factors affecting algae biofilm growth and lipid production_a review

Upload: amal-

Post on 13-Apr-2018

239 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    1/13

    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281664676

    Factors affecting algae biofilm growth and lipidproduction: A review

    ARTICLE in RENEWABLE AND SUSTAINABLE ENERGY REVIEWS DECEMBER 2015

    Impact Factor: 5.9 DOI: 10.1016/j.rser.2015.07.090

    READS

    249

    2 AUTHORS:

    Peter Schnurr

    University of Toronto

    4PUBLICATIONS 25CITATIONS

    SEE PROFILE

    D. Grant Allen

    University of Toronto

    125PUBLICATIONS 2,156CITATIONS

    SEE PROFILE

    All in-text references underlined in blueare linked to publications on ResearchGate,

    letting you access and read them immediately.

    Available from: Peter Schnurr

    Retrieved on: 11 February 2016

    https://www.researchgate.net/profile/Peter_Schnurr?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Peter_Schnurr?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_5https://www.researchgate.net/?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_1https://www.researchgate.net/profile/D_Allen?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_Toronto?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/D_Allen?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/D_Allen?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_4https://www.researchgate.net/profile/Peter_Schnurr?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_7https://www.researchgate.net/institution/University_of_Toronto?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_6https://www.researchgate.net/profile/Peter_Schnurr?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_5https://www.researchgate.net/profile/Peter_Schnurr?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_4https://www.researchgate.net/?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_1https://www.researchgate.net/publication/281664676_Factors_affecting_algae_biofilm_growth_and_lipid_production_A_review?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_3https://www.researchgate.net/publication/281664676_Factors_affecting_algae_biofilm_growth_and_lipid_production_A_review?enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw%3D%3D&el=1_x_2
  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    2/13

    Factors affecting algae biolm growth and lipid production: A review

    Peter J. Schnurr, D. Grant Allen n

    Department of Chemical Engineering& Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5

    a r t i c l e i n f o

    Article history:

    Received 21 May 2015

    Received in revised form

    7 July 2015

    Accepted 17 July 2015

    Keywords:

    Microalgae

    Biolm

    Biofuels

    Lipids

    Growth parameters

    Productivity

    a b s t r a c t

    Algae is recognized as a potentially valuable source of biofuels and biochemicals; however, a major

    limitation to commercialization is in the high cost of harvesting, de-watering, and downstream

    processing of dilute algae biomass when it is grown planktonically. Growing algae as a biolm offers

    potential advantages for biomass processing because biolms are immobilized and orders of magnitude

    more concentrated. For these reasons there has been an emerging interest in algae biolm biofuel

    research over the past several years. Additionally, there has been a considerable amount of work on

    understanding algae biolms in nature, and on using algae biolms for tertiary wastewater treatment.

    This review paper draws from all of this literature to describe algae biolm composition, and their

    growth responses to the key environmental factors affecting growth and internal lipid concentrations;

    the emphasis being on optimizing biomass and lipid productivity. Additionally, the paper summarizes

    key things known about planktonic algae growth and bacterial biolm growth in order to make

    inferences about the potential growth of algae biolms. The paper identies many key knowledge gaps

    in the potential for producing biomass and lipids from algae biolm growth systems.

    & 2015 Elsevier Ltd. All rights reserved.

    Contents

    1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4182. Composition and structure of an algal biolm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

    2.1. Extracellular polymeric substances and matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

    2.2. Species and succession of photosynthetic biolms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

    3. Algae biolm biomass and lipid production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    3.1. Algae biolm attachment to growth materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    3.1.1. The affect of material properties on algae biolm growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

    3.1.2. Biotic factors on biolm development and growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

    3.2. Key growth parameters and their affect on algae biolm biomass productivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    3.2.1. Light intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

    3.2.2. Carbon dioxide concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

    3.2.3. Other growth factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

    3.3. Algae biolm biomass lipid potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

    3.3.1. Lipids and lipid concentration enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

    3.3.2. Algae biolm productivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

    Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

    1. Introduction

    Algae growth systems show great potential for the production

    of biofuels and bioproducts. The main reasons for this are due to

    their high growth rates doubling times as low as 78 h[1] and

    Contents lists available atScienceDirect

    jo ur nal ho me pag e: www.elsevier.com/locate/rser

    Renewable and Sustainable Energy Reviews

    http://dx.doi.org/10.1016/j.rser.2015.07.090

    1364-0321/&2015 Elsevier Ltd. All rights reserved.

    n Corresponding author. Tel.: 1 416 978 8517.

    E-mail addresses: [email protected] (P.J. Schnurr),

    [email protected] (D.G. Allen).

    Renewable and Sustainable Energy Reviews 52 (2015) 418 429

    http://-/?-http://-/?-http://www.sciencedirect.com/science/journal/13640321http://www.elsevier.com/locate/rserhttp://dx.doi.org/10.1016/j.rser.2015.07.090mailto:[email protected]:[email protected]://dx.doi.org/10.1016/j.rser.2015.07.090http://dx.doi.org/10.1016/j.rser.2015.07.090http://dx.doi.org/10.1016/j.rser.2015.07.090http://dx.doi.org/10.1016/j.rser.2015.07.090mailto:[email protected]:[email protected]://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.07.090&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.07.090&domain=pdfhttp://crossmark.crossref.org/dialog/?doi=10.1016/j.rser.2015.07.090&domain=pdfhttp://dx.doi.org/10.1016/j.rser.2015.07.090http://dx.doi.org/10.1016/j.rser.2015.07.090http://dx.doi.org/10.1016/j.rser.2015.07.090http://www.elsevier.com/locate/rserhttp://www.sciencedirect.com/science/journal/13640321http://-/?-http://-/?-
  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    3/13

    high concentrations of valuable biocompounds. Coupled together,

    high biomass growth rates and biocompound concentrations

    results in high overall productivities of valuable biocompounds.

