R6= OMe; R4= -D-

GlcO

263 R3= OH; R1= Me; R6= OMe; R4= -D-GlcO

264 R3= OH; R1= Me; R6= OMe; R4= O--D-Ap-

(1→6)--D-GlcO

265 R3= R4= R6= OH; R1= Me

266 R3= R6= OH; R1= Me; R4= -D-GlcO

267 R3= OH; R6= OMe; R1= Me; R4= Gb-(13)-

Gb

268 R3= OH; R6= OMe; R1= Me; R4= Gb-(13)-

GlcO

269 R3= R6= OH; R1= Me; R4= Gb

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

124

270 R3= OH; R6= OMe; R1= Me; R4= Gb

271 R3= R4= OH; R1= Me; R6= OMe

272 R3= R6= OH; R1= Me; R4= -D-(6’-O-

acetyl)-GlcO

273 R3= OH; R1= R5= Me; R6= OMe; R4= O--D-

Ap-(1→6)--D-GlcO

276 R3= OH; R1= Me; R6= OMe; R4= O--D-Glc-

(1→6)-O--D-Glc-(1→3)-O--D-Glc-

(1→6)-O--D-Glc

281 R3= OH; R1= Me; R6= OMe; R4= O--D-Ap-

(1→6)--D-GlcO

Table-5: Naphthopyrones

Compound Name (Str. No.) Source Part Bioactivity Ref.

Cassiaside C (258) C. tora Seeds Antibacterial

[13]

Cassiaside (259)

Toralactone-9-O--D-glucopyranosyl-

(16)-O--D-glucopyranosyl-

(13)-O--D-glucopyranosyl-

(16)-O--D-glucopyranoside

[Cassiaside C2] (260)

C. tora Seeds Antibacterial

[13]

C. obtusifolia Seeds Antiallergic [109]

Quinquangulin (261) S. obliqua Stems and

froots

Antimycobacterial [107]

Quinquangulin-6-O--D-

glucopyranoside (262)

C.

quinquangulata

Roots - [97]

C. pudibunda Roots Antimicrobial

activity

[24]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

125

Compound Name (Str. No.) Source Part Bioactivity Ref.

Rubrofusarin-6-O--D-

glucopyranoside (263)

C.

quinquangulata

Roots [97]

C. pudibunda Roots Antimicrobial

activity

[24]

Rubrofusarin-6-O--D-

apiofuranosyl(1→6)--D-

glucopyranoside (264)

C.

quinquangulata

Roots

[97]

Nor-rubrofusarin (265)

Nor-rubrofusarin-6-O--D-

glucopyranoside (266)

Rubrofusarin tetraglucoside (267) C. tora

Seeds

Antibacterial [13]

Rubrofusarin triglucoside (268) Antibacterial [13]

Nor-rubrofusarin gentiobioside (269) - [13]

Rubrofusarin-6-O--gentiobioside

(270)

Antibacterial [13]

Rubrofusarin (271) S. obliqua Stems and

fruits

Antimycobacterial [107]

S. rugosa Roots Chemotaxonomic

activity

[20]

C.

quinquangulata

Roots - [97]

C. tora Seeds Antibacterial [13]

Nor-rubrofusarin-6-O--D-(6’-O-

acetyl)glucopyranoside (272)

C. obtusifolia Seeds - [52]

Quinquangulin-6-O--D-

apiofuranosyl-(1→6)-O--D-

glucopyranoside (273)

C. pudibunda Roots Antimicrobial

activity

[24]

C.

quinquangulata

Roots [97]

8-Methyltoralactone (274) C. torosa

Roots

-

[108]

8-Methyltoralactone-10-methylether

(275)

Rubrofusarin-6-O--D-

glucopyranosyl-(16)-O--D-

glucopyranosyl-(13)-O--D-

glucopyranosyl-(16)-O--D-

glucopyranoside [Cassiaside B2]

(276)

C. obtusifolia Seeds - [109]

Toralactone (277) C. tora Seeds Antibacterial [13]

2-Acetyl-3-methyl-8-methoxyl-1,4-

naphthoquinone-6-O--D-

glucopyranoside (278)

C. obtusifolia Leaves

and roots

- [89]

Quinquangulone (279) C. Roots - [97]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49

pages. ISSN: 2321- 4163 http://signpostejournals.com

126

Compound Name (Str. No.) Source Part Bioactivity Ref.

quinquangulata

Dimethylflavasperone gentiobioside

(280)

C. tora Seeds - [13]

Cassiaside B (281) C. pudibunda Roots Antimicrobial

activity

[124]

Figure-6 : Xanthones

282 R1= R8= OH; R3= OMe; R6= CH3

283 R1= R3= R6= OH; R8= CH3

284 R3= R7= OH; R1= OMe

285 R1= R7= OH; R3= OMe

286 R1= R5= R8= OH; R3= Me; R3= OMe

287 R1= R7= OH

288 R2= R6= OH; R8= OMe

289 R1= R7= OH; R3= Me

289a R1= R7= OH; R8= COOH

Table-6: Xanthonoids

Compound Name (Str. No.) Source Part Bioactivity Ref.

1,8-Dihydroxy-3-methoxy-6-

methylxanthone (282)

C. obtusifolia Twigs - [21]

C. obtusifolia Leaves Antibacterial activity [31]

1,3,6-Trihydroxy-8-methylxanthone

(283)

C. obtusifolia Leaves Antimicrobial activity [31]

3,7-Dihydroxy-1-methoxyxanthone (284) - [31]

1,7-Dihydroxy-3-methoxyxanthone (285) Antimicrobial activity [31]

Xanthorin (286) - [35]

Euxanthone (287) C. obtusifolia

Leaves - [31]

Twigs - [31]

Isogentisin (288) C. obtusifolia Twigs - [31]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID

010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com

127

Compound Name (Str. No.) Source Part Bioactivity Ref.

