far-ir/thz & high spectral resolution spectroscopy using

86
CHEIRON SCHOOL OCT 5, 2008 1 Far-IR/THz & High Spectral Resolution Spectroscopy Using Synchrotron Radiation Dominique Appadoo Senior IR Beamline Scientist

Upload: others

Post on 31-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 1

Far-IR/THz & High Spectral Resolution Spectroscopy Using Synchrotron Radiation

Dominique AppadooSenior IR Beamline Scientist

Page 2: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 2

Melbourne

Page 3: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 3

Number of beamlines

Purpose Status

North America ALS Berkley 1 Microscopy and Far-IR Operational CAMD Baton Rouge 1 Microscopy Planned CLS Saskatoon 2 1 Microscopy, 1 Far-IR Operational NSLS Brookhaven 6 3 Microscopy, 2 Far-IR, 1 THz Operational Surf III Gaithersburg 1 Microscopy Planned SRC Madison 1 Microscopy Operational Asia and Australia Australian Synchrotron

1 Microscopy and Far-IR Operational

INDUS I, India 1 Microscopy Planned Helios II, Singapore 1 Microscopy and Far-IR Operational NSRRC, Taiwan 1 Microscopy Operational NSRL, Heife 1 Microscopy and Far-IR Planned BSRF, Beijing 1 Microscopy Planned Spring-8, Himeji 1 Microscopy and Far-IR Operational UVSOR, Okazaki 1 Far-IR Operational Europe ESRF, Grenoble 1 Microscopy Operational Soleil, St. Aubin 2 1 Microscopy, 1 Far-IR Commissioning ELETTRA, Trieste 1 Microscopy and Far-IR Operational DAPHNE, Frascati 1 Far-IR Operational SLS, Villigen 1 Microscopy and Far-IR Commissioning ANKA, Karlsruhe 1 Microscopy and Far-IR Operational BESSY II, Berlin 1 Microscopy and Far-IR Operational DELTA, Dortmund 1 Microscopy Planned MAX II, Lund 2 Microscopy and Far-IR operational DIAMOND, Didcot 1 Microscopy Planned

Infrared beamlines worldwide

32 IR Beamlines

Page 4: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 4

Far-IR/THz ≡ XSX→ eXtremely Soft X-ray

= 1000 – 10 μm= 10 – 1000 cm-1

= 0.3 – 30 THz= 1 – 124 mEV

λννE

The far-IR/THz spectral region

wwww.lbl.gov/MicroWorlds/ALSTool/EMSpec/EMSpec2.html

THz Energy Gap

PhotonicsElectronics

- lack of adequate tunable lasers- weakness of conventional thermal sources- difficulties with far-IR detectors

Page 5: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 5

The Final Frontier

- cw & pulsed THz lasers are now available- Backward-wave oscillators- Accelerator-based sources …

Page 6: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 6

What kind of interactions take place in the far-IR?

• rotation of smaller molecules• ro-vibration of larger molecules- surface/adsorbate interactions

- biological processes- chemical dynamics

van der Waals energies

phonon modes

H-bonding

P R v = 0

v = 1

v = 2

Rotational manifolds

Q

Page 7: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 7

– How does energy flow within a molecule?– What is the nature of the weak attractive forces that exist

among atoms and molecules?– How do metal atoms bond to other chemical groups?– What are the structures of long carbon chain molecules?– How do the optical properties of a material change under ultra-

high pressures?

What can we learn from these interactions?

... this is just the beginning!

Page 8: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 8

I. IR Spectroscopy

II. Synchrotron IR Radiation

III. The IR Beamline at the Australian Synchrotron

IV. FT Spectroscopy

V. Applications of Far-IR & High Resolution Synchrotron Spectroscopy

VI. Coherent Synchrotron Radiation

Overview

Page 9: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 9

I. Introduction to IR spectroscopy

Page 10: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 10

http://www.brukeroptics.com/downloads.html

Fingerprint spectral region

Page 11: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 11

IR spectroscopy of condensed samples:Vibrational Spectroscopy → spatial resolution

