fall 2008 ee 410/510: microfabrication and semiconductor ... 1 course introduction.pdf · •...

20
Fall 2008 EE 410/510: Microfabrication and Semiconductor Processes M W 12:45 PM – 2:20 PM EB 239 Engineering Bldg. Instructor: John D. Williams, Ph.D. Assistant Professor of Electrical and Computer Engineering Associate Director of the Nano and Micro Devices Center University of Alabama in Huntsville 406 Optics Building Huntsville, AL 35899 Phone: (256) 824-2898 Fax: (256) 824-2898 email: [email protected]

Upload: others

Post on 18-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

Fall 2008 EE 410/510:Microfabrication and Semiconductor Processes

M W 12:45 PM – 2:20 PMEB 239 Engineering Bldg.

Instructor: John D. Williams, Ph.D.Assistant Professor of Electrical and Computer Engineering

Associate Director of the Nano and Micro Devices CenterUniversity of Alabama in Huntsville

406 Optics BuildingHuntsville, AL 35899Phone: (256) 824-2898

Fax: (256) 824-2898email: [email protected]

Page 2: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville2

Microfabrication Process Technologies

• Micro and Semiconductor engineering have changed the way we perceive the world.

• The importance of the integrated circuit simply cannot be understated in today’s society.

• The commercialization of MEMS devices over the past decade is revolutionizing optics, medical diagnostics, and communication technologies

• “Nanotechnology is going to pave the way for a revolution in materials, information and communication technology, medicine, genetics and so on” First Sentence of the “Nanotechnology Market Forecast to 2011” June, 2008

• This course introduces the top down fabrication processes utilized for these technologies and illustrates the fundamental schemes required to demonstrate complex micro‐ and nanodevices.

• Why study all this?????   Because this multidisciplinary engineering space where nearly all the sciences and engineering disciplines converge will one soon have even more impact on our lives than ICs have to date.

Page 3: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville3

What Exactly are We Studying?• Microfabrication is the technique by which we make things 

small.  • It requires collaborative efforts between Physics, Chemistry, 

Material Science, Electrical Engineering, Mechanical Engineering, Computer Engineering, Optical Engineering, and Biology*

• It began with the development of the integrated circuit but has now advanced to new science, new materials, and a plethora of engineering solutions for the coming generations

• In essence, we are learning the techniques required to build the integrated transducers that will sense and react automatically to environmental changes without us ever even having to notice.  Thus allowing the human mind to focus on more clearly on thought problems and solutions than ever before.

Page 4: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville4

Required Reading

• All Students– Class Handouts from numerous books, websites, and Journals in the field

– Mark Madou, Fundamentals of Microfabrication: The Science of Miniaturization, 2nd ed. , CRC Press, Boca Raton, 2002.

• Graduate Students should stay abreast of the latest fabrication efforts using:

– Science Magazine, AAA Press

– Nature, Nature

– Journal of the American Vacuum Society (A & B), AVS Press

– Sensors and Actuators (A), Elsevier Publishing

– Journal of Micromechanics, and Microengineering, IOP Press

– Journal of Micro/Nanolithography, MEMS, and MOEMS, SPIE Press– Nanoletters, ACS Publishing

Page 5: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville5

Other Excellent References• Ashby, Shercliff, and Cebon, Materials Engineering, Science, Processing , and Design, Elsevier, Amsterdam, 

2007.• Wolf and Tauber, Silicon Processing for the VLSI Era, Vol1: Process Technology, 2nd ed., Lattice Press, 1999.• Cambell, The Science and Engineering of Microelectronic Fabrication, 2nd ed., Oxford, NY, 2004.• Moreau, Semiconductor Lithography: Principles, Practices, and Materials, Plenum Press, NY 1998.• Mack, Fundamentals Principles of Optical Lithography: Science of Microfabrication, Wiley Interscience, NY, 

2008.• Lieberman, and Lichtenberg, Principles of Plasma Discharges and Materials Processing, Wiley Interscience, 

NY, 1994.• Brodie, Physics of Micro/Nano‐Fabrication, Plenum Press, NY, 1993.• Ohring, Material Science of Thin Films: Deposition and Structure, 2nd ed., Academic Press, San Diego, 2002.• Kovacs, Micromachined Transducers Sourcebook, McGraw Hill, Boston, 1998.• Maluf and Williams, An Introduction to Micrloelectromechanical Systems Engineering, 2nd ed., Artech, 

Norwood, MA , 2004.• Staff edited, CNF Nanocourses, Cornell Nanoscale Science and Technology Facility, 1998‐2008• Goddard, et al., Handbook of Nanoscience Engineering and Technology, CRC Press, 2002.• Bhushan, Handbook of Nano‐technology, 2nd ed., Springer Verlag, 2006.

