fast aquisition system for 3d mapping of cosmological

35
1 BAO project in radio Fast aquisition system for 3D mapping of cosmological matter distribution in radio & NEBuLA NumEriseur à Bande Large pour l’Astronomie NEBuLA ADC ADC PCI e 10 Gb E T& C Fibe r s

Upload: others

Post on 03-Dec-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

1

BAO project in radio

Fast aquisition systemfor 3D mapping of cosmological

matter distribution in radio

& NEBuLANumEriseur à Bande Large pour

l’Astronomie

NEBuLA ADC ADC

PCIe10

GbE

T&C

Fiber

s

2

BAO : Baryonic Acoustic Oscillations

• Imprints left by the baryon-photon fluid (before recombination) in the distribution of ordinary (baryonic) matter

• Slight modulation of the distribution of matter, (and galaxies as tracers). Structure formation being mainly driven by CDM which dominates structure formation

• In Radio : Use 21 cm HI emission • 3D HI mass distribution measurement through total 21 cm emission intensity mapping (No individual galaxy detection)• Hyperfine transition (spin-orbit) of atomic hydrogen: ν ≈ 1,420405 GHz →λ ≈ 21 cm

3

Standard Interferometry

Array: resolution gain /d /D we can observe only some directions sin(N) = N./L For =30cm, () = 1’ D= 1km !!!

Antenna array Array and corrélation

Same gain in resolution With a correlator, all directions are available N(N-1)/2 independant correlations

4

LNA

ADCFPGA

LNA

RF Prototype Board

IF

LO=1.2GHZ

IF

Low passFilterPass band

Filter

RF

RF

RFout

1

2

Gain=19DB

Gain=20DB

Gain=20DB 75 Ω40m 50 Ω

1-2m

PLL

Master Frequency

LO Prototype Board

RF Splitter 1/8

LO=1.2GHZ1

2345678

50MHz

Front panel plug-in (3U EuroCard)

RF amplifier, mixerLocal Oscillator

Antenna board

Phase-locked loop

Mixer

IF: Intermediate frequency

RF board: 75/50 inputs 2 channels per board Possibility of by-passing mixer to test the under-sampling approach.

Low-passFilter

Ampli

Ampli

Gain=30DB

Chaîne analogique

5

Système d'acquisition

DMA transfer Disk writing Cpu treatment Multi hardware tested Multi OS tested

PERC 5IController

PCIX

SATA 2

CPU Ram

SATA 2

FSB2000MB/s

x8

South bridge.....

North bridge.....

ALTERAPCIExpress

Ram

FFT 8K &Transfer

ctrl

ADCADC

FFT 8K &Transfer

ctrl

PCIEx bus

6

Test analogique PAON II

50 Ω8m

507/5 75 Ω50m

75 Ω10m

ADC

50 Ω1m

7575Ω

LNA

Ampli Intermédiaire 50 Ω

8m50/75 50 Ω

0.5m

ADC

50 Ω50m

LNA

Ampli Intermédiaire

Version actuelleVersion « améliorée”

Fréquence centrale 1375MhzBande passante 250MhzFréquence échantillonnage 500Mhz

Problématique : transfert d'un signal RF Large bande sur des distances > qq m

7

AMPLI

AMPLI

AMPLI

AMPLI

Mixer + LO coaxial

Configuration globale

~ 8m liaison aérienne

~ 300m

~ 8m

Ethernet/USB

Power

Boîtier central

~40m gaineenterrée

8

4

ContainerContainer

Sas

Patch Pannel

PAON IV Configuration globale

8

Figure : lna-alimext_Nointer_mixer_350paquets-2.png Test analogique PAON IV

Daniel Charlet 06/2016

NEBuLANumEriseur à Bande Large pour l’Astronomie

NEBuLA ADC

ADC

PCIe

10GbE

T&C

Fiber

s

Daniel Charlet 06/2016

PAON & NEBULA System

~300m

Clock & triggerDistribution(WR or custom)

~300m

20GByt/s

PCIExExt /Ethernet

~ 40db

ADC

NEBULA Board

FPGA

~ 40db

ADC

NEBULA Board

FPGA

~ 40db

ADC

NEBULA Board

FPGA

On the feed

Daniel Charlet 06/2016

Pour ce test on va sous-échantillonner un signal centré sur 1375 MHz, sur une largeur de bande de 250 MHz., soit l’intervalle [1250 MHz – 1500 MHz].