Abs

orba

nce

PO32- stretching

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

Amide IC=O

Amide IIC-N and N-H

CH2 and CH3stretching

CH3 bending

Broad O-H and N-HStretching

PO2- stretching

C-O stretch

CO2

ν-shiftsrelative intensities

Spatial resolution required

Page 12: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 12

Diatomic molecules

Polyatomic molecules: linear 3N-5 modes non-linear 3N-6 modes

IR spectroscopy of gas-phase samples:Ro-Vibrational Spectroscopy → Spectral Resolution

Page 13: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 13

V = 1

Potential energy curve of a diatomic molecule in itsground electronic state.

re

De

ωe

Manifold of rotational stateswithin each vibrational level

P Rv = 0

v = 1

v = 2

Rotational manifolds

QJ=0

J=5

Page 14: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 14

Diatomic ModelE(v,J) = Te + G(v) + Fv(J)

Be α 1/μre2

whereBv = Be – αe(v+ ½ ) + βe(v+ ½ )2 + …

ωe is the fundamental frequency (α μ-1/2)re is the bond lengthDe is the dissociation energy

where G(v) = ωe(v+ ½ ) – ωexe(v+ ½ )2 + ωeye (v+ ½ )3 + …Fv(J) = Bv J(J+1) – Dv (J(J+1))2 + Hv (J(J+1))3 + …

De ~ Σ ΔGvV=0

Page 15: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 15

Absorption Spectroscopy…

I1I0

Page 16: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 16

Rotational, vibrational and electronic Transitions

P Rv = 0

v = 1

v = 2

QJ=0

J=5

ΔErot ΔEvib ΔEelec

Page 17: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 17

IR emission spectrum of ZnD (2Σ)

Page 18: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 18

Life can get complicated even for diatomics

IR spectrum of MnH (7Σ)Δν= 0.006 cm-1

Page 19: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 19

1122.66391122.6580

Δν~0.006 cm-1

IR spectrum of MnH (7Σ)

Page 20: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 20

Simply put, spectra for diatomic molecules can be complicated and congested!

- Heavy molecules: closely-spaced transitions, overlapping bands, and narrow linewidths

- Presence of naturally occurring isotopomers in measurable quantities

- High-spin electronic states due to open-shells: spin-splitting

… Need high spectral resolution!

Page 21: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 21

Normal modes of vibration of R152a3N-6 modes where N=8 ≡ 18 modes

C

HF

C

F

H

HH

Polyatomics:Asymmetric Top Molecule

10 001 1001200130 0140 015 00

W a v e n um be r cm -1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Abs

orba

nce

Uni

ts

IR Spectrum of R152a at low resolution

ν4

ν5

ν6

ν8

ν16

C-C

CH3 def.

CF2

CH3 rock

ν7

Page 22: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 22

100011001200130014001500

Wavenumber cm-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Abs

orba

nce

Uni

ts

Part of the IR spectrum of R152a

ν4

ν5

ν14 ν6

ν9+ν17 ?

ν7 ν15 ν16

ν8

Low resolution EFC spectrum

Page 23: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 23

<v:J,K|H| v:J,K> = v + J(J+1) + ( A - ) K2

- ΔJJ [J(J+1)]2 - ΔJK J(J+1) K2 - ΔKK K4

+ ΦJJJ [J(J+1)]3 + ΦJJK [J(J+1)]2 K2 + ΦJKK [J(J+1)] K4 + ΦKKK K6

- ΛJJJJ [J(J+1)]4 - ΛJJJK [J(J+1)]3 K2 - ΛJJKK [J(J+1)]2 K4 - ΛJKKK J(J+1) K6 -ΛKKKK K8 ….