    For instance, Mata et al. [2] estimated that microalgae could

    generate between 58,700 and 136,900 L/ha yr of biodiesel

    depending on biomass lipid contents of 30% or 70% compared

    to 5366 L/ha yr for the best terrestrial biodiesel crop (Palm Oil).

    Other valuable biocompounds of interest within algae biomass are

    amino acids, fatty acids, pigments, carbohydrates, polysaccharides,vitamins, and antioxidants, which can be used to generate nutra-

    ceuticals, pharmaeucticals, functional foods and food additives,

    farm and aquaculture feed, biofuels, cosmetics and bioplastics

    [24]. In addition to high productivities, growing algae has

    advantages over conventional biofuel sources because it can be

    grown on non-arable lands, growth ponds and reactors can be

    scaled vertically, and algae can be grown on wastewater[57]and

    ue gas waste streams[8,9],thereby providing essential nutrients

    for growth to the algae while simultaneously mitigating pollution

    from these waste streams.

    Researchers have identied several key limitations to commer-

    cialization of biofuels and bioproducts from algae growth systems,

    including optimizing growth rates and internal biochemical compo-

    sitions through genetic modication of species, optimization of

    growth conditions and reactor design, and developing the biorenery

    concept for algae[10].Many researchers agree that one of the most

    signicant economic limitations to commercialization, however, is

    the harvesting and dewatering of algae biomass grown planktonically

    estimated to be up to 30% of the production costs [1113]. By

    growing algae as a biolm there is potential to signicantly reduce

    these costs because the biomass is immobilized and much more

    concentrated 0.4% (g/g) for planktonic systems[10], compared to

    816% in biolms[14,15]. The immobilized nature may also make

    downstream processing easier and more economical.

    There has, however, been a limited amount of work conducted

    on the production of biofuels and biochemicals with algae biolms

    compared to planktonic growth systems. Of the work that has been

    done on algae biolms for biofuel production, much of it revolves

    around the study of the attachment, and subsequent growth, of

    algae biolms to various growth materials [14,1623]. There has

    also recently been a signicant amount of algae biolm research on

    novel reactor designs studying biomass and lipid production rates

    [14,1718,20,21,2429]. Other studies on algae biolms have related

    not specically to biofuel and bioproduct production, but rather, on

    using them to treat wastewaters of nitrogen and phosphorus using

    algal turf scrubbers and novel biolm growth systems[56,3038].

    Additionally, there are many studies on algae biolms from a

    fundamental perspective i.e. oxygen proles under various condi-

    tions, species composition and succession, affects of shear rate,

    affects of temperature, etc., which is helpful in understanding how

    to optimize growth rates and lipid concentrations for biofuel and

    biochemical production. Lastly, there is a large breadth of knowl-

    edge on bacteria biolms and planktonic algae growth systems thatmay provide insights into algal biolm systems.

    This review paper summarizes the current knowledge of algae

    biolms, and how it relates to the production of biomass and

    biofuels. The overall objective of this paper is to provide an over-

    view for what we currently know about algae biolm development

    and composition, and growth parameters that affect growth rates

    and internal biomass lipid concentrations. The review will include

    studies done on algae biolms for biofuel and biochemical produc-

    tion, on algae biolms studied from a fundamental perspective, and

    on algae biolms used to treat wastewater streams. It will also draw

    from the extensive literature on bacterial biolms and planktonic

    algae growth systems to make inferences about algae biolm

    growth systems. This review will not focus on reactor design, since

    reactor designs were covered extensively by Berner et al. [39]. A

    review such as this is important as algae biolm biofuel and

    biochemical growth systems have emerged as a promising biotech-

    nology over the past 5 years, evidenced by the growing number of

    groups working on such systems. To the best of our knowledge no

    such review has been written to date.

    2. Composition and structure of an algal bio

    lm

    Biolms are communities of microorganisms attached to each

    other and a solid growth substratum. They form virtually any-

    where water exists for extended periods of time. Photosynthetic

    biolms in nature are often referred to as periphytic or algae

    biolms, which are mostly composed of algae, cyanobacteria, and

    heterotrophic bacteria living in symbiosis. The composition and

    structure of photosynthetic biolms will vary according to abiotic

    and biotic factors within the environment.

    2.1. Extracellular polymeric substances and matrices

    In biolms, extracellular polymeric substances (EPS) are bio-

    molecules and inert solids that bind cells to each other and to solid

    materials. Extracellular polymeric substances are located on the

    outside of cells, generated through active secretion, cell lysis,

    shedding of cell surface material, and adsorption from the envir-

    onment [40,41]. The predominant EPS are polysaccharides and

    proteins; however, nucleic acids, lipids, and suspended solids can

    also make up the EPS matrix [42].

    In well-developed biolms the EPS forms a matrix that creates a

    microenvironment for the cells. This microenvironment protects cells

    from environmental stress such as dehydration, and uctuations of

    pH, temperature, and nutrient concentrations[41,43,44].Additionally,

    EPS matrices are known to act as a nutrient reservoir as enzymes

    within the matrix digest EPS and inert solids,[45],and the EPS acts as

    an ion exchange resin as it traps nutrients through sorption [40,46]. In

    these ways the EPS matrix helps accumulate and concentrate

    nutrients from the bulk medium. Although EPS is 99% water and

    collapses upon itself when dehydrated[47], it can compose up to 90%

    of the organic matter in some (bacterial) biolms[46].