Page 6: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville6

Common Journals• Proceedings of the SPIE (largest series of conference proceedings in optics, 

photonics• IEEE Transactions (several journals representing different topics), IEEE 

Press• Sensors and Actuators (A & B), Elsevier Publishing• Journal of Microelectromechanical Systems, IEEE Press• Journal of Micromechanics, and Microengineering, IOP Press• Journal of Micro/Nanolithography, MEMS, and MOEMS, SPIE Press• Science Magazine, AAA Press• Nature, Nature• Journal of the American Vacuum Society (A & B), AVS Press• Journal of the Electrochemical Society, AIP Press• Journal of Applied Physics, AIP Press• Nanoletters, ACS Publishing

Page 7: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville7

Course Outline• Introduction and survey of the initial device development from a fabricators 

standpoint• Survey of Materials Science and choice of substrate• Vacuum Science• Lithography• Dry Etching• Thin film science and deposition• Wet etching• Surface Micromachining• LIGA technologies• Comparison of top down technologies• Metrology• Packaging• Scaling laws• Applications

Page 8: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville8

Early History of the Integrated Circuit• 1947: Three scientists at Bell Telephone Laboratories, William Shockley,

Walter Brattain, and John Bardeen demonstrate the first transistor:• 1955: Frosch and Derick at Bell Labs patent the diffusion furnace and

develop SiO2 passivation layers for silicon transistors• 1955: Andrus and Bond at Bell Labs pattern oxide layers with

photolithography• 1957: Lantrop and Nall (US Army) Pattern 200um leads to connect

discrete transistors• 1958: Last and Noyce develop the first step and repeat cameras for

lithographic processing at Fairchild• 1957/1958: Jean Hoerni at Fairchild conceptualizes the first planer

fabrication process for pn junctions using oxide barriers to protect pn junctions underneath. Allowed all of the circuitry required for transistor fabrication to be patterned on 1 side of the wafer.

• 1959: Fairchild’s Robert Noyce patents the monolithic IC that ties transistors, capacitors, resistors together using micro lithographically patterned aluminum leads deposited on top of Heorni’s protective coating.

• 1960:Fairchild sells planer npn transistor device utilizing SiO2 barrier oxide for passivation that was patterned using a lithographic fabrication process

• 1960: Fairchild demonstrates the first IC with 4 transistors and 5 resistors

• 1961 GCA Corporation commercializes the step and repeat reduction device for optical lithography

Dec. 1947: First Transistor

1957: Lantrop Semiconductor Fabrication Patent 1960: Fairchild’s first IC

Page 9: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville9

Early History of the Integrated Circuit

• 1960: First MOS transistor• 1960: Ian Ross of Bell Labs uses CVD to 

between the substrate and the collector to raise breakdown voltage and significantly increase the speed of the circuit

• 1961: Hoerni demonstrates Silicon transistor that exceeds Ge switching speeds: Computers take off!!

• 1963: San and Wanlass of Fairchild showed that p‐ and n‐ channel MOS transistors arranged into a complementary circuit (CMOS) drew close to zero power in standby mode

• 1964: Standard logic IC families introduced

• 1964: General Microelectronics releases the first commercial MOS IC

Page 10: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville10

Moore’s Law

• 1965: Fairchild’s Director Gordon Moore introduces Moore’s law which accurately predicts the exponential increase of transistor density in an IC  and provides a guide for technological progression that is still in use today

• NSF is now preparing for the demise of Moore’s law– reached the limits of optical lithography 

– Single bit logic is fading to quantum computing and the q‐bit

Page 11: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville11

Early History of the Integrated Circuit

• 1964: Multi‐chip SLT packaging technology introduced by IBM

• 1965: Fairchild Engineers develop Dual In‐Line (DIP) chip packaging

• 1966: Semiconductor bipolar RAM• 1966/1967: Computer aided design 

leads to Application Specific IC (ASIC)• 1967: Turnkey equipment supplies 

such as Applied Materials introduce commercial tooling

• 1969: Intel enters the scene with commercial tooling,  silicon gate technology, and embedded metallic leads  

DIP Chip Packaging

IBM SLT Packaging

Page 12: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville12

Early History of the Integrated Circuit

• 1970: Intel DRAM challenges magnetic memory devices.  Ion Implantation is the key to 4K DRAMs

• 1971: Hoff and Mazor develop INTEL’s first microprocessor

• 1972: Reactive ion etching of semiconductors patented

• 1973:  LPCVD Patented• 1974: Sputter deposition 

Patented• 1974: Robbert Dennard and 

colleagues at IBM develop scaling laws for semiconductor fabrication which give scientific justification to Moore’s Law

PS3 CPU (~2006):236 Billion Transistors

First 256K Bipolar Ram (1966)

Intel’s 1st Microprocessor: i4004

Sub 100 nm TFT with only 2 metallic inter-connect layers

Page 13: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville13

MEMS Timeline• Dec 29,1959:  Richard Feynman’s Talk:  

There’s Plenty of Room at the Bottom• 1962: Chapman and Long demonstrate 

silicon integrated piezo actuation• 1965: Nathason and Wickstrom produce 

Surface micromachined FET accelerometer

• 1967: Anisotropic wet etching of silicon demonstrated by Wagganer

• 1977: Silicon electrostatic accelerometer developed at Stanford

• 1979: Terry, Jerman, and Angell produce the first integrated gas chromatograph

• 1982: Kevin Peterson publishes “Silicon as a Mechanical Material”