Undersampling the [1250 MHz – 1500 MHz] band. Central frequency = 1375 MHz, B.W. = 250 MHz

Fs = 500 MHz

Fs = 500 MHz

S+

S-S+

S- S+

S- S+ S-S+

S-

f (MHz)

S(f)

1250 1375 1500

750250-250

-1500 -1375 -1250

S+

S-

-750

S+

S-

k = 5 translations

Sous-echantillonnage 1

Daniel Charlet 06/2016

1. Signal frequency : F=1490 MHz (high limit)

10 MHz = -1490 MHz + 3 x 500 MHz (on observe dans la bande [0 – 250 MHz] la 3ème ([k+1]/2 = 6/2 = 3) translation de la raie négative. Le spectre est donc retourné par rapport au spectre d’origine [1250 – 1500 MHz]

S- is translated (3 times)

Reversed spectrum

Sous-echantillonnage 2

Daniel Charlet 06/2016

NEBULA Board

PCIExpress4x Gen2

10Gb Ethernet

10Gb Ethernet

Numericalfilter

ADC & systemmanagement

Developingframe

CDR

LocalOscillator

ARRIA V GT

White-RabbitTunable oscillator

Clock & synchro

20Gb/s

10Gb/s

10Gb/s

Input bandwidth : 2Ghz

ADC2x 1GSPS1x 2GSPS

Ethernet 1G

Ethernet 1G

PCIEx 4x(optionnel)

XTCA board

Clock & triggerManagement

& PPS

Testgenerator

Daniel Charlet 06/2016

Bus tree

SFP+X 3

PLLLMK04828

ADC08D1020

ycontrol

Power CTRLDS1014

IPMI

Eth-10G

PCIe

Eth-1G

SPII2C

SPI

FPGA ctrl/cde & conf

JTAG_conf

configSPI

Cde-ctrl & synchro

SSRAMCY7C1470BV25

(CY7C1480BV25)Flach x 2

EPLDMAXV

AM

C c

onne

ctor

iPass+8x

Molex

Ethernet white-Rabbit

Eth-1G

FrequencySynth.SI5326

Daniel Charlet 06/2016

Clock tree

FPGA

Si511125 MHz

DACAD5662

DAC 16bAD5662

VCTCXO25MHz

VCXO20MHz

DACAD5662DAC 16bAD5662

EthernetTxRx

SMA

DAC drive(spi)

125 MHz

20 MHz

SFP WR

EEPROMConfig DT

Mac adREFCLKR

LMK04828

Osc10 MHz

Ext PCIE

REFCLKL125 MHz

Ref CLK3 REFCLKR

ADC08D1020

REFCLKL

1 GHz

500 MHz

100MHz

REFCLKL

156.25 MHz

REFCLKR

Xtal25 MHz

ProgrammablePLL

Si5338AClock

distribution bufferSL18860DC

ArriaV Top

156.25 MHz

125 MHzArriaV BottomMaxV

50 MHz

Daniel Charlet 06/2016

Power tree

EN23FO

Core 1.1vVCC

EN23FO

1.2v

12v

FilterVCCP

EN5329 Filter

VCCL_GXBVCCR_GXB

VCCT_GXB

EN53292.5v

Filter

VCCIOVCPDVCCPGM (fct mod prog)

VCCAUXVCCA_FPLL

MAX8517Filter 2.5V SSRAM

Flash

VCCH_GXBVCCD_FPLLVCC_BAT

1.5v3.6v

1.1v

Seq 2

Seq 3

Seq 4

Transceiver1a max

MAX85271.9v

ADC2w max 0.8A

Filter

VCCA_GXB

3.3v

Iout 15

Iout 15

Iout 3a

Iout 1a

Seq 5

1.8vEN5329MAX5

3.3V Power-management

Vérifier 5339 versus 6347Composant en bibliotheque CPPM

Seq 1

Seq 3/4

Iout 3a

EN53292.2v

MAX8527

Seq 5

MAX8517 PLL 0.7a max3.3v

EN5329 Other component

Daniel Charlet 06/2016

Front side connectic

Connectic PCIe : iPass Molex 40,5mm en topA1-A13 PET0-PET3 Differential PCI Express Transmitter LanesA14-A16 CREFCLK Differential 100 MHz Cable Reference ClockA17 SB_RTN Signal Return for Single-Ended Sideband SignalsA18 CPRSNT# Cable Installed / Downstream Subsystem Powered-upA19 CPWRON Upstream Subsystem’s Power Valid NotificationB1-B13 PER0-PER3 Differential PCI Express Receiver LanesB14-B15 PWR +3.3V Power (Optional)B16-B17 PWR_RTN Return for +3.3V Power (Optional)B18 CWAKE# Power Management Signal for Wakeup Events (Optional)B19 CPERST# Cable PERST#

Ethernet 10G : QSFP+ 22.15mm en bottom

Ethernet 1G : SFP+PCIE 8x : iPass x8 en top

Input ADC : SMA 25mm en bordDe carte

Xtxa hight : 75mm

PCI 10G 10GSMA

40.5 22.15 10 10

SMA140

1G

14.5

Daniel Charlet 06/2016

PCIE over cable

Figure 2. PCIe Express Data Signals Using a PCIe Cable

http://www.onestopsystems.com/cables

http://www.molex.com/molex/products/datasheet.jsp?part=active/0745400201_IO_CONNECTORS.xml

Daniel Charlet 06/2016

FPGASYSPLANNER

Daniel Charlet 06/2016

White Rabbit

Synchronization with sub-ns accuracy and ps precision Combination of :