<v:J,K|H| v:J,K ± 2> = [ ½ - δJJ(J+1) - δK{(K ± 2)2 + K2}

+ φJJ [J(J+1)]2 + 1/2φJK [J(J+1)] {(K ± 2)2 + K2} + 1/2φKK {(K ± 2)4 + K4}

- λJJJ [J(J+1)]3 - λJJK [J(J+1)]2 {(K ± 2)2 + K2} - λJKK [J(J+1)] {(K ± 2)4 + K4}

- λKKK {(K ± 2)6 + K6} … ] F± (J,K) F± (J,K ± 1)

where F ±(J,K) = { J(J+1) - K(K ± 1) }1/2

= 1/2 (B-C)

B_

B_

B_

B_

Asymmetric Rotor Model

Page 24: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 24

Pyrrole at 0.00096 cm-1 (~0.1 μeV)

wavenumbers / cm-1

Δ = 0.01 cm-1

δ = 0.00107 cm-1

Page 25: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 25

Spectroscopic issues to contend with

• Overlapping & Hot bands• Coupling of vibrational modes: Coriolis and Fermi resonnances• Closely spaced lines & Narrow linewidths as the MW increases• Isotope splitting• Hyperfine structure

.... Clearly we need high spectral resolution in order to resolve these narrow spectral lines!

How high a resolution is required?

Page 26: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 26

Observed Linewidth:

Different factors contribute to the width of an observed transition

ΔνObs ~ √ ΔνDop2 + Δνcol

2 + ΔνILW2

Therefore, the observed linewidth can be minimised by reducing the Temperature and Pressure!

Instrument linewidth ≡ ΔνILW dictated by apodisation function

Doppler width, ΔνD = 2ν √ 2ln2k/c2 √ T/M ~ 7.16E-7 ν √ Τ/Μ

Pressure broadening, Δνcol = 16pr2/√πMkT ~ 3Ε-4 cm-1 / Torr

Page 27: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 27

Spectroscopic issues to contend with

• Small quantity of sample to minimize Pressure broadening effects or hard to synthesize

• Isotopologues with low natural abundance• Weak absorbers

.... Need bright source!

Page 28: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 28

II. SYNCHROTRON INFRARED LIGHT

Page 29: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 29

Infrared mission from a synchrotron bending magnet

Edge Radiation and Bending Magnet Radiation

• Bright• Broadband• Pulsed• Polarized

Large vertical divergenceRelative to X-ray beam

Page 30: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 30

Port 02B1-1 @ CLS: Far-IR

55×37 mrad2

~ 40 cmē beam

ΘH = 55 mrad

ΘV = 37 mrad

SV = 13 μm

SH = 480 μm 2.0

1.5

1.0

0.5

0.0

Power density (x10-3

W/mm2)

-6-4

-20

24

6

Mirror length (m

m)

SV

SH

ΘH

ΘvX-Rays

λ

λ

IR

IR

Page 31: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 31

Is the synchrotron IR beam very intense?

1 E16

1 E15

1 E14

Flux ( in Photons/s/0.1%

bw)

Far- IRMid- IR

I=800 mA

0.8 GeV, 90x90 mrad, 800 mA

1 10 100 1000 100001E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1SOLEIL 20x78 mrad I= 500 mABlackBody 2000°K

Wat

ts/c

m-1

/mm

2 sr

Wavenumbers / cm-1

It’s the synchrotron brightness that counts

Page 32: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 32

SR Advantages over thermal sources

• Brightness: better S/N• Small source: better throughput with small

samples• Highly collimated: higher resolution achievable• Polarized: ellispsometry • Pulsed: pump & probe experiments

Page 33: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 33

Far-IR SR wavelength limits• Height of dipole chamber:

λo = 2h√h/Rwhere h is the height of the dipole chamber and R the radius of the bend magnet

• Extraction aperture:λc = R(ΘNat/1.66188)3

where ΘNat represents the vertical angle in radians

Page 34: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 34

EXTRACTION OF SYNCHROTRON IR RADIATION

Page 35: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 35

Optical Layout at the CLSM2

DW

M1

M3

M4

M5

M6

M7

M8Ge:Cu

2. Mirror M1 inserted into dipole “crotch” from above or below

Page 36: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 36

2. Mirror M1 inserted into dipole “crotch” from above or below

e.g. Soleil, ESRF…

M1 Mirror with thermocouple wires

Top view of mirror insertion portImages courtesy of Paul Dumas, Soleil.