    During biolm formation and growth, microalgae will respond

    to environmental circumstances by increasing or decreasing the

    expression of specic promoters that affect EPS production. For

    instance, Becker [48] demonstrated that the diatom Amphora

    coffaeformis increases EPS production when it is in contact with

    materials that have good adhesion strength with EPS. A growth

    material effect on algae EPS production was also demonstrated by

    Shen et al. [28]. Additionally, Domozych[49]and Shen et al. [28]

    demonstrated that increasing nutrient concentrations, particularly

    nitrogen, would increase EPS production from diatom and green

    algae species. This is likely because a signicant fraction of EPS iscomposed of proteins [28], allowing the cells to over-produce

    amino acids while nitrogen is abundant and environmental condi-

    tions are favorable. There is some evidence that suggests algae cells

    increase their EPS production as their colonies age and mature

    [28,48]. This could be a result of mature colonies allocating less

    resources into reproduction i.e. reaching a stationary growth phase,

    and more into stabilizing their biolm community. Lastly, there is

    evidence that temperature stress and mineral (calcium) accumula-

    tion stress adversely affect EPS production from algal cells [49].

    Although it is clear that algae cells produce EPS according to

    environmental stimuli, compared to bacterial systems, the literature

    on EPS production and EPS matrices in axenic and mixed commu-

    nity algal biolms is limited. This is an opportunity for fundamental

    algal biolm knowledge development.

    P.J. Schnurr, D.G. Allen / Renewable and Sustainable Energy Reviews 52 (2015) 418 429 419

    https://www.researchgate.net/publication/221931546_Microalgae_for_biodiesel_production_and_other_applications_a_review_Renew_Sust_Energ_Rev?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/8411561_Valuable_products_from_biotechnology_of_algae_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/8411561_Valuable_products_from_biotechnology_of_algae_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/8411561_Valuable_products_from_biotechnology_of_algae_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/8411561_Valuable_products_from_biotechnology_of_algae_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/229228101_Phosphorus_Removal_From_Wastewater_Using_an_Algal_Turf_Scrubber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/229228101_Phosphorus_Removal_From_Wastewater_Using_an_Algal_Turf_Scrubber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/229228101_Phosphorus_Removal_From_Wastewater_Using_an_Algal_Turf_Scrubber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227304402_Utilization_of_flue_gas_for_cultivation_of_microalgae_Chlorella_sp_in_an_outdoor_open_thin-layer_photobioreactor_J_Appl_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227304402_Utilization_of_flue_gas_for_cultivation_of_microalgae_Chlorella_sp_in_an_outdoor_open_thin-layer_photobioreactor_J_Appl_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6457207_Biodiesel_From_Microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6457207_Biodiesel_From_Microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/245308669_Dewatering_of_microalgal_cultures_A_major_bottleneck_to_algae-based_fuels_J_Renew_Sust_Energy_2_012701?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/245308669_Dewatering_of_microalgal_cultures_A_major_bottleneck_to_algae-based_fuels_J_Renew_Sust_Energy_2_012701?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/245308669_Dewatering_of_microalgal_cultures_A_major_bottleneck_to_algae-based_fuels_J_Renew_Sust_Energy_2_012701?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6457207_Biodiesel_From_Microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/264986771_The_effect_of_light_direction_and_suspended_cell_concentrations_on_algal_biofilm_growth_rates?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/264986771_The_effect_of_light_direction_and_suspended_cell_concentrations_on_algal_biofilm_growth_rates?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/281269949_Microalgal_biofilms_for_biomass_production?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/248418772_What_are_Bacterial_Extracellular_Polymeric_Substances?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/248418772_What_are_Bacterial_Extracellular_Polymeric_Substances?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-https://www.researchgate.net/publication/278659839_Extracellular_Enzymes_Within_Microbial_Biofilms_and_the_Role_of_the_Extracellular_Polymer_Matrix?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/278659839_Extracellular_Enzymes_Within_Microbial_Biofilms_and_the_Role_of_the_Extracellular_Polymer_Matrix?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/278718048_Polysaccharases_in_Biofilms_-_Sources_-_Action_-_Consequences?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/278718048_Polysaccharases_in_Biofilms_-_Sources_-_Action_-_Consequences?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6164769_The_EPS_matrix_The_House_of_Biofilm_cells?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6164769_The_EPS_matrix_The_House_of_Biofilm_cells?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-https://www.researchgate.net/publication/14538424_Exopolysaccharide_Production_and_Attachment_Strength_of_Bacteria_and_Diatoms_on_Substrates_with_Different_Surface_Tensions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/249158588_Exopolymer_Production_by_the_Green_Alga_Penium_margaritaceum_Implications_for_Biofilm_Residency?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/14538424_Exopolysaccharide_Production_and_Attachment_Strength_of_Bacteria_and_Diatoms_on_Substrates_with_Different_Surface_Tensions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/14538424_Exopolysaccharide_Production_and_Attachment_Strength_of_Bacteria_and_Diatoms_on_Substrates_with_Different_Surface_Tensions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/249158588_Exopolymer_Production_by_the_Green_Alga_Penium_margaritaceum_Implications_for_Biofilm_Residency?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/249158588_Exopolymer_Production_by_the_Green_Alga_Penium_margaritaceum_Implications_for_Biofilm_Residency?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/249158588_Exopolymer_Production_by_the_Green_Alga_Penium_margaritaceum_Implications_for_Biofilm_Residency?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/249158588_Exopolymer_Production_by_the_Green_Alga_Penium_margaritaceum_Implications_for_Biofilm_Residency?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/14538424_Exopolysaccharide_Production_and_Attachment_Strength_of_Bacteria_and_Diatoms_on_Substrates_with_Different_Surface_Tensions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/14538424_Exopolysaccharide_Production_and_Attachment_Strength_of_Bacteria_and_Diatoms_on_Substrates_with_Different_Surface_Tensions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/278718048_Polysaccharases_in_Biofilms_-_Sources_-_Action_-_Consequences?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/278659839_Extracellular_Enzymes_Within_Microbial_Biofilms_and_the_Role_of_the_Extracellular_Polymer_Matrix?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/248418772_What_are_Bacterial_Extracellular_Polymeric_Substances?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/248418772_What_are_Bacterial_Extracellular_Polymeric_Substances?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6164769_The_EPS_matrix_The_House_of_Biofilm_cells?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6164769_The_EPS_matrix_The_House_of_Biofilm_cells?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/281269949_Microalgal_biofilms_for_biomass_production?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/265690692_Biofilm_formation_and_lipid_accumulation_of_attached_culture_of_Botryococcus_braunii?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/264986771_The_effect_of_light_direction_and_suspended_cell_concentrations_on_algal_biofilm_growth_rates?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221826617_Rotating_algal_biofilm_reactor_and_spool_harvester_for_wastewater_treatment_with_biofuels_by-products?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/245308669_Dewatering_of_microalgal_cultures_A_major_bottleneck_to_algae-based_fuels_J_Renew_Sust_Energy_2_012701?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/230678194_Exploiting_diversity_and_synthetic_biology_for_the_production_of_algal_biofuels?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6457207_Biodiesel_From_Microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6457207_Biodiesel_From_Microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227304402_Utilization_of_flue_gas_for_cultivation_of_microalgae_Chlorella_sp_in_an_outdoor_open_thin-layer_photobioreactor_J_Appl_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/281093859_Isolation_and_selection_of_microalgae_from_coal_fired_thermoelectric_power_plant_for_biofixation_of_carbon_dioxide?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/229228101_Phosphorus_Removal_From_Wastewater_Using_an_Algal_Turf_Scrubber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/8411561_Valuable_products_from_biotechnology_of_algae_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221931546_Microalgae_for_biodiesel_production_and_other_applications_a_review_Renew_Sust_Energ_Rev?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221931546_Microalgae_for_biodiesel_production_and_other_applications_a_review_Renew_Sust_Energ_Rev?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    4/13