1,7-Dihydroxy-3-methylxanthone (289)

Pinselin (289a) C. torosa Roots - [49]

C. occidentalis Roots - [27]

Figure-7: Miscellaneous

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID

010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com

128

Table-7: Miscellaneous

Compound Name (Str. No.) Source Part Bioactivity Ref.

7-Methyltorosachrysone (290) C. torosa Roots - [49]

Torosanin (291) C. torosa Seeds - [122]

Dibenzyl 2,2'-dihydroxy-3,6,3",6"-

tetramethoxy-bi

phenyl-1,1'-dicarboxylate (292)

C. fistula

Seeds

-

[135]

1-Hydroxyl-2-acetyl-3,8- C. obtusifolia Leaves and

roots

- [89]

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID

010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com

129

Compound Name (Str. No.) Source Part Bioactivity Ref.

dimethoxynaphthalene-6-O--D-

apiofuranosyl-(12)--D-gluco-

pyranoside (293)

4-(cis)-Acetyl-3,6,8-trihydroxy-3-

methyldihydronapht

halenone (294)

C. siamea Leaves - [71]

Stems

Anti-HIV

and

antiTMV

[73]

4-(trans)-Acetyl-3,6,8-trihydroxy-3-

methyldihydronaphthalenone (295)

C. siamea

Leaves

Antiplasmo

dial

[75]

- [71]

trans-3,3,5,5-Tetrahydroxystilbene

(296)

C.

quinquangulata

Roots - [97]

trans-3,3,5,5-Tetrahydroxy-4-

methoxystilbene (297) C. pudibunda Roots Antimicrob

ial activity

[24]

trans-3,3,4,5,5-Pentahydroxystilbene

(298)

C.

quinquangulata

Roots - [9]

Benzyl-2-hydroxy-3,6-

dimethoxybenzoate (299)

C. fistula Seeds - [9],

[135]

Benzyl-2--O-D-glucopyranosyl-3,6-

dimethoxybenzo

ate (300)

C. fistula

Seeds

-

[9]

5-(2-Hydroxyphenoxymethyl) furfural

(301)

3-Carbomethoxynaphtho [1,2-b]-3’,3’-

dimethyl-

pyran -4-O--glucopyranoside (302)

C. javanica Stem barks - [98]

trans-3,3',4,5'-Tetrahydroxystilbene

(303)

C. garrettiana

Heartwood

Antifungal [99],

[11]

trans-3,3',4,5'-Tetrahydroxystilbene

tetra acetate (304)

Antifungal [99]

trans-3,3',4,5'-Tetrahydroxystilbene

tetramethyl ether (305)

Antifungal [99]

3,3',4-Trihydroxy bibenzyl (306) - [11]

3,3',4,5'-Tetrahydroxy bibenzyl (307) Antifungal [99],

[11]

Protocatechuic aldehyde (308) C. garrettiana Heartwood - [11]

3,3'-Dihydroxybibenzyl (309)

2,3,5,7-Tetrahydroxy-9,10-

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID

010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com

130

Compound Name (Str. No.) Source Part Bioactivity Ref.

dihydrophenanthrene (310)

cis-3,3',5,5'-tetrahydroxy-4-

methoxystilbene (311)

C. pudibunda Roots Antimicrob

ial activity

[24]

Calcium-4-O--D-glucopyranosyl-(Z)-

p-coumarate [Potassium chelidonate]

(312)

C. mimosoide

Leaves

Leaf-

closing

activity

[103]

Singueanol-I (313) C. torosa Root - [49]

C. occidentalis Roots

-

[27]

Methylgermitorosone (314) C. occidentalis Roots - [27]

C. torosa Roots - [49]

C. torosa Seedlings - [120]

Germichrysone (315) C. occidentalis Roots - [27]

C. torosa Roots - [49]

C. torosa Seedlings - [120]

Protocatechuic acid (316) C. torosa Seeds - [54]

Sinapic acid (317) C. javanica Leaves - [76]

3,3',4,4'-Tetrahydro-2,3,3',8,8',9,9'-

heptahydroxy-6,6'-dimethoxy-3,3',7,7'-

tetramethyl-10,10'-bi-

1(2H)-anthracenone [Torosaol-I] (318)

C. torosa

Roots -

[49]

5-[3',4'-Dihydro-3',8',9'-trihydroxy-6'-

methoxy-3’,7'-dimethyl-1’(2'H)-

anthracenon-10'-yl]-3,4-dihydro-9,10-

dihydroxy-3-hydroxymethyl-7-

methoxy-3,8-dimethyl-1H-naphtho[2,3-

c]pyran-1-

one [Torosaol-II] (319)

Germitorosone (320) C. torosa Roots - [49]

Seedlings - [121]

Cassigarol A (321) C. garrettiana

Heartwood

-

[105]

Cassigarol B (322)

3,3',4,4'-Tetrahydro-3,3',8,8',9,9'-

hexahydroxy-6,6'-dimethoxy-3,3',7-

trimethyl-1(2H),1'(2H)-10,10'-bianthra

cenone [Occidentalol-I] (323)

C. occidentalis

Roots

-

[27]

3,3',4',-Tetrahydro-3,3',8,8',9,9'-

hexahydroxy-6,6'-dimethoxy-3,3'-

dimethyl-1(2H),1' (2H)-10,10'–bianthra

cenone [Occidentalol-II] (324)

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID

010322, 49 pages. ISSN: 2321- 4163 http://signpostejournals.com

131

Compound Name (Str. No.) Source Part Bioactivity Ref.