Dipole Multipole

M1

M2

Page 37: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 37

-14 mrad +44 mradZero degree line

Mirrorinsertion port Beam extraction port

3. Mirror inserted into dipole chamber from side

e.g. Australian Synchrotron

Which brings us to…

Page 38: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 38

III. The Australian SYNCHROTRON INFRARED BEAMLINE

Page 39: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 39

Mirror in

IR beam out

Electron beam

Adapted Infrared Dipole Chamber at Australian Synchrotron

Page 40: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 40

Beamsplitteroptics Diamond Window and

Gate Valves

M1 mirrormechanism

Matching optics forHigh Resolution FTIR

Focusing andSteering mirrors

Matching optics forIR Microscope

Infrared beamline showing (from right) synchrotron beam entering front end optics (M1, M2, M3, M3a), diamond exit window, beamsplitter optics vessel and matching optics boxes for

the two endstation instruments.

Storage ring wall

Page 41: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 41

SR beamsplitter vacuum chamber

Microscope beamline Far-IR & High-Res Beamline

Page 42: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 42

Visible light in the beamsplitter vessel at theAustralian Synchrotron Infrared beamline

Edge & Bend Magnet radiation to “THz & high resolution” spectrometer

Bending magnetradiation to “microscope”

Page 43: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 43

Horizontal position / mm-40 -20 0 20 40

Vert

ical

pos

ition

/ m

m λ = 10 µm

604020

0-20-40-60Ve

rtic

al p

ositi

on /

mm λ = 100 µm

-80 -60 -40 -20 0 20 40 60 80

Edge Radiation

Edge Radiation

Bending Magnet Radiation

Bending Magnet Radiation

30

20

10

0

-10

-20

-30

Page 44: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 44

IR beam profile – comparison with SRW

Page 45: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 45

INFRARED BEAMLINE INSTRUMENTATION

Page 46: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 46

Infrared Beamline at the Australian SynchrotronMicroscope Branch

Bruker V80v with Hyperion 3000 microscope

250×250 μm2 Wide- Band MCTOption for bolometer

50×50 μm2 Narrow-Band MCT

Confocal point scanning - current technology

TransmissionTrans-ReflectionGrazing Incidence AngleAttenuated Total Reflectance

Page 47: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 47

Focal Plane Array - next technology

64x64 photovoltaic MCT Focal Plane Array

Microscope Branch

Page 48: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 48

Infrared Beamline at the Australian SynchrotronHigh Resolution branch

Bruker IFS 125HR FTIR Spectrometer

Beamsplitters

IR Detectors

• Multi/Mylar• Ge/KBr

• Si bolometer• Si:B bolometer• DTGS• MCTN• MCTM

Sources• Synchrotron• Hg-Arc lamp• Globar• Tunsten lamp

Optical Filters• series of narrow band pass IR filters

Apertures• 0.5 – 12.5 mm

10 – 370 cm-1

300 – 1850 cm-1

100 – 3000 cm-1

700 – 5 000 cm-1

600 – 5 000 cm-1

30 – 630 & 12 – 35 cm-1

450 – 4 800 cm-1

mw – vis5 – 1 000 cm-1

10 – 13 000 cm-1

1 000 – 25 000 cm-1

OPD: 942 cm → resolution ≥ 0.00096 cm-1 (0.1 μeV)Optics: f/6.5

Sample compartment: cells ≤ 30×20×10 cm3

Page 49: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 49

Observed Linewidth: ΔνObs ~ √ ΔνDop2 + Δνcol

2 + ΔνILW2

Therefore, the observed linewidth can be minimised by reducing the Pressure and Temperature!

Recall …

Page 50: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 50

50 cm Multipass gas cell for high resolution spectroscopy of room temperature samples

Small quantity of sample to minimize Pressure broadening effects

Recall that Absorbance α εclwhere c is the concentration and l the interaction path.

Page 51: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 51

Enclosive Flow Cooling multipass cell for gas-phase studies at cryogenic temperatures.

