faqs for module8

7
7/30/2019 Faqs for Module8 http://slidepdf.com/reader/full/faqs-for-module8 1/7  FAQs & their solutions for Module 8: Angular Momentum-II Question1: The spin angular momentum operator for electron is given by  z  z  y  y  x  x s  s  s     2 1 , 2 1 , 2 1 (1) Where  x ,  y and  z are Pauli spin matrices and are given by                      1 0 0 1 , 0 0 , 0 1 1 0  z  y  x i i     Write the eigenvalues and eigenvectors of , and .  x y  s s s  Solution1: We first determine the eigenvalues of the   x matrix which are determined from the following equation 0 1 1    or ` 0 1 2   implying 1  (2) Thus the eigenvalues of the   x matrix are 1 and therefore the eigenvalues of  s  x are 2 1 . Thus if we measure  s  x [i.e., the  x component of the spin angular momentum of a spin 2 1 particle like electron, proton or neutron] then we will get only one of the two possible (eigen) values 2 1 or  2 1 . The corresponding eigenfunctions are easy to determine; e.g., for the eigenvalue 2 1 , the eigenvalue equation is written as                     b a b a 1 0 1 1 0  giving a b  Thus the eigenfunction is given by       1 1 a  

Upload: ablaska

Post on 14-Apr-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 1/7

 

FAQs & their solutions for Module 8:

Angular Momentum-II

Question1: The spin angular momentum operator for electron is given by

 z  z  y y x x s s s     2

1,

2

1,

2

1 (1)

Where  x ,  y and  z are Pauli spin matrices and are given by

 

  

 

 

  

 

 

  

 

10

01,

0

0,

01

10 z  y x

i

i     

Write the eigenvalues and eigenvectors of  , and . x y z  s s s  

Solution1: We first determine the eigenvalues of the   x matrix which are determined from the

following equation 

01

1

 

  

or 

`012    

implying

1  (2)

Thus the eigenvalues of the   x matrix are 1 and therefore the eigenvalues of  s x are 2

1 . Thus

if we measure s x [i.e., the x component of the spin angular momentum of a spin2

1 particle like

electron, proton or neutron] then we will get only one of the two possible (eigen) values 2

1 or 

2

1

. The corresponding eigenfunctions are easy to determine; e.g., for the eigenvalue 2

1

, the

eigenvalue equation is written as

 

  

 

 

  

  

  

 

b

a

b

a1

01

10 

giving

ab  

Thus the eigenfunction is given by

  

  11a  

Page 2: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 2/7

Page 3: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 3/7

Thus

 

  

 

i

1

2

1^y (8)

would represent the normalized “ y-down” state. Similarly 

 

  

 

i

1

2

1^y (9)

would represent the normalized “ y-up” state. 

Question2:  A spin half particle is in the “ z -up” state. On that particle, if we make a

measurement of  s x then what are the values that we will obtain and what will be their 

 probabilities.

Solution2: The spin half particle is in the “ z -up” state. On that particle, if we make a

measurement of  s x then we will get one of the two eigenvalues of  s x. In order to determine their 

 probabilities we have to express the (normalized) “ z -up” state as a linear combination of the

(normalized) “ x-up” and “ x-down” states: 

 

  

  ^^^ |

2

1|

2

1

0

1| xxz (10)

Thus, if we make a measurement of  s x then the probability of obtaining a “ x-up” state [i.e., the

 probability of obtaining the eigenvalue 2

1 for  s x] is

2

1  and the probability of obtaining a “ x-

down” state is also2

1 .

Question3: The magnetic moment of the neutral Ag-atom is the same as that of an electron and

is given by

q

m μ s (11)

whereq and m represent the charge and mass of the electron and

 z  z  y y x x s s s     2

1,

2

1,

2

1 (12)

Such a particle is placed in a static magnetic field given by

^zB 0 B (13)

Obtain the eigenvalues and eigenfunctionsof the energy associated with magnetic field.

Page 4: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 4/7

 

Solution3: The magnetic moment of the neutral Ag-atom is the same as that of an electron and

is given by

q

m

μ s (14)

where  z  z  y y x x s s s     2

1,

2

1,

2

1 (15)

where  x ,  y and  z are Pauli spin matrices. If such a particle is placed in a static magnetic field

given by

^zB 0 B (16)

then the potential energy associated with magnetic field would be given by

 z  H    0021 B.μ (17)

where

00

0

2 B

m

qB  B   (18)

and

J/T10274.9~2

24m

q B

  (19)

represents the Bohr magneton. Since the eigenvalues of   z  are +1 and -1, the solution of the

eigenvalue equation

2,1;||0 nn E n H  n (20)

would be given by

 

  

 

0

1|1|

2

1^

01z  E  (21)

 

 

 

 

1

0

|2|2

1^02 z  E  (22)

Question4: Write the most general solution of the time dependent Schrodinger equation

)(|)(| 0 t  H t 

t i (23)

where

0 0

1

2 z 

 H     

Page 5: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 5/7

Solution4 : The most general solution of the time dependent Schrödinger equation

0 0

1| ( ) | ( ) | ( )

2z i t H t t  

t   

(24)

would be

2|1|

|)(|

2/2/

/

0021

2

1

t it i

t iE 

eC eC 

neC t n

nn

  

(25)

where

 

  

 

0

1|1|

2

1^

01 z  E  (26)

  

  

10|2|

21 ^

02 z  E  (27) 

Further, the coefficients C 1 and C 2 are to be determined from the knowledge of |(t = 0) >:

011 C   

and

021 C   

Of course, if the system is initially in the | z > or | z > states, then it will remain in those

states for all times to come; these are the stationary states of the problem.

Question5: In continuation of the previous problem, we assume that at t  = 0, the atom is in

the x state. Obtain the time evolution of the state and calculate the expectation values of 

, and . x y z  s s s 

Solution5:

At t = 0, the atom is in the | x  > state. Since

 

  

 

1

1

2

1^x  

we readily get

2

1

1

1)01(

2

1| ^^

1

 

  

  xzC   

Similarly C 2 = 1/ 2 . Thus

Page 6: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 6/7

   

  

 

 

  

 

1

0

2

1

0

1

2

1)(

   iieet   

or 

 

  

 

 

 

i

i

e

et 

21)( (28)

where

t 02

1   (29)

Equation (21)(28) describes the time evolution of the state. Further,

 

  

 

  

  

 

 

  

 

i

i

ii

 x x

eeee

t t  s

0110

41

)()(2

1

 

or 

t  s x 0cos2

1  (30)

Similarly

t  s y 0sin2

1  (31)

and

0 z  s (32)

The above equations physically imply that the direction of the spin angular momentum vector 

rotates about the z -axis with angular velocity 0 .

Question6: Next consider the more general case when

^^

2sin

2cos)0( zz

   

Obtain the time evolution of the state.

Solution6:

We have

^^

2sin

2cos)0( zz

  (33)

[when   /2, we obtain the results of the previous problem]. Obviously

2cos1

 

C  and 2sin2

 

C   

Page 7: Faqs for Module8

7/30/2019 Faqs for Module8

http://slidepdf.com/reader/full/faqs-for-module8 7/7

so that

 

 

 

 

 

 

  

 

 

  

i

i

ii

e

e

eet 

2sin

2

cos

2sin

2cos)( ^^ zz

 

Thus

)()(2

1t t  s  x x    

or 

t  s x 0cossin

2

1   (34)

Similarly

t  s y 0sinsin2

1   (35)

and

 cos2

1 z  s (36)