2-Acetyl-3-O--D-apiofuranosyloxy-8-

O--D-glucopyranosyloxy-1,6-

dimethoxy naphthalene [Cassitoroside]

(325)

C. tora Seeds - [106]

9,10-Dihydroxy-7-methoxy-3-

methylene-1H-naphtho(2,3-

c)dihydropyrone-1-one

[Isotoralactone] (326)

C. obtusifolia

Seeds

-

[53]

8-Methoxy-4-methyl-1-oxo-4,10,11-

trihydroxynaphtho(2,3-c)oxepin

[Cassialactone] (327)

Pelargonidin-5-O--D-galactoside (328) C. auriculata Heartwood - [113]

Siaminine (329) C. siamea Leaves - [117]

Siaminine A (330)

Siaminine B (331)

Torachrysone (332) C. tora Seeds Antibacteri

al

[13]

Torachrysone-8-O-- gentiobioside

(333)

Antibacteri

al

[13]

Torachrysone tetraglucoside (334) Antibacteri

al

[13]

Torachrysone apioglucoside (335) - [13]

Cassigarol C (336) C. garrettiana Heartwood - [112]

Cassigarol D (337)

Torosachrysone 8-O-6"-malonyl

gentiobioside (338)

C. torosa Seeds Anti-

allergic

[67]

Torosachrysone (339)

S.

multiglandulosa

Seeds - [33]

C. obtusifolia Seeds - [53]

C. torosa Seeds - [54],

[13]

C. torosa Seedlings - [120]

C. torosa Seeds - [122]

Torosachrysone-8--D-gentiobioside

(340)

C. torosa Seeds - [54]

8-Methyltorosachrysone (341)

9-Methyltorosachrysone (342)

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322,

49 pages. ISSN: 2321- 4163 http://signpostejournals.com

132

5. Traditional Uses

Cassia plants are extensively used in the indigenous system of medicine, and are found to be useful

and effective. Traditional uses of only a few of only a few of these significant plant species finding

useful applications in the treatment of various ailments are mentioned here. The traditional uses of these

plant species are being cited on the basis of extensive literature survey.

i. Cassia tora

The plant has been used as a traditional

medicine for eye diseases and intestinal disorders in

Assian countries. The seeds are called ketsumeishi in

Japan and are used as laxative, tonic and diuretic.

The seeds are used in Chinese medicine as aperients,

antiasthenic and diuretic agents and also to improve

visual acuity. In Korea, the hot aqueous extract of the

seeds are taken orally for protection of the liver [140,

141].

ii. Cassia podocarpa

The leaves and fruits of this plant are

mentioned as purgatives. Leaves, roots and flowers

of this are used for venereal diseases in women [142].

iii. Cassia obtusifolia

It is a well known traditional Chinese

medicinal plant. The seed of the plant, called

“Juemingzi” in Chinese, have been widely used in

traditional Chinese medicine for the treatments of red

and tearing eyes, headache and dizziness,

constipation, asthenic, hepatitis and diuretic agents

etc. The seeds of this plant are called “ketsumeishi”

in Japan and are used as laxative, tonic and diuretic.

It shows antiasthenic and diuretic activity. It is a

reputed laxative and tonic Chinese medicine. The

herb is traditionally used to improve visual acuity

and to remove ‘heat’ from the liver, and currently

also used to treat hypercholesterolemia and

hypertension [44].

iv. Senna angustifolia

The plant is traditionally known as

tinnevelly senna. It is a reputed drug in Unani

medicine. It has cathartic property and used in

habitual constipation. This medicinal herb is used as

purgatives and laxative [49].

v. Senna acutifolia

This medicinal herb is used as purgatives.

Both the leaves and pods are used in many over-the-

counter pharmaceutical preparations [11].

vi. Senna rugosa

It is a folk medicine of Brazil [13].

vii. Senna didymobotrya

The plant is known for its value in traditional

medicine [23].

viii. Cassia absus

All the plant parts are used in folk medicine.

The leaves are used for treatment of tumors and

asthma. The root is used for treatment of

constipation. It is commonly known as “Chaksi” or

“Chaksu” in hindi. Its leaves are hot bitter and acrid;

astringent to the bowels. It is used in the treatment of

vata and kapha, tumors, cough, disease of nose,

hiccough and asthma. According to Ayurvedic

system of medicine its seeds are alexipharmic,

astringent to the bowels; heal ulcers and good in

diseases of eyes, piles, pains, itching and bronchitis.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

133

Its seeds possess diuretic and stimulant properties. Its

seeds are used in the treatment of ringworm,

opthalmia and skin affections [77].

ix. Cassia pudibunda

The plant shows numerous medicinal

applications in the traditional system. The

methanolic extract of the roots was found to exhibit

antimicrobial activity [24].

x. Cassia siamea

The root and bark of the plant is endemic to

Central and East Africa. It has been used in folklore

medicine to treat stomach complaints and as a mild

purgative. It also show anti-tumor activity. The can

be used as manure. The flowers are used as

vegetable. The plant is known as “Kheelek” in Thai.