MCT detector

CEP

300

495

165colander

vacuuminsulation

evacuationport

N2 gas

sample

flow of cold N2

liq. N2

heated mirror

Page 52: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 52

0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.05

0.10

0.0

0.2

0.4

0.6

0.8

1.0

2250 2220 2190

wavenumber / cm-1

Abs

orba

nce

Uni

tsN2O mid-IR spectrum ( 0.002 cm-1 )

Cluster formation

Trot = 112 K

Trot = 302 K

Trot = 112 K

Page 53: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 53

Supersonic Jet Expansion chamber

More Scientific Apparatus

Diamond Anvil Cell

Metal foil gasket

< 100 μm

Grazing Incidence Angle Cell

Page 54: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 54

IR Cryostat for matrix isolation studies

Minimise H2O interferenceIncrease Absorption coefficient for a range of substances

Down to 10 K!

Low freq. vibrations of biological samples

Page 55: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 55

Assessing beamline performance

Page 56: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 56

Beamline 11 at SRS - unapertured beam profile at sample stage. Area mapped = 30x30 µm. Beam halfwidth = 8x8 µm.

Synchrotron infrared beam focused on sample

Performance of the microscope beamline

Page 57: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 57

Absorbance spectra of tissue sample recorded at 10µm spatial resolution under identical collectionconditions using a Globar™ infrared source andsynchrotron radiation.

Advantage of using a synchrotron seen in spectra…

CH stretch absorption bands from 5micron spot in tissue sample.Equivalent spectra recorded usingsynchrotron (top) and Globar(bottom).

3100 3000 2900 2800

Wavenumbers / cm-1

Page 58: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 58

Testing the IR Beamline Performance withCustom Resolution targets

Page 59: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 59

WAVELENGTH DEPENDENCE OF MICROSCOPE SPATIAL RESOLUTION DEMONSTRATED AT INFRARED BEAMLINE

Polymer pattern on CaF2produced by

photolithographyIR absorbance image

At 2935 ±125 cm-1

CH band region

IR absorbance imageAt 1701 ±59 cm-1

C=O band region

20µm

Page 60: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 60

5

10

20

30

40

Rat

io o

f Int

ensi

ties

SR / Hg

SR

Hg

100 200 300

100 × SR10

20

15

100 × GB

600 700

SR /GB

5

500

GB

SR

1

2

3

4

SR /GB

800 900 1000

IIIIII

Energy / cm-11000200 400 600 800

1

2

3

4

10-1

Phot

ons/

s/0.

1%B

W

1475 K Blackbody

SR 200mA, (57×35) mrad2

~18 ×

~4 ×

~7.2 ×

2.0 mm 1.3 mm 1.15mm

~8 ×

~4.4 × ~5 ×

Ge:Cu / KBr MCTn / KBrBolometer / 6μm Mylar

Performance of the far-IR beamline

Page 61: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 61

Spectrum of Pyrrole at 0.001 cm-1 resolution

10 hrs

40 daysGLOBAR

SYNCHROTRON

Page 62: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 62

IV. Introduction to Fourier transform Infrared spectroscopy

Page 63: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 63

Interferogram

Frequency components of the interferogram

FT spectrum

scanner distanceA

mpl

itude

Fourier transform spectroscopy

M2

D1

D3 D4

D2

D5 D6

sample

compartment

S4

S1S2S3

AC

AC

FC

M1BS

frontchannel

backchannel

Brüker IFS120HR

S1-S3 Internal SourcesS4 External SourceAC Aperture ChangerFC Filter ChangerBS BeamsplitterM1-M2 RetroreflectorsD1-D6 Detectors

Res = 0.9/OPD

OPD = SCL/2

Page 64: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 64

Many frequencies are present in the infrared beam

Position of “zero path difference”

Page 65: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 65Position of “zero path difference”

Summing of all frequencies for each position of the mirror

Page 66: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 66

-5-4-3-2-101234

Volts

200 400 600 800 1000 Data points

“Centre burst” at Zero Path Difference

1234567891011

Sing

le B

eam

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

Interferogram Single Beam SpectrumFourier

Transform

Data output from FTIR system

Page 67: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 67

1234567891011

Sing

le B

eam

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

1234567891011

Sing

le B

eam

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

Background Single Beam Spectrum

Sample Single Beam Spectrum

0.10

0.20

0.30

0.40

0.50

0.60

Abs

orba

nce

500 1000 1500 2000 2500 3000 3500 4000 Wavenumbers (cm-1)

Sample Absorbance Spectrum

Data output from FTIR system

A

A

B

Log(A/B)

Page 68: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 68

Pros and Cons of Fourier transform spectrometryAdvantages over grating spectrometers• Felgett or Multiplex• Jacquinot or throughput: apertures instead of slits • High wavenumber accuracy: sampling λHeNe/2• High resolving power: ~ 106

• Fast

Disadvantages• Complex system (but can be used as a black box by Users)• Expensive ....• Can take a lot of room!