    2.2. Species and succession of photosynthetic biolms

    Photosynthetic biolms have many different algae, bacteria,

    cyanobacteria, protozoa, and multicellular microorganism species

    present within them. Diatoms, green algae, and lamentous algae

    are groups of algae that usually compose signicant fractions of

    biolm biomass; some of these species are known to grow both

    autotrophically and heterotrophically[50,51].Bacteria species within

    biolms include cyanobacteria, and heterotrophic and autotrophic

    bacteria. Organisms within biolms form symbiotic relationships

    with one another, whereby heterotrophic bacteria supply carbon

    dioxide during respiration, and photosynthetic organisms utilize the

    carbon dioxide to generate biomass, thus producing the oxygen for

    bacteria during respiration [5255]. Additionally, carbohydrates,

    vitamins and organic compounds are excreted by, and become

    nutrients for, both algae and bacteria within the biolm[52]. Mature

    biolms reach a steady state with organisms within the biolms and

    the environment in which it exists.

    Biolm maturity affects the succession of species present i.e.

    abundance and proportions of algae, bacteria and EPS (Fig. 1). Early

    stage development photosynthetic biolms have a high proportion

    of EPS and bacteria compared to algae and cyanobacteria [56,57].

    Some researchers refer to this as conditioning of the biolm

    growth surface (Fig. 1A). Mack and Anderson [58] reported that,

    after the establishment of the EPS matrix, algae cells begin to

    rapidly grow in the upper layers (Fig. 1B and C) of the matrix

    causing bacteria to form aerial colonies (away from the substrate) to

    compete for nutrients. If the environmental conditions are favorable

    (discussed later), a mature algae biolm will form, consisting of a

    dense and diverse population dominated by algae cells (Fig. 1D)[56,57,59].The biolm matrix facilitates the retainment and sharing

    of nutrients, as symbiotic relationships exist between the hetero-

    trophic and autotrophic microorganisms (Fig. 1C and D).

    Biolm maturity also affects the succession and proportions of

    specic algal groups. Researchers have demonstrated that diatoms

    make up a signicant fraction of early biolms i.e. rst 1520 days of

    growth, while lamentous chlorophytes become predominant after-

    wards[60,61].However, Sekar[62]reported that early phase biolm

    succession (14 days) is dominated by green algae, followed by a

    second phase (59 days) dominated by diatoms, and lastly, a third

    phase dominated by cyanobacteria (1015 days). Zippel and Neu[57]

    also demonstrated that cyanobacteria are a late successional micro-

    organism. The differences of succession of algae species is likely

    attributed to the types of species initially present in the growth

    medium, and how they respond to the particular abiotic growth

    conditions of the experiment. The literature suggests that non-axenic

    photosynthetic biolms eventually become dominated by chloro-

    phytes (single celled andlamentous) and cyanobacteria given enough

    time, and provided any form of seeding mechanism. This has

    implications for long-term operation of algae biolm growth systems,

    as species type has signicant potential to affect overall biomass and

    lipid productivities, as will be demonstrated later in this paper.