It is used widely in the treatment of central nervous

system, on smooth muscle, and on diuresis. It has

been widely used as a traditional Chinese medicine

for the treatment of fever, malaria, arthritis, and

swelling [71, 73].

xi. Cassia glauca

Aerial parts of the plant are used as a central

nervous system depressant, purgative, antimalarial

and as a diuretic. The bark and leaves have been

used in diabetes for lowering blood glucose level

gonorrhea in the Ayurvedic system of medicine

[28].

xii. Cassia artemisioides

Its fruits are used for the treatment of

inflammation, throat troubles, liver complaints, chest

complaints, rheumatism, and asthma [32].

xiii. Senna multiglandulosa

The flowers of this plant are boiled and eaten

[33].

xiv. Cassia floribunda

It is one of the Cassia species growing in

Ethiopia and it has important medicinal values. It is

purgative [34].

xv. Cassia sophera (senna sophera)

It is commonly known as ‘Kasundi’ or

‘Banar’ in Hindi. It is a shrub 2.4-3m high, annual or

perennial. Its bark, leaves and seeds are used as

cathartic. Its leaves are used externally in ringworm.

Its bark and seeds are useful in diabetes. Decoction

of plant is used in acute bronchitis [117].

xvi. Cassia nigrican

It is commonly used in West Africa to protect

grain storage from insects. The roots and leaves Have

been used medicinally in Senegal and Guinea as a

substitute for quinine for many years [36].

xvii. Cassia occidentalis

This is commonly known as Kasunda or Bari

kasunda. It show antibacterial activity. Its roots are

useful against ringworm infections. It is also used as

a diuretic and in the treatment of snake bite. The

whole plant is useful as a purgative and used as a

tonic. The seeds and leaves are used as cure for

cateneous diseases. It is also used as a liver tonic,

febrifuge and a cure for sore eyes, cutaneous

diseases, convulsions of childrens [37, 41, 84].

xviii. Cassia alata

The plant is distributed throughout Malaysia.

Paddy field farmers used the water boiled from the

leaves of this plant to treat skin infections. In

Malaysia, this plant known as ‘Gelenggang Besar’ is

used extensively in folk medicine to treat various

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

134

diseases, e. g., skin diseases, constipation,

rheumatism, gonorrhea and diabetes. The methanolic

or water extract of this plant has antimicrobial and

antifungal activity. Ringworm cassia or golden

candle (Cassia alata Linn, Leguminosae), a wild-

growing shrub often cultivated as an ornamental

plant, is indigenous to South America, but now

widely distributed in the tropics. This worldwide

important herbal medicine has been recognized for

centuries in traditional medicine for its role as a

laxative as well as in the treatment of a variety of skin

and respiratory diseases. In Suriname, root extracts

from C. alata are used for the treatment of uterus

disorders . Pharmacological investigations shows

that this herb has several biological activities, such

as antimicrobial, antifungal, purgative, anti-

inflammatory analgesic, antitumor, and

hypoglycemic activities [125].

xix. Cassia reingera

This plant is known as rich source of

anthraquinones and flavonoids which are main

source of natural dyes. These dyes are useful for

human health because they have antibacterial ,

insecticidal and healthy properties [40].

xx. Cassia kleinii

It has long been used in traditional medicine

for its antihepatotoxic activity. Leaves and pods have

long been used widely as purgatives and laxatives

[45, 46].

xxi. Cassia italica

The herb and shrub is used in the indigenous

system of medicine for the treatment of constipation,

biliousness, gout, rheumatism, and ringworm and

other parasital skin diseases [64, 94].

xxii. Cassia torosa

This plant show anti-allergic activity [66].

xxiii. Cassia auriculata

The plant is highly reputed for its medicinal

value and tanning material. The plant is widely used

in traditional medicine for treating diabetes and

various other disease conditions. The alcoholic

extract of the aerial part of C. auriculata displayed

potent antioxidant activity. The plant is known by its

common name Ranawara, various parts of the plant

are used in traditional medicine to treat disease

conditions including helmints infection, eye

diseases, diabetes and skin conditions. The plant is

now widely used in India and Sri Lanka as part of the

Ayurvedic system of medicine. It is also one of the

major components of beverage called ‘‘kalpa herbal

tea’’ which has been widely consumed by people

suffering from diabetes mellitus, constipation and

urinary tract diseases. An alternative preparation for

diabetes medication is a mixture called ‘‘avarai

panchaga choornam” which is prepared from dried

and powdered plant parts. It is also used in

opthalmia, conjunctivitis, diabetes and chylous urine

[79, 113].

xxiv. Cassia noname

The aerial parts of the plant have been used

as a diuretic and a tonic in the folk medicine of Japan

[78].

xxv. Cassia sieberiana

The plant is locally known as “Gatigati or

Gati”. Different parts of the tree are currently used in

traditional medicine for multiple purposes. The root

decoction is used to treat jaundice and female

sterility. It is also known to be effective as an

antidiarrheal, a laxative, and a supplement in many

traditional remedies for human well-being. The

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

135

leaves of the plant are associated with the alleviate

drepanocytosis acute symptoms. The plant also has

antimalarial activity, antimicrobial and antifungal

activities [82].

xxvi. Cassia marginata

It shows important medicinal properties. The

black cathartic pulp used as horse medicine [83, 100,

123].

xxvii. Cassia abbreviata

The plant is a shrub or small tree, decoctions

from which have been used in tribal medicine [88].

It is a small umbrella-shaped deciduous tree with a

very distinctive cylindrical pod fruit. The tree

features in African medicine and infusions of the

bark were used to treat blackwater fever, abdominal

pain and toothache [89].

xxviii. Cassia laevigata

The plant possesses important medicinal

properties [91].

xxix. Cassia quinquangulata

The plant show a potential cancer

chemopreventive activity [97].

xxx. Cassia javanica

This plant possesses many medicinal

properties and is used in the ethnomedical tradition.