Page 69: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 69

V. APPLICATIONS OFSYNCHROTRON INFRARED LIGHT

Page 70: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 70

837-1165 cm-1

2790-2989 cm-1

Applications of synchrotron IR radiation with a microscopeATR objective

Cross sections of agricultural soils: analysis of distribution and forms of carbon functional groups

Peter Fisher, Matt Kitching (DPI Victoria) / Simon Lewis, Bill van Bronswijk (Curtin University) Kenneth Paul Kirkbride, Vincent Otieno-Alego (AFP) / Alana Treasure, Dudley Creagh (Uni Canberra)

Forensic examination of paper documents

10 microns aperture, 5 microns steps

Cellulose Ink CaCO3

100 μm

2850 - 3023 cm-1 1580 - 1600 cm-1 856 – 897 cm-1

19th century parchment sample

100 μm

Page 71: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 71

Grazing angle objective

Donna Menzies, Thomas Gengenbach, Celesta Fong, John Forsythe, Ben Muir – CSIRO / Monash

Protein resistant plasma polymer thin films

Plasma polimerisation technique used to produce high throughput gradient PEG (poly (ethylene glycol) based films on a nanometer scale.

Systematically varied chemistry by altering the plasma processing conditions.

Study the mechanism of protein repellant properties of PEG coatings.

Ether/hydrocarbon ratio of DGpp gradient films

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

COC/CH

dist

ance

from

ra

zor

(mm

)

Diethylene glycol dimethyl ether (DG)

COC ether

COCH2

OH

Page 72: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 72

SINGLE CELL WORK

10 × 10 µm aperture

Live Human Mesenchymal Stem Cells

70 μm

10 μm

Fixed mouse Oocyte Cell

Live Leukaemia Cells

Fixed Malaria infected RBCs8 x 8 μm

Page 73: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 73

Response of single living phytoplankton cells to changes in the environment

Phil Heraud, Sally Cane, Anthony Eden, Don McNaughton, Bayden Wood, Monash University

Lipid concentration FTIR maps

Control

Nitrogen starved cell Re-supplied with nitrogen

Freshwater alga Micrasterias hardyi.

Page 74: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 74

- prototype system for torsional motion - Intramolecular Vibl Redistribution- Earth and Jovian atmospheres- Pluto: clues to evolution

early solar system

Ethane

Methyl SilaneSaturn

Titan

Molecular species of Astrophysical interest

Applications of synchrotron IR radiation with a High-Resolution FT spectrometer

Page 75: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 75

Telescope missions in the submillimeter region for the study of star formation

- Herschel Space Observatory (2008, 3-4 years)- Stratospheric Observatory for Infrared Astronomy: SOFIA (2010, 20 years)- Atacama Large Millimeter Array: ALMA (2011, decades)

Astrophysical weed-molecules & their isotopologues

-Class I: CH3OH, HCOOCH3, CH3OCH3, C2H5CN

WAVENUMBER / CM-1

CH3-18OH 13CH3-OH

Molecular species of Astrophysical interest

Recorded at the CLS

Page 76: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 76

Far-IR spectroscopy of aromatic cycles containing heteroatomsDennis Tokaryk (U. of New Brunswick) & Jen van Winjgaarden (U. of Manitoba)

pyrrole furan thiophene

O SHN

These heterocycles and their derivatives are:

• building blocks of organic chemistry-pharmaceuticals, agrochemicals, dyes

• constituents of biologically active moleculesuch as heme and chlorophyll

• byproducts of combustion processes

• candidates for interstellar detection

• solvents/additives in industrial processes• naturally found in wood, petroleum

Page 77: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 77

Strong positive pleochroism at 146 cm-1 – implies out-of-plane mode Slight negative at 167,189, 264 cm-1 – implies in-plane modeNo change at 110 cm-1 – expected if interlayer cation ‘rattle’

50o

35o

20o

10o

0o

Spotted Tiger Muscovite – self supported crystal: Mylar multilayer beamsplitter, Si Bolometer

SR

To better understand the dynamics of cation exchange reactions of important minerals, commonly used as environmental barriers to contaminated wastes such as radionuclides

Samples of Environmental interest

Page 78: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 78

VI. COHERENTSYNCHROTRON RADIATION

Page 79: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 79

5

10

20

30

40

Rat

io o

f Int

ensi

ties

SR / Hg

SR

Hg

50 100

Energy / cm-1

Apt=2.0 mm

Bolometer / 6μm Mylar

Incoherent Synchrotron < 100 cm-1

Page 80: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 80

Coherent Synchrotron Radiation

BESSYwebsite

PSR α N + N2e-(ω /c)σz2

Page 81: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 81

81

CSR at the CLS

Page 82: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 82

6 8 10 12 14 16 18 20

02

46

810

1214

9 10 11 12 13 14 15 16 17 18J”= 19 20

wavenumber / cm-1

recorded with the Coherent SR at a resolution of 0.025 cm-1

46 scans co-added

Period ~ 0.0731 cm-1

N2O THz absorption spectrum

82

Page 83: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 83

• Synchrotrons provide intense beams at long wavelengths into the Far-IR

• IR spectroscopy is used to provide information on the chemicalcomposition of materials based on the vibration of the bonds present.

• Synchrotron IR allows these measurements to be made rapidly at a few microns dimension (micoscope), or at low concentration(and high SPECTRAL resolution).

• Synchrotron IR has applications in a diverse range of research areas.

• Future developments in the field will allow imaging below the diffraction limit and the use of intense Far-IR and Terahertz beams

Summary

Page 84: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 84

Acknowledgements

• Dudley Creagh – Canberra University• Don McNaughton – Monash Univerrsity• Phil Heraud – Monash Immunology and Stem Cell Laboratories• Bayden Wood – Monash University• Liz Carter – University of Sydney• Peter Lay – University of Sydney• Mark Hackett – University of Sydney• Sally Caine - Monash Immunology and Stem Cell Laboratories• Vivienne Juan - Monash Immunology and Stem Cell Laboratories• Alice Brandli – Monash University• Cassie Jean – Monash University• Alana Treasure – Univerrsity of Canberra• Bill van Bronswijk – Curtin University• Evan Robertson – Monash University• Ljiljana Puskar – Monash University• Tarekegn Chimdi – Monash University• Paul Dumas – Soleil• Mike Martin – ALS• Ulli Schade - BESSY II• David Moss – ANKA• Yves-Laurant Mathis – ANKA• Jonathan McKinlay – Australian Synchrotron• Nati Salvado – University of Barcelona• Azzedine Hammiche – University of Lancaster• John Prag – Manchester Museum• FMB – Berlin• Biolab/Bruker Instruments

Page 85: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 85

Thanks…Dominique Appadoo

Australian Synchrotron800 Blackburn Road

Clayton 3168 VICAUSTRALIA

Tel: (03) 8540 4127Email: [email protected]

Page 86: Far-IR/THz & High Spectral Resolution Spectroscopy Using

CHEIRON SCHOOL OCT 5, 2008 86

Infrared SpectroscopyEnergy range

0.001 eV to 1 eV (10 cm-1 to 10,000 cm-1)Property accessible

molecular vibrations & rotationsMeasurements

vibrational & rotational spectraInformation

molecular structure, chemical analysis

Synchrotron Benefitssignal to noise, spatial resolution(down to the diffraction limit)

AS Contact Scientists

Dr Mark Tobin, 613 8540 4172Dr Dominique Appadoo, +613 8540 4127 Dr Lillijana Puskar, 613 8540 4185