    Nutrient concentrations and light intensity have a strong effect

    on the abundance of algal species in a biolm, compared to

    heterotrophic bacteria, EPS and inert solids. Organic and inorganic

    carbon concentrations in the growth medium will affect the

    abundance and proportions of algae compared to bacteria high

    inorganic and low organic carbon results in algae dominated

    cultures [55]. In addition to carbon species concentrations, Villa-

    nueva et al. [63] and Kebede-Westhead et al. [35] demonstrated

    that increases in nitrogen and phosphorus loading rates cause

    signicantly greater photosynthetic biomass accumulation com-

    pared to bacteria. With adequate nutrients and light, photosynthetic

    biolms will be greater than 75% algae biomass [56,57]; however,

    when biolms become too thick, or light intensities insufcient,

    light limitation will occur and the biolm layer furthest from the

    light source (light limited) may become dominated by bacteria, EPS,

    and other non-photoautotrophic materials, as was demonstrated by

    Kuhl et al.[64]and Guariento et al. [65].Fig. 2demonstrates these

    photosynthetically inactive layers and their respective depths

    under different light regimes increased light intensity increases

    the photosynthetically active regions of the biolm, and the overall

    amount and proportions of algae biomass. This idea is discussed

    later in the light intensity section of this paper.Light intensity, temperature, nutrient concentrations, and shear

    rates affect the succession of photosynthetic biolms in terms of

    what algal species are predominant. Congestri et al.[59]and Davies

    et al. [66]concluded that seasonal light and temperature uctua-

    tions in wastewater treatment plants affected the proportions of

    specic algal groups/species in biolms. More specically, Kebede-

    Westhead et al. [35]reported that diatoms were more prominent

    under low light conditions (270 mol/m2/s) compared to high light

    conditions (390 mol/m2/s), and Villanueva et al.[63]reported that

    diatoms were a major biomass fraction in lower temperatures (7

    11 1C) conditions compared to higher (1115 1C) temperature.

    Moreover, cyanobacteria proportions were shown to increase rela-

    tive to the diatom and green algae populations when temperatures

    were increased from 12, 18 and 24 1C[67].This is not surprising as

    Fig. 1. Development of a mixed community algal biolm: (A) growth surfaces are rst conditionedwith bacteria cells that excrete the initial EPS matrix; (B) various species

    of algae cells present in the bulk medium then begin to colonize the EPS matrix; (C) the algae cells grow and reproduce, forming a symbiotic relationship with the bacteria

    present in the EPS matrix; and (D) a mature biolm matrix is densely populated with algae cells, particularly cyanobacteria and chlorophytes, and retains nutrients in the EPS

    matrix.

    P.J. Schnurr, D.G. Allen / Renewable and Sustainable Energy Reviews 52 (2015) 418429420

    https://www.researchgate.net/publication/223882880_Cyclic_autotrophicheterotrophic_cultivation_of_photosynthetic_cells_A_method_of_achieving_continuous_cell_growth_under_lightdark_cycles?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/223882880_Cyclic_autotrophicheterotrophic_cultivation_of_photosynthetic_cells_A_method_of_achieving_continuous_cell_growth_under_lightdark_cycles?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/222116081_Production_of_a_diatom-bacteria_biofilm_in_a_photobioreactor_for_aquculture_applications?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/250220275_Seasonal_succession_of_phototrophic_biofilms_in_an_Italian_wastewater_treatment_plant_Biovolume_spatial_structure_and_exopolysaccharides?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220275_Seasonal_succession_of_phototrophic_biofilms_in_an_Italian_wastewater_treatment_plant_Biovolume_spatial_structure_and_exopolysaccharides?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-https://www.researchgate.net/publication/6278797_Biophysical_Controls_on_Community_Succession_in_Stream_Biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6278797_Biophysical_Controls_on_Community_Succession_in_Stream_Biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226487323_Early_stages_of_biofilm_succession_in_a_lentic_freshwater_environment?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227785928_Kuhl_M_Glud_RN_Ploug_H_Ramsing_NB_Microenvironmental_control_of_photosynthesis_and_photosynthesis-coupled_respiration_in_an_epilithic_cyanobacterial_biofilm_J_Phycol_32_799-812?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/236585744_How_Light_and_Nutrients_Affect_the_Relationship_between_Autotrophic_and_Heterotrophic_Biomass_in_a_Tropical_Black_Water_Periphyton_Community?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/236585744_How_Light_and_Nutrients_Affect_the_Relationship_between_Autotrophic_and_Heterotrophic_Biomass_in_a_Tropical_Black_Water_Periphyton_Community?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-https://www.researchgate.net/publication/250220275_Seasonal_succession_of_phototrophic_biofilms_in_an_Italian_wastewater_treatment_plant_Biovolume_spatial_structure_and_exopolysaccharides?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279588780_Seasonal_succession_of_algal_periphyton_from_a_wastewater_treatment_facility?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227660376_Production_and_nutrient_removal_by_periphyton_grown_under_different_loading_rates_of_anaerobically_digested_flushed_dairy_manure_J_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/230588997_Temperature_and_species_richness_effects_in_phytoplankton_communities?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/230588997_Temperature_and_species_richness_effects_in_phytoplankton_communities?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/230588997_Temperature_and_species_richness_effects_in_phytoplankton_communities?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279588780_Seasonal_succession_of_algal_periphyton_from_a_wastewater_treatment_facility?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/236585744_How_Light_and_Nutrients_Affect_the_Relationship_between_Autotrophic_and_Heterotrophic_Biomass_in_a_Tropical_Black_Water_Periphyton_Community?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227785928_Kuhl_M_Glud_RN_Ploug_H_Ramsing_NB_Microenvironmental_control_of_photosynthesis_and_photosynthesis-coupled_respiration_in_an_epilithic_cyanobacterial_biofilm_J_Phycol_32_799-812?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226487323_Early_stages_of_biofilm_succession_in_a_lentic_freshwater_environment?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6278797_Biophysical_Controls_on_Community_Succession_in_Stream_Biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220275_Seasonal_succession_of_phototrophic_biofilms_in_an_Italian_wastewater_treatment_plant_Biovolume_spatial_structure_and_exopolysaccharides?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220275_Seasonal_succession_of_phototrophic_biofilms_in_an_Italian_wastewater_treatment_plant_Biovolume_spatial_structure_and_exopolysaccharides?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220104_Studying_undisturbed_autotrophic_biofilms_Still_a_technical_challenge?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220104_Studying_undisturbed_autotrophic_biofilms_Still_a_technical_challenge?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220104_Studying_undisturbed_autotrophic_biofilms_Still_a_technical_challenge?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259441408_Mini-review_A_priori_considerations_for_bacteria-algae_interactions_in_algal_biofuel_systems_receiving_municipal_wastewaters?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/51533128_Consortia_of_CyanobacteriaMicroalgae_and_Bacteria_Biotechnological_Potential?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226728038_Bacteria_biofilm_encourages_algal_immigration_onto_substrata_in_lotic_systems?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/222116081_Production_of_a_diatom-bacteria_biofilm_in_a_photobioreactor_for_aquculture_applications?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/222116081_Production_of_a_diatom-bacteria_biofilm_in_a_photobioreactor_for_aquculture_applications?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/223882880_Cyclic_autotrophicheterotrophic_cultivation_of_photosynthetic_cells_A_method_of_achieving_continuous_cell_growth_under_lightdark_cycles?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/24235337_Biomass_and_lipid_productivities_of_Chlorella_vulgaris_under_autotrophic_heterotrophic_and_mixotrophic_conditions_Biotechnol_Lett?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227660376_Production_and_nutrient_removal_by_periphyton_grown_under_different_loading_rates_of_anaerobically_digested_flushed_dairy_manure_J_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    5/13