The root barks, seeds and leaves are used as laxative.

The fruits are cathartic and are applied to cure

rheumatism and snake bite. The seeds are emetic and

the juice of the leaves is used to cure skin diseases

[98].

xxxi. Cassia villosa

The plant is used to treat Chagas’ disease;

however, they have several toxic side-effects. It is

commonly known as ‘Salche’. In the traditional

medicine of the ancient Mayas, the leaves of the plant

are used to treat unidentified skin infections,

dysmenorrhea and inflammatory problems [102].

xxxii. Cassia mimosoides

The plant “sleep” at night with their leaves

closed and “wake” in the daytime with their leaves

open. This is called nyctinastic movement and is

known to be controlled by the biological clock [113].

xxxiii. Senna obliqua

The plant ispotential antimycobacterial

agent [107].

xxxiv. Cassia racemosa

It is used in traditional indigenous medicine

against diarrhea and eye infection [104].

xxxv. Cassia fistula

The plant shows numerous medicinal

applications in the traditional system. It is an

introduced species and is a popular ornamental tree

with attractive yellow flowers. Its seed is used in folk

medicine to treat diarrhea and gastritis; it is also an

insecticide.

The seed of the plant are used in the treatment of

biliousness and to improve the appetite. Its root is

useful in the treatment of skin diseases, leprosy,

tuberculous glands and syphilis. It also cures

burning sensation. Its fruits are useful in

inflammation, throat troubles, liver complaints, chest

complaints, rheumatism and asthmaIn Thai

traditional medicines, the ripe pods have been used

as a laxative drug by boiling with water and the

mixture is filtered through a muslin cloth [81, 128].

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

136

xxxvi. Cassia nodosa

The plant is indispensable ingredients in the

Indian system of medicine. It show mucilaginous

and cathartic properties. The seed gum of this plant

has rheological property. [5, 144].

Conclusion

Cassia plants are widely distributed world-wide, and

find immense applications in traditional systems of

medicine in many countries. Although some works on

the chemical and pharmacological aspects of these

plants have already been done, a major portion

remains unexplored. This present review is an

attempt to offer an up-to-date literature covering its

phenolic chemical constituents, botany to

ethnobotany, and biological and pharmacological

properties, with a goal to boost the ongoing research

in the field of dynamic bioactive natural products

directed toward the searches for ‘promising leads’ in

modern drug development processes.

Acknowledgements

The author is grateful to his honorable mentor, Prof. (Dr.) Goutam Brahmachari, for his constant encouragement

and supports.

References

[1] Linnaeus C., Cassia. In: Species Plantarum

volume-1. Cassia (including Senna In:

Species Plantarum volume-1), Biodiversity

Heritage Library, 1753, p. 376.

[2] Miller P. The Gardeners Dictionary, 4th ed.,

Abridged 1754.

[3] Harshal A.; Pawar; Priscilla; and Mello M. D.

Cassia species linn. an overview (2011) 2,

2286-2291.

[4] Maitya T. K.; Mandal S. C.; Mukherjee P. K.;

Saha K., Dass J.; and Saha B. P. (1997) Nat.

Prod. Sci. 3, 122.

[5] Ganapaty S.; Thomas P. S.; Ramana K. V.;

Vidyadhar K.; and Chakradhar V. (2002) J.

Nat. Rem. 2, 102-120.

[6] Dave H.; and Ledwani L. (2012) Indian J.

Nat. Prod. Res. 3, 291-319.

[7] Chopra R. N., Chopra I. C., K . Ikd L. H., and

Kipcr L. D. ( 1958) Indigenous Drugs of

India, U X . Dhar & Sons Ltd.: Calcutta-12,

P. 311.

[8] Yadava N. K., Singh B. K., and Kumar A.

(1998) Assian J. Chem. 10, 204-206.

[9] Kuo Y. H., Lee P. H., and Wein Y. S. (2002)

J. Nat. Prod. 65, 1165-1167.

[10] Tiwari R. D., and Misra G. (1975) Planta

Med. 28, 182-185.

[11] Hata K., Baba K., and Kozawa M. (1979)

Chem. Pharm. Bull. 27, 984-989.

[12] Malhotra S.,and Misra K. (1982) Planta

Med. 46, 247-249.

[13] Hatano T., Uebayashi H., Ito H., Shiota S.,

Tsuchiya T., and Yoshida T. (1999) Chem.

Pharm. Bull. 47, 1121-1127.

[14] Mahesh V. K., Sharma R., and Sing R. S.

(1984) J. Nat. Prod. 47, 733-751.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

137

[15] Kitanaka S., and Takido M. (1985) J. Nat.

Prod. 48, 849.

[16] Rai P. P. (1988) J. Nat. Prod. 51, 492-495.

[17] Guo H., Chang Z., Yang R., Guo D., and

Zheng J. (1998) Phytochemistry 49, 1623-

1625.

[18] Metzger W., and Reif K. (1996) J. of

Chromatography A. 740, 133-138.

[19] Sing V., Sing J., and Sharma J. P. (1992)

Phytochemstry 31, 2176-2177.

[20] Barbosa G. F., da Conceicao M., de Oliveira

F., Braz-Filho R., and Silveira R. E. (2004)

Bio. Systematics and Ecology. 32, 363–365.

[21] Sob S. V. T., Wabo H. K., Tchinda A. T.,

Tane P., Ngadjui B.T., and Ye Y. (2010) Bio.

Systematics and Ecology. 38, 342–345.

