fast global stereo matching via energy pyramid minimization

29
ISPRS – PCV 2014 Fast global matching via energy pyramid (disparity esAmaAon) Zurich, 9/5/2014 Bruno Conejo, Phd student ([email protected]) with S. Leprince, F. Ayoub & JP. Avouac (GPS, Caltech)

Upload: bruno-conejo-bconejogmailcom

Post on 19-Jul-2015

87 views

Category:

Science


6 download

TRANSCRIPT

Page 1: Fast Global Stereo Matching Via Energy Pyramid Minimization

     

ISPRS  –  PCV  2014    

Fast  global  matching  via  energy  pyramid  (disparity  esAmaAon)      Zurich,  9/5/2014    Bruno  Conejo,  Phd  student  ([email protected])  with  S.  Leprince,  F.  Ayoub  &  JP.  Avouac  (GPS,  Caltech)  

Page 2: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   2  

Disparity  is  inversely  propor?onal  to  depth!  

Epipolar  geometry  stereo-­‐imaging  setup  Introduc?on:  

Reference  Image   Target  Image  

Disparity  map  

Page 3: Fast Global Stereo Matching Via Energy Pyramid Minimization

Given  a  stereo-­‐pair  of  images  (Ir  ,It)  how  to  retrieve  the  most  probable  disparity  map  d*?    

Regulariza?on:  priors  on  disparity  

Matching:  encourages  similarity  

In  term  of  probability,  we  need  to  es?mate  the  Maximum  A  Posteriori  (MAP)  of:  

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   3  

Modeling:  a  bayesian  approach  

Gibbs  measure  relates  probability  density  func?on  to  energy:    

Energy  of  configura?on  x  

Normalizing  constant  

Reference  Image:  Ir   Target  Image:  It  

Page 4: Fast Global Stereo Matching Via Energy Pyramid Minimization

From  the  Gibbs  measure  we  relates  probabili?es  to  the  energies  (EM  ,  ER  ,  E):  

Matching:  Similarity  criteria  (L1,  L2,  ZNCC,  ...)      

Regulariza?on:  Piecewise  constant  prior:  

Modulated  by  radiometric  discon?nuity:  

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   4  

Modeling:  con?nuous  Condi?onal  Random  Field  (CRF)  

First  order  Condi?onal  Random  Field  (CRF):  

p    q  

Associated  graph      

Reference  Image  

Set  of  nodes   Set  of  edges  

Page 5: Fast Global Stereo Matching Via Energy Pyramid Minimization

We  need  to  globally  op?mize  a  con?nuous  CRF  over  all  possible  disparity  maps  (D):      

However,  this  is  a  non-­‐convex  problem:  varia?onal  approaches  can  not  work!  

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   5  

Modeling:  non-­‐convexity  

Many  local  minima!  

Page 6: Fast Global Stereo Matching Via Energy Pyramid Minimization

Solu%on:  Restrict  d  to  take  value  in  a  finite  discrete  set,  i.e.,  the  “search  space”  encoded  by  a  label  space.    This  leads  to  globally  op?mize  a  first  order  discrete  CRF  (s?ll  NP-­‐Hard)  :  -­‐  Message  passing  (quadra?c  w.r.t  search  space):  Loopy  BP,  TRW-­‐S,  DD-­‐MRF,  …  -­‐  Making  move  (linear  w.r.t  search  space)  :  α-­‐exp,  β-­‐swap,  Fast-­‐PD,  …    

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid  

Discrete  op?miza?on  

6  

Pairwise  term:  Encodes  prior  (regulariza?on)    Unary  term:  Encodes  similarity  (matching)    Label  space:  Encodes  for  each  node  all  poten?al  disparity  to  evaluate  

Page 7: Fast Global Stereo Matching Via Energy Pyramid Minimization

Mul?-­‐scale  approaches    

We  work  with  large  images  (30,000  by  30,000)  and  we  have  large  disparity  range  (-­‐300,300).  A  direct  approach  is  inefficient  (even  impossible)  and  unnecessary!    Locally  the  disparity  range  is  “small”.    We  can  use  a  mul?-­‐scale  approach:  -­‐  Coarsest  scales:  “large”  dispari?es  with  low  

spa?al  frequencies  (natural  topography).  

-­‐  Finest  scales:  “small”  dispari?es  with  high  spa?al  frequencies  (man  made  objects).  

Two  mul?-­‐scale  schemes  are  possible:  -­‐  Image  pyramid  (classic,  GM-­‐IP  algorithm).  -­‐  Energy  pyramid  (ours,  GM-­‐EP  algorithm).  