    cyanobacteria is known to thrive under higher temperatures

    optimal temperature between 30 and 35 1C for Aphanothece micro-

    scopica Nagaliand Spirulina platensis grown planktonically[68,69].

    Increased loading rates of nitrogen and phosphorus also seem to

    favor cyanobacteria, composing up to 65% of the biolm under

    these conditions [63]. Besemer et al. [60] reported the affects of

    ow regime on succession. Particularly, it was shown that coccal

    chlorophytes were more abundant under laminar and transitional

    ow than in turbulent ow, and that operational taxonomic units

    (number of species) decreased as ows were increased.

    Biolm succession is extremely complicated, but is clearly

    affected by biotic factors i.e. the types of species present, and

    abiotic factors of the growth environment. It appears that high

    nitrogen and phosphorus loadings, inorganic carbon concentrations,

    and light intensities increase photosynthetic biomass accumulation

    and proportions compared to non-photosynthetic biomass. Addi-

    tionally, matured cultures, and high temperature and nutrient

    loading rates cause signicant increases in cyanobacteria propor-

    tions in photosynthetic biolms. Because some species present in

    photosynthetic biolms produce signicantly less lipids and other

    valuable compounds, it is important to know how biotic and abiotic

    conditions affect the proportions and abundances of these species.

    Future studies might consider studying (long-term) succession of

    algae biolms to control for high proportions of high productivity

    species both in terms of biomass productivities and of lipid and

    other high value product biomass concentrations.

    3. Algae biolm biomass and lipid production

    Compared to planktonic algae growth systems, there has been a

    limited amount of work on algal biolm growth systems for theproduction of biofuels and biochemicals. Of the algal biolm

    biofuel research conducted to date, many researchers have focused

    on the affects of growth materials on biolm attachment and

    biomass accumulation [14,1623], and on novel reactor designs

    and the biomass and lipid productivities they can produce

    [14,17,18,20,21,2429]. Additionally, there has been some work

    on how different growth parameters e.g. light intensity

    [18,26,35,70], CO2 concentrations [26,29,71], etc., affects biomass

    accumulation, and on quantifying and manipulating biomass lipid

    concentrations [2427,72,73]. Additionally, much research has

    been done from a fundamental understanding of algae biolms

    in nature [57,63,64,74,75], and in using biolms to treat waste-

    water of contaminants [5,6,3038]. The section below draws on

    these studies, and on the extensive amount of literature on

    planktonic algae growth, to determine how to potentially max-

    imize productivity of algae biolm growth systems.

    3.1. Algae biolm attachment to growth materials

    Because biolms, by nature, are attached to a solid (growth)

    material, it is important to understand if material properties affect

    biolm formation, growth, and development. Growth material

    properties studied by researchers are surface tension/surface wett-

    ability/water contact angle/hydrophobicity, polar surface energies,

    and surface micropatterning. In addition to material properties, cell

    recruitment and overall biolm growth is a result of biotic factors

    such as the presence ofrst inhabitors and extracellular polymeric

    substances [53,56,58,76], and the re-growth of biolms already

    acclimated and succeeded to the growth conditions[14,18,20].

    3.1.1. The affect of material properties on algae biolm growth

    Some researchers have studied differences in biolm growth

    with different materials without quantifying the material proper-

    ties, and found there are differences in growth rates. For instance,

    Johnson and Wen[20]studied biolm growth rates on polystyrene

    foam, cardboard, polyethylene fabric, and loofah sponge. They

    found that polystyrene foam yielded signicantly higher biomass

    productivities than the other materials tested, but gave no poten-

    tial reason for this higher yield. Similarly, Christenson and Sims

    [14]and Gross et al. [18] found that cotton rope and cotton duct,

    respectively, were the best materials they each tested for growth.