First MEMS Accelerometer (1965)

Page 14: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville14

MEMS Timeline• 1983: Integrated pressure sensor 

developed by Honeywell• 1984: Draper Labs begins silicon MEMS 

development• 1982: LIGA developed by Ehrfeld et al at 

Karlsruche• 1986: Shimbo demonstrates silicon wafer 

bonding• 1987: First inertial MEMS gyro measured 

by Draper• 1987‐1988: Integrated fabrication of 

mechanical mechanisms appears using microfabrication processes in silicon

• 1989: The term MEMS coined at the  IEEE Micro‐Tele‐Operated Robotics Workshop

• 1991: Guckel publishes paper on the possible applications of poly‐Si MEMS

LIGA MEMS:Nickel plated accelerometer using comb drive Sensing.Guckel 1990

Polysilicon MEMS circa 1996

Page 15: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville15

MEMS Timeline• 1992: SCREAM process developed by 

MacDonald’s group at Cornell• 1992: Multi‐User MEMS Process  

MUMPS  ‐ First Foundry Service• 1994: Analog Devices manufactures 

the first commercial surface micromachined accelerometer

• 1996: Sandia institutes a 3 layer surface micromachining process 

• 1997: Sandia’s SUMMiT V Foundry Process

• 1997 Bosch DRIE Etching

Comb Drives using Sandia’s SUMMiT V

Bosch Etched Comb Drive on SOI Wafer

Page 16: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville16

Modern MEMS Applications

Plug-n play modular microfluidic systemYuen, Lab Chip 2008,8,1374

Larry Hornback’s DLP Mirrors invented at TI in 1997

3-D Tungsten Photonic CrystalsLyn and Flemming (1998)

Kitching’s Chip Scale Atomic Clock, NIST 2003

EPCOS RF VariableCapacitor, 2008

NIR Spectrometers, Commercially available in 2005

Page 17: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville17

Markets and Applications• IC’s

– Computers– Electronics

• MEMS– Microfluidics– Optics– RF MEMS– Accelerometers

• Nanosystems– Materials– Fabrics– Biology– Genetics

Page 18: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville18

The Beginnings of Nanotechnology• 1857: Faraday makes colloidal gold 

nanoparticles• 1959:  Richard Feynman’s Talk:  There’s 

Plenty of Room at the Bottom• 1974: Norio Taniguchi of Japan coins 

the word nanotechnology• 1975: NSF solicits university proposals 

for submicron structures which was used to develop university based clean room and technology centers (Cornell Nanofabrication Facility)

• 1981: Billing and Rohrer of IBM invent the Scanning Tunneling Microscope 

• 1983‐1990: number of nano articles doubled every 7.7 years

• 1985: Curl, Kroto, Smalley discover Fullerenes

Colloidal Aunanoparticles

Photo of the first STM by Billing and Rohrer

Eigler and SchweizerUsing STM in 1990

Page 19: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville19

The Beginnings of Nanotechnology• 1986: Atomic Force Microscopy (AFM) developed by 

Binning, Quate, and Gerber)  ‐‐‐ AFM is an open air probe that can be used to image any material

• 1986: Drexler publishes “Engines of Creation”• 1987: Digital Instruments founded and sells STM/AFM 

commercially• 1989: First commercial AFM from DI• 1989: Park Scientific Instruments formed to sell AFMs• 1989: Drexler founds the “foresight Institute” and hose 

the first comprehensive conference on Nanotechnology.

• 1990: Eigler and Schweizer create IBM logo created using individual atoms

• 1990: Baldeschwieler et.al. First report of AFM atomic scale resolution of DNA

• 1991: Lijima discovers carbon nanotubes• 1991: Haberle, Horber, and Binnin use AFM used on 

living cells• 1991‐2005: number of nano articles doubled every 3.3 

years• 2002: Nanotubes used for the first time to replace 

wires and are everywhere by 2005

Atomic Force Microscopy

C60 and Carbon Nanotubes

Page 20: Fall 2008 EE 410/510: Microfabrication and Semiconductor ... 1 Course Introduction.pdf · • Graduate Students should stay abreast of the latest fabrication efforts using: – Science

10/16/2009JDW, Electrical and Computer Engineering, 

UAHuntsville20

How Can One Possibly Study All of This!?!?!

• The IC industry paved the way for making small devices• Commercial MEMS process procedures have relied heavily on 

semiconductor process infrastructure• Recent maturation of alternative processes has allowed 

commercial MEMS to branch out• Much of this is due either to industrial need, extensions of 

semiconductor process engineering or push from nanotechnologies that are emerging through the use of MEMS

• In most cases single process steps for MEMS and top down nanofabrication are identical to those used in the semiconductor industry

• What varies is overall process sequence and variety of materials used for MEMS and Nanostructures