[22] Joshi T., Pandey S., and Shukla S. (1985)

Phytochemstry 24, 3073-3074.

[23] Rao R. V. K., Rao J. V. L. N. S., and

Vimaladevi M. (1978) J. Nat. Prod. 42, 299-

300.

[24] Messana I., Ferrari F., Cavalcanti M. S. B.,

and Morace G. (1991) Phytochemstry 30,

708-710.

[25] Hata K., Baba K., and Kozawa M. (1978)

Chem. Pharm. Bull. 26, 3792-3797.

[26] Koyama J., Morita I., Tagahara K., Bakari J.,

and Aqil M. (2002) Chem. Pharm. Bull. 50,

1103-1105.

[27] Kitanaka S., and Takido M. (1989) Chem.

Pharm. Bull. 37, 511-512.

[28] Rai K. N., Kaushalendra K., and Singh J.

(1997) Assian J. Chem. 9, 558-560.

[29] Ledwani L., and Singh M. (2004) Indian J.

Chem. 43B, 2257-2258.

[30] Alemayehu G., Hailu A., and Abegaz B. M.

(1996) Phytochemstry 42, 1423-1425.

[31] Sob S. V. T., Wabo H. K., Tane P., Ngadjui

B. T., and Ma D. (2008) Tetrahedron. 64,

7999-8002.

[32] Zaman K., Khan M. R., Ali M., and Maitland

D. J. (2011) J. Assian Nat.Prod. Res. 13, 62-

67.

[33] Alemayehu G., and Abegaz B. M. (1996)

Phytochemstry 41, 919-921.

[34] Alemayehu G., Abegaz B. M., Snatzke G.,

and Duddeck H. (1988) Phytochemstry 27,

3255-3258.

[35] Alemayehu G., Abegaz B. M., and Kraus W.

(1998) Phytochemstry 48, 699-702.

[36] Georges K., Jayaprakasam B., Dalavoy S. S.,

and Nair M. G., (2008) Bioresource Tech.

99, 2037-2045.

[37] Chukwujekwu J. C., Coombes P. H.,

Mulholland D. A., and Staden J. V. (2006)

South African J. Botany 72, 295-297.

[38] Tiwari R. D., and Yadava O. P. (1971) Planta

Med. 19, 299-305.

[39] Hazni H., Ahmad N., Hitotsuyanagi Y.,

Takeya K., and Choo C.-Y. (2008) Planta

Med. 74, 1802-1805.

[40] Ledwani L., and Singh M. (2005) Indian J.

Chem. 44B, 1970-1971.

[41] Yadava R. N., and Satnami D. K. (2011)

Indian J. Chem. 50B, 1112-1118.

[42] Chauhan D., Chauhan J. S., Siddiqui I. R.,

and Singh J. (2001) Indian J. Chem. 40B,

860-863.

[43] Sanghi R., Singh R., and Singh J. (1999)

Indian J. Chem. 38B, 521-524.

[44] Yun-Choi H. S., and Kim J. H. (1990) J. Nat.

Prod. 53, 630-633.

[45] Anu S. J., and Rao J. M. (2002)

Phytochemstry 59, 425-427.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

138

[46] Anu S. J., and Rao J. M. (2001)

Phytochemstry 57, 583-585.

[47] Wong S.-M., Wong M. M., Seligmann O.,

and Wagner H. (1989) Phytochemstry 28,

211-214.

[48] Lee H. J., Choy J. S., Jung J. H., and Kang S.

S., (1998) Phytochemstry 49, 1403-1404.

[49] Kitanaka S., and Takido M. (1990) Chem.

Pharm. Bull. 38, 1292-1294.

[50] Kitanaka S., and Takido M. (1984) Chem.

Pharm. Bull. 32, 860-864.

[51] Tang L. Y., Wang Z. J. Fu M. H., He Y., Wu

H. W., and Huang L. Q. (2008) Chinese

Chem. Lett. 19, 1083-1085.

[52] Zhang C., Li G. L., Xiao Y. Q., Li L., and

Pang Z. (2009) Chinese Chem. Lett. 20,

1097-1099.

[53] Kitanaka S., and Takido M. (1981)

Phytochemstry 20, 1951-1953.

[54] Kitanaka S., and Takido M. (1984) Chem.

Pharm. Bull. 32, 3436-3440.

[55] Kitanaka S., and Takido M. (1995)

Phytochemstry 39, 717-718.

[56] Waltenberger B., Avula B., Ganzera M. Khan

I. A., Stuppner H., and Khan S. I. (2008)

Phytomed. 15, 373-377.

[57] Ashok D., and Sarma P. N. (1985)

Phytochemstry 24, 2673-2675.

[58] Dass A., Joshi T., and Shukla S. (1984)

Phytochemstry 23, 2689-2691.

[59] Malhotra S., and Misra K.(1982)

Phytochemstry 21, 197-199.

[60] Hemlata and Kalidhar S. B. (1993)

Phytochemstry 32, 1616-1617.

[61] Kinjo J., Ikeda T., Watanabe K., and Nohara

T. (1994) Phytochemstry 37, 1685-1687.

[62] Gonzalez A. G., Barrera L. B., Davila B. B.,

Valencia E., and Dominguez X. A. (1992)

Phytochemstry 31, 255-258.

[63] Singh J., Singh J. (1986) Phytochemstry 35,

1985-1987.

[64] Kazmi M. H., Malik A., Hameed S., Akhtar

N., and Ali S. N. (1994) Phytochemstry 36,

761-763.

[65] Tiwari R. D.,and Singh J. (1979)

Phytochemstry 18, 906.