    It is clear different materials do affect biolm growth and devel-

    opment, but understanding the properties of these materials is

    critical to understand and predict biolm formation and growth.

    Research conducted on the affects of material properties on algalbiolm growth is somewhat inconclusive. Some researchers have

    demonstrated a correlation between hydrophobic surfaces and

    biolm formation and growth. Specically, they conclude that

    hydrophobic surfaces are ideal for the growth of biolms

    [16,22,77]. The theory behind the affects of hydrophobicity is that

    hydrophobic molecules, particles, and cells, prefer a hydrophobic

    environment, and will therefore adhere to each other to minimize

    their contact with water[78].Other researchers, on the other hand,

    found no correlation or weak correlations between hydrophobicity

    and algal biolm formation and growth [17,19]. The difference

    between these groups of researchers and their ndings is the length

    of the growth period and the density of the biolm grown.

    Researchers reporting an affect of material properties on growth

    did not observe growth over the long-term i.e. they observed initial

    Low Light

    Intensity

    GrowthMaterial

    GrowthMaterial

    GrowthMaterial

    Medium Light

    Intensity

    High Light

    Intensity

    Photosynthetically

    Active Region Photosynthetically

    Active RegionPhotosynthetically

    Active Region

    Photosynthetically

    Inactive Region

    Photosynthetically

    Inactive Region

    Photosynthetically

    Inactive Region

    Fig. 2. Schematic of light proles through an algae biolm at various light intensities: photon penetration through algae biolms increases with increasing photon ux

    density. Thick algae biolms have relatively thin photosynthetically active regions adjacent to their source of light, but comparatively thick photosynthetically inactive

    regions opposite the light source (A); as light intensity increases the photosynthetically active region increases due to increased photon penetration, and the subsequent

    reduction of antennae size/number within this regions (B) and (C).

    P.J. Schnurr, D.G. Allen / Renewable and Sustainable Energy Reviews 52 (2015) 418 429 421

    https://www.researchgate.net/publication/222435619_Biomass_production_and_carbon_dioxide_fixation_by_Aphanothece_microscopica_Nageli_in_a_bubble_column_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/222435619_Biomass_production_and_carbon_dioxide_fixation_by_Aphanothece_microscopica_Nageli_in_a_bubble_column_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6278797_Biophysical_Controls_on_Community_Succession_in_Stream_Biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/259368608_Growing_microalgae_as_aquaculture_feeds_on_twin-layers_A_novel_solid-state_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259368608_Growing_microalgae_as_aquaculture_feeds_on_twin-layers_A_novel_solid-state_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/262809403_Biofilm_Growth_of_Chlorella_Sorokiniana_in_a_Rotating_Biological_Contactor_Based_Photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/262809403_Biofilm_Growth_of_Chlorella_Sorokiniana_in_a_Rotating_Biological_Contactor_Based_Photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/223955914_Photosynthesis_and_respiration_of_a_diatom_biofilm_cultured_in_a_new_gradient_chamber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/223955914_Photosynthesis_and_respiration_of_a_diatom_biofilm_cultured_in_a_new_gradient_chamber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-https://www.researchgate.net/publication/7423341_Bacterial_enhancement_of_vinyl_fouling_by_algae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/7423341_Bacterial_enhancement_of_vinyl_fouling_by_algae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/26699559_Development_of_an_attached_microalgal_growth_system_for_biofuel_production_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/26699559_Development_of_an_attached_microalgal_growth_system_for_biofuel_production_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/26699559_Development_of_an_attached_microalgal_growth_system_for_biofuel_production_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221826617_Rotating_algal_biofilm_reactor_and_spool_harvester_for_wastewater_treatment_with_biofuels_by-products?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/258102260_Development_of_a_rotating_algal_biofilm_growth_system_for_attached_microalgae_growth_with_in_situ_biomass_harvest?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226002503_Laboratory_studies_on_adhesion_of_microalgae_to_hard_substrates_Hydrobiologia?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226002503_Laboratory_studies_on_adhesion_of_microalgae_to_hard_substrates_Hydrobiologia?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6219050_Bacterial_cell_attachment_the_beginning_of_a_biofilm_J_Ind_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6219050_Bacterial_cell_attachment_the_beginning_of_a_biofilm_J_Ind_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/51204031_Species_and_material_considerations_in_the_formation_and_development_of_microalgal_biofilms_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/51204031_Species_and_material_considerations_in_the_formation_and_development_of_microalgal_biofilms_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6219050_Bacterial_cell_attachment_the_beginning_of_a_biofilm_J_Ind_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226002503_Laboratory_studies_on_adhesion_of_microalgae_to_hard_substrates_Hydrobiologia?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/7423341_Bacterial_enhancement_of_vinyl_fouling_by_algae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/223955914_Photosynthesis_and_respiration_of_a_diatom_biofilm_cultured_in_a_new_gradient_chamber?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279579192_Photosynthesis-irradiance_patterns_in_benthic_microalgae_Variations_as_a_function_of_assemblage_thickness_and_community_structure?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/262809403_Biofilm_Growth_of_Chlorella_Sorokiniana_in_a_Rotating_Biological_Contactor_Based_Photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259368608_Growing_microalgae_as_aquaculture_feeds_on_twin-layers_A_novel_solid-state_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/222435619_Biomass_production_and_carbon_dioxide_fixation_by_Aphanothece_microscopica_Nageli_in_a_bubble_column_photobioreactor?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6726405_Production_of_biomass_and_nutraceutical_compounds_by_Spirulina_platensis_under_different_temperature_and_nitrogen_regimes?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227785928_Kuhl_M_Glud_RN_Ploug_H_Ramsing_NB_Microenvironmental_control_of_photosynthesis_and_photosynthesis-coupled_respiration_in_an_epilithic_cyanobacterial_biofilm_J_Phycol_32_799-812?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/49641676_Biofilm_formation_at_warming_temperature_Acceleration_of_microbial_colonization_and_microbial_interactive_effects?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/6278797_Biophysical_Controls_on_Community_Succession_in_Stream_Biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/279618263_Growth_and_structure_of_phototrophic_biofilms_under_controlled_light_conditions?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/250220104_Studying_undisturbed_autotrophic_biofilms_Still_a_technical_challenge?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/226728038_Bacteria_biofilm_encourages_algal_immigration_onto_substrata_in_lotic_systems?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/227660376_Production_and_nutrient_removal_by_periphyton_grown_under_different_loading_rates_of_anaerobically_digested_flushed_dairy_manure_J_Phycol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/270648299_Dissolved_inorganic_carbon_enhanced_growth_nutrient_uptake_and_lipid_accumulation_in_wastewater_grown_microalgal_biofilms?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/256447944_Cell_to_substratum_and_cell_to_cell_interactions_of_microalgae?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/26699559_Development_of_an_attached_microalgal_growth_system_for_biofuel_production_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/26699559_Development_of_an_attached_microalgal_growth_system_for_biofuel_production_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/51204031_Species_and_material_considerations_in_the_formation_and_development_of_microalgal_biofilms_Appl_Microbiol_Biotechnol?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/258102260_Development_of_a_rotating_algal_biofilm_growth_system_for_attached_microalgae_growth_with_in_situ_biomass_harvest?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/258102260_Development_of_a_rotating_algal_biofilm_growth_system_for_attached_microalgae_growth_with_in_situ_biomass_harvest?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/258102260_Development_of_a_rotating_algal_biofilm_growth_system_for_attached_microalgae_growth_with_in_situ_biomass_harvest?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/259807987_Design_of_algal_film_photobioreactors_Material_surface_energy_effects_on_algal_film_productivity_colonization_and_lipid_content?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/51225986_The_Influence_of_Surface_Wettability_on_the_Adhesion_Strength_of_Settled_Spores_of_the_Green_Alga?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221826617_Rotating_algal_biofilm_reactor_and_spool_harvester_for_wastewater_treatment_with_biofuels_by-products?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==https://www.researchgate.net/publication/221826617_Rotating_algal_biofilm_reactor_and_spool_harvester_for_wastewater_treatment_with_biofuels_by-products?el=1_x_8&enrichId=rgreq-bea17f25-c63d-4a22-bc5e-ad32513781cc&enrichSource=Y292ZXJQYWdlOzI4MTY2NDY3NjtBUzoyNzY1ODg0ODc4MjMzNjBAMTQ0Mjk1NTI0MzAyMw==http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/26/2019 Factors Affecting Algae Biofilm Growth and Lipid Production_A Review