•Precision Time Protocol (PTP) Synchronization offset adjustement

•Synchronous Ethernet (SyncE) •Synchronization all network devices have the same frequency

•Digital Dual-Mixer Time Difference •(DDMTD) phase detection

Daniel Charlet 06/2016

Precision Time Protocol (IEEE1558)

• Packet-based synchronization protocol• Synchronizes local clock withthe master clock (all the network device• Link delay evaluated by measuring and exchanging packets tx/rx timestamps

Daniel Charlet 06/2016

Synchronous Ethernet (SyncE)

• All network devices use the same physical layer clock• Clock is encoded in the Ethernet carrier and recovered by the receiver chip (PHY).

Daniel Charlet 06/2016

DDMTD: Phase Tracking

• PTP limitation: timestamping granularity• Solution: take advantage of SyncE and measure phase shift

Daniel Charlet 06/2016

WR node: SPECS board &WR switch

Daniel Charlet 06/2016

White Rabbit implementation

PHYSFP

DAC

REF clockgenerator

DMTD clockgenerator

GTR

EFC

LK

CLK125M_PLLREF

125 MHz

CLK20M_VCXO

20+ MHzDAC PLL

CLK

_DM

TD

VCXO

VCXO

SPI

Unique-ID(MAC-addr)

(optional)

FPGA

Your ownstuf

DATA(1 Gbps)

Timing(TAI[ns],REFCLK)

Daniel Charlet 06/2016

Conclusion

Carte en cours de design• Routage à la rentrée• Implantions sur PAON IV et RT• Projet sur RadioHéliographe• Tinlai Chine

Daniel Charlet 06/2016

Pour ce test on va sous-échantillonner un signal centré sur 1375 MHz, sur une largeur de bande de 250 MHz., soit l’intervalle [1250 MHz – 1500 MHz].

Undersampling the [1250 MHz – 1500 MHz] band. Central frequency = 1375 MHz, B.W. = 250 MHz

Fs = 500 MHz

Fs = 500 MHz

S+

S-S+

S- S+

S- S+ S-S+

S-

f (MHz)

S(f)

1250 1375 1500

750250-250

-1500 -1375 -1250

S+

S-

-750

S+

S-

k = 5 translations

Sous-echantillonnage 1

Daniel Charlet 06/2016

1. Signal frequency : F=1490 MHz (high limit)

10 MHz = -1490 MHz + 3 x 500 MHz (on observe dans la bande [0 – 250 MHz] la 3ème ([k+1]/2 = 6/2 = 3) translation de la raie négative. Le spectre est donc retourné par rapport au spectre d’origine [1250 – 1500 MHz]

S- is translated (3 times)

Reversed spectrum

Sous-echantillonnage 2

30

Acquisition PAON IV

Réseau station

Salle Informatique

Réseau local

Daniel Charlet 06/2016

PAON & NEBULA System

~300m

Clock & triggerDistribution(WR or custom)

~300m

20GByt/s

PCIExExt /Ethernet

~ 60db

ADC

NEBULA Board

FPGA

~ 60db

ADC

NEBULA Board

FPGA

~ 60db

ADC

NEBULA Board

FPGA

UNIBOARD(Visibilities)

Daniel Charlet 06/2016

Tranceivers pinout

GX

B_L

1G

XB

_L0

GX

B_R

1G

XB

_R0

ch2

ch1

ch0

ch2

ch1

ch0

ch5

ch4

ch3

PCIeHIP

10GbE

10GbEch2

ch1

ch0

ch5

ch4

ch3

ch2

ch1

ch0µTCA 1GbE

WR 1GbE

µTCA PCIe+

PCIe refclk

REFCLK0LREFCLK1LREFCLK2L

REFCLK0LREFCLK1LREFCLK2L

156.25 MHz (10GbE) PLL125 MHz (PCIe) PCIe cable156.25 MHz (WR 10GbE) LMK

REFCLK0RREFCLK1RREFCLK2R

125 MHz (PCIe + 1GbE) PLL125 MHz (WR 1GbE) LMK

125 MHz (backup) Si511

Daniel Charlet 06/2016

16 dishes de 6m de diam3 cylindres de 15 m x 40 m 96x2 voies

TINLAI Projet

Daniel Charlet 06/2016

10Gb x2

LMK04828 ADC08D1020

ycontrol

Power CTRLDS1014

IPMI

Eth-10G

PCIEpress4x gen2

Eth-1G

SPII2C

SPI

FPGA ctrl/cde & conf

JTAG switchMax V JTAG_conf

config SPI

JTAG

SSRAMCY7C1470BV25

(CY7C1480BV25)Flach x 2

EPLDMAXV

PCIExpress4x

ADC2x 1GSPS1x 2GSPS

Input bandwidth : 2Ghz

PCIEx 4x(optionnel)

PCIE x4

1GbEth-1G

Daniel Charlet 06/2016