[66] Kitanaka S., Kimura F., and Takido M.

(1985) Chem. Pharm. Bull. 33, 1274-1276.

[67] Kanno M., Shibano T., Tikado M., and

Kitanaka S. (1999) Chem. Pharm. Bull. 29,

915-918.

[68] Rai K. M., Kaushalendra K., and Singh J.

(1997) Assian J. Chem. 9, 877-878.

[69] Tiwari R. D., and Bajpai M. (1977)

Phytochemstry 16, 798-799.

[70] Koyama J. Morita I., Tagahara K., and Aqil

M. (2001) Phytochemstry 56, 849-851.

[71] Ingkaninan K., Ijzerman A. P., and Verpoorte

R. (2000) J. Nat. Prod. 63, 315-317.

[72] Bycroft B. W., Hassaniali-Walji A., Johnson

A. W., and King T. J. (1970) J. Chem. Soc.

(C), 1686-1689.

[73] Hu Q.-F., Zhou B., Gao X.-M., Yang L.-Y.,

Shu L.-D., Shen Y., Li G.-P., Che C.-T., and

Yang G.-Y. (2012) J. Nat. Prod. 75, 1909-

1914.

[74] Oshimi S., Deguchi J., Hirasawa Y., Ekasari

W., Widyawaruyanti A., Wahyuni T. S.,

Zaini N.C., Shirota O., and Morita H. (2009)

J. Nat. Prod. 72, 1899-1901.

[75] Oshimi S., Tomizawa Y., Hirasawa Y.,

Honda T., Ekasari W., Widyawaruyanti A.,

Rudyanto M., Indrayanto G., Zaini N. T., and

Morita H. (2008) Bioorg. & Med. Chem. Lett.

18, 3761-3763.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

139

[76] El-Sayyad S. M., and Ross S. A. (1983) J.

Nat. Prod. 46, 431-432.

[77] Yadava R. N., and Vishwakarma U. K.

(2013) Indian J. Chem. 52B, 953-957.

[78] Kitanaka S., and Takido M.(1992)

Phytochem. 31, 2927-2929.

[79] Juan-Badaturuge M., Habtemariam S., and

Thomas M. J. K. (2011) Food Chem. 125,

221-225.

[80] Kitanaka S., and Takido M. (1992) Chem.

Pharm. Bull. 40, 249-251.

[81] Yadava R. N., and Verma V. (2003) J. Assian

Nat. Prod. Res. 5, 57-61.

[82] Kpegba K., Agbonon A., Petrovic A. G.,

Amouzou E., Gbeassor M., Proni G., and

Nesnas N. (2011) J. Nat. Prod. 74, 455-459.

[83] Chauhan D., Rai R., and Chauhan J. S. (2002)

Indian J. Chem. 41B, 446-448.

[84] Purwar C., Rai R., Srivastava N., and Singh

J. (2003) Indian J. Chem. 42B, 434-436.

[85] Htano T., Mizuta S., Ito H., and Yoshida T.

(1999) Phytochem. 52, 1379-1383.

[86] Nel R. J. J., Mthembu M., Coetzeea J.,

Rensburg H. V., Malan E., and Ferreira D.

(1999) Phytochem. 52, 1153-1158.

[87] Dehmlow E. V., Ree T. V., and Guntenhoner

M. (1998) Phytochem. 49, 1805-1806.

[88] Malan E., Swinny E., Ferreira D., and

Steynberg P. (1996) Phytochem. 41, 1209-

1213.

[89] Wang Z. J., Wu Q. P., Tang L. Y., Fu M. H.,

He Y., Gong Q. F., and Huang L. Q.(2007)

Chinese Chem. Lett. 18, 1218-1220.

[90] Daisy P., Balasubramanian K., Rajalakshmi

M., Eliza J., and Selvaraj J. (2010) Phytomed.

17, 28-36.

[91] Singh J. (1982) Phytochem. 21, 1832-1833.

[92] Rao K. V., Damu A. G., Jayaprakasam B.,

and Gunasekar D. (1999) J. Nat. Prod. 62,

305-306.

[93] Tiwari R. D., and Singh J. (1977) Phytochem.

16, 1107-1108.

[94] El-Sayed N. H., Dooh A. M. A., El-Khrisy E.

A. M., and Mabry T. J. (1992) Phytochem.

31, 2187.

[95] Kitanaka S. and Takido M. (1991) Chem.

Pharm. Bull. 39, 3254-3257.

[96] Kitanaka S. Ogata K., and Takido M. (1989)

Chem. Pharm. Bull. 37, 2441-2444.

[97] Li X.-C., Dunbar D. C., ElSohly H. N., Jacob

M. R., Nimrod A. C., Walker L. A., and Clark

A. M. (2001) J. Nat. Prod. 64, 1153-1156.

[98] Sanghi R., Singh R., and Singh J. (2000)

Indian J. Chem. 39B, 321-322.

[99] Inamori Y., Kato Y., Kubo M., Yasuda M.,

Baba K., and Kozawa M. (1984) Chem.

Pharm. Bull. 32, 213-218.

[100] Duggal J. K., and Misra K. (1982) Planta

Med. 45, 48-50.

[101] Singh M., and Singh J. (1985) Planta Med.

51, 525-526.

[102] Guzman E., Perez C., Zavala M. A., Acosta-

Viana K. Y., Perez S. (2008) Phytomed. 15,

892-895.

[103] Ueda M., Ohnuki T., and Yamamura S.

(1999) Phytochem. 49, 633-635.

[104] Mena-Rejon G. J.; Perez-Rivas K.; Sansorez-

Peraza P.; Rios T.; and Quijano L.