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   7  

Reference  Image    

Associated  disparity    

Page 8: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   8  

Mul?-­‐scale:  GM-­‐IP  algorithm  (Image  Pyramid)  

Build  &  Opt.  CRF    

Build  &  Opt.  CRF    

Ir   It  Algorithm  1)  Build  pyramid  of  image  for  each  image  by  itera?ve  downsampling  2)  Compute  and  op?mize  CRF  at  coarsest  scale  3)  Define  new  search  space  around  current  solu?on  4)  Repeat  (2-­‐3)  un?l  finest  scale  

Page 9: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   9  

Mul?-­‐scale:  GM-­‐EP  algorithm  (Energy  Pyramid)  

Op?mize  CRF  

Op?mize  CRF    

Energy  of  CRF  

◊©◊©◊  

◊©◊©◊  

Algorithm:  1)  Compute  CRF  at  finest  scale  2)  Build  energy  pyramid  by  

itera?ve  downsampling    3)  Op?mize  CRF  at  coarsest  

scale  4)  Define  new  search  space  

around  current  solu?on  5)  Repeat  (3-­‐4)  un?l  finest  scale  

Page 10: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   10  

Mul?-­‐scale:  CRF  sparsifica?on  

Label  before  op?m.      Label  amer  op?m.        Label  space  to  explore        Removed  label  range  

Page 11: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   11  

Mul?-­‐scale:  GM-­‐IP(Image  Pyramid)  vs  GM-­‐EP  (Energy  Pyramid)  

The  image  pyramid  yields  a  smoothed  representa?on  of  the  energy  and  destroys  local  minimums,  especially  at  coarse  scale:        

Different  minima!  Energy  pyramid  Image  pyramid  

Page 12: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   12  

Stereo-­‐imaging  in  urban  context:  (Reference  Image)  

Page 13: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   13  

Stereo-­‐imaging  in  urban  context:  (Target  Image)  

Page 14: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   14  

Stereo-­‐imaging  in  urban  context:  (Reference  Image)  

Page 15: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   15  

Stereo-­‐imaging  in  urban  context:  Area  of  interest  in  reference  image  

Baseline  =  no  pyramid  (direct  op@miza@on)    

Quan?ta?ve  comparison  between  algorithms:    

Unary  terms:  ZNCC  with  5x5  windows  4  scales,  1  itera?on  per  scale.    

Page 16: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   16  

Coarse  scale:  GM-­‐EP  (Energy  Pyramid)  vs  GM-­‐IP(Image  Pyramid)  

Page 17: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   17  

Coarse  scale:  GM-­‐EP  (Energy  Pyramid)  vs  GM-­‐IP(Image  Pyramid)  

Page 18: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   18  

Finest  scale:  GM-­‐EP  (Energy  Pyramid)  vs  GM-­‐IP(Image  Pyramid)  

Page 19: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   19  

Finest  scale:  GM-­‐EP  (Energy  Pyramid)  vs  GM-­‐IP(Image  Pyramid)  

Page 20: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   20  

GM-­‐EP  (Energy  Pyramid)  vs  MicMac  (Image  Pyramid)  

Page 21: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   21  

GM-­‐EP  (Energy  Pyramid)  vs  MicMac  (Image  Pyramid)  

Page 22: Fast Global Stereo Matching Via Energy Pyramid Minimization

 Key  points:  •  A  versa?le  matching  model  efficiently  op?mized  with  state  of  the  art  discrete  

op?miza?on  technique.  

•  Energy  pyramid  yields  a  beper  representa?on  of  the  energy.      Future  work:  •  Modeling:  

•  Impact  of  images’  noise,  •  Symmetry  w.r.t.  the  images,  •  Occlusions,  •  CRF  parameters  (unary  terms,  weights  of  CRF,  distance  func?on).  

•  Op?miza?on  •  Auto  defini?on  of  the  search-­‐space,  •  Mul?grid  instead  of  mul?scale,  •  Paralleliza?on  for  shared  and  distributed  memory  architectures.  

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   22  

Conclusion  &  Future  work:  

Page 23: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   23  

Page 24: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   24  

Stereo-­‐imaging  in  urban  context:  (Reference  Image)  

Page 25: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   25  

Stereo-­‐imaging  in  urban  context:  (Target  Image)    

Page 26: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   26  

Finest  scale:  GM-­‐EP  (Energy  Pyramid)  vs  MicMac  (Image  Pyramid)  

Micmac   GM-­‐EP    (Energy  Pyramid)  

Page 27: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   27  

Finest  scale:  GM-­‐EP  (Energy  Pyramid)  vs  MicMac  (Image  Pyramid)  

Page 28: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   28  

Mul?-­‐scale:  GM-­‐IP  algorithm  (Image  Pyramid)  

Page 29: Fast Global Stereo Matching Via Energy Pyramid Minimization

B.Conejo  -­‐  Fast  global  Matching  via  Energy  Pyramid   29  

Mul?-­‐scale:  GM-­‐EP  algorithm  (Energy  Pyramid)