    6/13

    recruitment to the growth material; however, the groups reporting

    no effect grew thick biolms for relatively long periods of time i.e.

    the cells were eventually growing on top of each other. Genin et al.

    [17] attributed differences in overall algal biolm productivity to

    differences in colonization time, and that that colonization time i.e.

    recruitment, is highly correlated to polar surface energies of growth

    materials. Corresponding to the above conclusions, Ozkan and

    Berberoglu [22] reported differences in cell attachment between

    diatoms and green algae according to the hydrophobicity of thesurface, and that hydrophobic cells adhered to hydrophobic surfaces

    more strongly than hydrophilic cells did to hydrophobic and hydro-

    philic surfaces. They also concluded that, above all else, acidbase

    interactions were the dominating mechanism for cell attachment to

    substrata and each other. From the research on material properties it

    would appear that polar surface energies, and cellcell and cell

    substrata hydrophobicity and acidbase interactions are important

    parameters to consider for biolm formation and short-term growth.

    Once cells have adhered to a subsurface and conuence is reached,

    however, cells are growing on top of each other and long-term

    biolm biomass growth is a function of other growth parameters i.e.

    nutrient concentrations, light availability, etc.

    Surface roughness and micropatterns affect cell recruitment and

    short-term biolm biomass accumulation rates, but not long-term

    growth trends. A preliminary study conducted by Cao et al. [79]

    showed algae cell populations were enhanced by micropatterning

    stainless steel growing surfaces. Similarly, Sekar et al. [77]demon-

    strated more biolm cell attachment with increasing surface rough-

    ness of algae grown on both titanium and stainless steel growth

    substratum. In both of the above studies it is important to consider

    that the differences observed were after short growth periods and

    low population densities i.e. attachment and recruitment rather

    than growth. It is likely that surface roughness differences do not

    actually affect overall biolm productivity rates over long term

    growth periods when cell densities are high i.e. after cell conuence

    is reached. This was demonstrated by Irving and Allen [19] and

    Blanken et al. [71] as they concluded no statistically signicant

    long-term algae biolm productivity gains from patterning the

    surface. Their data does also, however, suggest signicant short-

    term gains (rst 23 days of growth) from micropatterned surfaces.

    Micropattern dimension and depth, compared to cell size, may be

    a signicant factor in micropatterning over short-term growth

    periods. Sathananthan et al. [23] tested 3 different micropatterns

    on algal biolms grown for 10 days and did not observe increased

    growth (compared to smooth surfaces) in shallow (1.5