(2002) Z. Naturforsch. 57c, 777-779

[105] Baba K., Maeda K., Tababta Y., Doi M., and

Kozawa M. (1988) Chem. Pharm. Bull. 36,

2977-2983.

[106] Choi J. S., Jung J. H., Lee H. J., Lee J. H., and

Kang S. S. (1995) Phytochem. 40, 997-999.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

140

[107] Graham J. G., Zhang H., Pendland S. L.,

Santarsiero B. D., Mesecar A. D., Cabieses

F., and Farnsworth N. R. (2004) J. Nat. Prod.

67, 225-227.

[108] Kitanaka S., and Takido M. (1985) Chem.

Pharm. Bull. 33, 4912-4915.

[109] Kitanaka S., Nakayama T., Shibano T.,

Ohkoshi E., and Takido M. (1998) Chem.

Pharm. Bull. 46, 1650-1652

[110] Kashiwada Y., Iizuka H., Yoshioka K., Chen

R.-F., Nonaka G.-I., and Nishioka I. (1990)

Chem. Pharm. Bull. 38, 888-893.

[111] Friedrich H., and Baier S. (1973) Phytochem.

33, 1459-1462.

[112] Baba K., Kido T., Maeda K., Taniguchi M.,

and Kozawa M. (1992) Phytochem. 33, 3215-

3218.

[113] Rai K. N., Singh M. P., and Sinha B. K.

(1994) Assian J. Chem. 6, 696-697.

[114] Singh J., and Tiwari R. D. (1979) Phytochem.

18, 2060-2061.

[115] Singh J., Tiwari A. R., and Tiwari R. D.

(1980) Phytochem. 19, 1253-1254.

[116] El-Gengaihi S., Agiza A. H., and El-Hamidi

A. (1975) Planta Med. 27, 349-353.

[117] El-Sayyad S. M., Ross S. A., and Sayed H.

M. (1984) J. Nat. Prod. 47, 708-710.

[118] Tiwari R. D., and Yadava O. P. (1971)

Phytochem. 10, 2256-2263.

[119] Tiwari R. D., and Singh J. (1979) Phytochem.

18, 347.

[120] Takahashi S., Takido M., Sankawa U., and

Shibata S. (1976) Phytochem. 15, 1295-1296.

[121] Takido M., Kitanaka S., Takahashi S., and

Tanaka T. (1982) Phytochem. 21, 425-427.

[122] Kitanaka S., and Takido M., (1982)

Phytochem. 21, 2103-2106.

[123] Singh J., and Singh J. (1987) Phytochem. 26,

507-508.

[124] Yadava R. N., and Gain P. (2007) J. Indian

Chem. Soc. 84, 683-687.

[125] Fernand V. E., Dinh D. T., Washington S. J.,

Fakayode S. O., Losso J. N., Ravenswaay R.

O. V., and Warner I. M. (2008) Talanta. 74,

896-902.

[126] Mehta N., and Laddha K. S. (2009) Indian J.

Pharm. Sci. 71. 128-129.

[127] Hemlata and Kalidhar S. B. (1995) Indian J.

Pharm. Sci. 57. 262.

[128] Sakulpanich A., and Gritsanapan W. (2008)

J. Health Res. 22. 167-172.

[129] Hauptmann H., and Nazario L. L. (1950) J.

Am. Chem. Soc. 72, 1492-1495.

[130] Dutta A., and De B. (1998) Indian J. Pharm.

Sci. 60. 388-390.

[131] Rai K. N., and Kumari S. (2006) Assian J.

Chem. 18, 763-765.

[132] Singh J. (1981) Planta Med. 41, 397-399.

[133] Chaudhuri K., and Chawla H. M. (1987) J.

Nat. Prod. 50, 1183-1189.

[134] Kumar R., Ilyas M., Parveen M., and

Shafiullah (2006) J. Assian Nat. Prod. Res. 8,

595-598.

[135] Sartirelli P., Lago J. H. G., Cunha R. L. O. R.,

Kitamura R. O. S., and Young M. C. M.

(2012) Nat. Prod. Res. 26, 36-41.

[136] Verma R. P., and Sinha K. S.(1994) Nat.

Prod. Let. 5, 105-110.

[137] Siddiqui I. R., Singh M., Gupta D., and Singh

J. (1993) Nat. Prod. Let. 2, 83-90.

[138] Takahashi S., Kitanaka S., Takido M.,

Sankawa U., and Shibata S. (1977)

Phytochem. 16, 999-1002.

Mondal, A. (2014) Signpost Open Access J. Org. Biomol. Chem., 3, 93 -141. Volume 03, Article ID 010322, 49 pages.

ISSN: 2321- 4163 http://signpostejournals.com

141

[139] Hyun S. K.; Lee H.; Kang S. S.; Chung H. Y.;

and Choi J. S. (2009) Phytother. Res. 23,

178–184.

[140] Nikado T., Ohmoto T., Sankawa U.,

Kitanaka S., and Takido M., (1984) Chem.

Pharm. Bull. 32, 3075.

[141] Wong S. M., Wong M. M., Seligmann O.

(1989) Plant. Med. 55, 276.

[142] Labri S. O. (1976) Welt. Afr. J . Pharmacal.

Drug Res. 3, 71.

[143] Jiansu New Medical College. Encyclopedia

of Chinese Materia Medica (I). Shanghai

Sci. and Tech. Press: 1975, p. 949.

[144] Hao Y. J., Sang Y. L., and Zhao Y. Q. (2001)

Chin. Trad. Herb Drugs 32, 858.