fast opt

31
A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere-biosphere CO 2 exchanges and their uncertainties Marko Scholze 1 , Peter Rayner 2 , Wolfgang Knorr 1 , Thomas Kaminski 3 , Ralf Giering 3 & Heinrich Widmann 1 TransCom Tsukuba, 2004 FastOpt 1 2 3

Upload: renate

Post on 05-Feb-2016

33 views

Category:

Documents


0 download

DESCRIPTION

A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere-biosphere CO 2 exchanges and their uncertainties. Marko Scholze 1 , Peter Rayner 2 , Wolfgang Knorr 1 , Thomas Kaminski 3 , Ralf Giering 3 & Heinrich Widmann 1 TransCom Tsukuba, 2004. 1. 2. 3. Fast Opt. Overview. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fast Opt

A global Carbon Cycle Data Assimilation System (CCDAS) to infer atmosphere-biosphere CO2

exchanges and their uncertainties

Marko Scholze1, Peter Rayner2, Wolfgang Knorr1, Thomas Kaminski3, Ralf Giering3 & Heinrich

Widmann1

TransCom Tsukuba, 2004 FastOpt1 2 3

Page 2: Fast Opt

Overview

• CCDAS set-up• Calculation and propagation of

uncertainties• Data fit• Global results• New developments• Conclusions and outlook

Page 3: Fast Opt

Combined ‘top-down’/’bottom-up’ Method

CCDAS – Carbon Cycle Data Assimilation System

CO2 stationconcentration

Biosphere Model:BETHY

Atmospheric Transport Model: TM2

Misfit to observations

Model parameter

Fluxes

Misfit 1 Forward Modeling:

Parameters –> Misfit

Inverse Modeling:

Parameter optimization

Page 4: Fast Opt

CCDAS set-up

2-stage-assimilation:

1. AVHRR data(Knorr, 2000)

2. Atm. CO2 data

Background fluxes:1. Fossil emissions (Marland et al., 2001 und Andres et al., 1996)2. Ocean CO2 (Takahashi et al., 1999 und Le Quéré et al., 2000)3. Land-use (Houghton et al., 1990)

Transport Model TM2 (Heimann, 1995)

Page 5: Fast Opt

Station network

41 stations from Globalview (2001), no gap-filling, monthly values

1979-1999.

Annual uncertainty values from Globalview (2001).

Page 6: Fast Opt

Terminology

GPP Gross primary productivity (photosynthesis)NPP Net primary productivity (plant growth)NEP Net ecosystem productivity (undisturbed C storage)NBP Net biome productivity (C storage)

Page 7: Fast Opt

BETHY(Biosphere Energy-Transfer-Hydrology

Scheme)

• GPP:C3 photosynthesis – Farquhar et al. (1980)C4 photosynthesis – Collatz et al. (1992)stomata – Knorr (1997)

• Plant respiration:maintenance resp. = f(Nleaf, T) – Farquhar, Ryan (1991)

growth resp. ~ NPP – Ryan (1991) • Soil respiration:

fast/slow pool resp., temperature (Q10 formulation) and soil moisture dependent

• Carbon balance:average NPP = average soil resp. (at each grid point)

<1: source>1: sink

t=1h

t=1h

t=1day

lat, lon = 2 deg

Page 8: Fast Opt

Calibration Step

Flow of information in CCDAS. Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 9: Fast Opt

Prognostic Step

Oval boxes represent the various quantities. Rectangular boxes denote mappings between these fields.

Page 10: Fast Opt

Methodology

Minimize cost function such as (Bayesian form):

DpMDpMpp pppJ D

T

pT

)()()( 2

1

2

1 10

10 0

-- C C

where- is a model mapping parameters to observable quantities- is a set of observations- error covariance matrixC

DM

p

need of (adjoint of the model)Jp

Page 11: Fast Opt

Calculation of uncertainties

• Error covariance of parameters1

2

2

ji,

p pJ

C = inverse Hessian

T

pX p)p(X

p)p(X

CC

• Covariance (uncertainties) of prognostic quantities

• Adjoint, Hessian, and Jacobian code generated automatically from model code by TAF

Page 12: Fast Opt

Figure from Tarantola, 1987

Gradient Method

1st derivative (gradient) ofJ (p) to model parameters p:

yields direction of steepest descent.

p

p

ppJ

)(

cost function J (p) p

Model parameter space (p)p

2nd derivative (Hessian)of J (p):

yields curvature of J.Approximates covariance ofparameters.

p

22 ppJ

)(

Page 13: Fast Opt

Data fit

Page 14: Fast Opt

Seasonal cycle

Barrow Niwot Ridge

observed seasonal cycle

optimised modeled seasonal cycle

Page 15: Fast Opt

Global Growth Rate

Calculated as:

observed growth rate

optimised modeled growth rate

Atmospheric CO2 growth rate

MLOSPOGLOB CCC 75.025.0

Page 16: Fast Opt

Parameters I

• 3 PFT specific parameters (Jmax, Jmax/Vmax and )

• 18 global parameters• 57 parameters in all plus 1 initial value (offset)

Param InitialPredicted

Prior unc. (%) Unc. Reduction (%)

fautleafc-costQ10 (slow)

(fast)

0.41.251.51.5

0.241.271.351.62

2.50.57075

3917278

(TrEv)(TrDec) (TmpDec) (EvCn) (DecCn) (C4Gr) (Crop)

1.01.01.01.01.01.01.0

1.440.352.480.920.731.563.36

25252525252525

7895629591901

Page 17: Fast Opt

Parameters II

Relative Error Reduction

Page 18: Fast Opt

Some values of global fluxes

1980-2000 (prior)

1980-2000 1980-1990 1990-2000

GPPGrowth resp.Maint. resp.NPP

135.723.544.0468.18

134.822.3572.740.55

134.322.3172.1340.63

135.322.3973.2840.46

Fast soil resp.Slow soil resp.NEP

53.8314.46-0.11

27.410.692.453

27.610.712.318

27.2110.672.587

Value Gt C/yr

Page 19: Fast Opt

Carbon Balance

latitude N*from Valentini et al. (2000) and others

Euroflux (1-26) and othereddy covariance sites*

net carbon flux 1980-2000gC / (m2 year)

Page 20: Fast Opt

Uncertainty in net flux

Uncertainty in net carbon flux 1980-200gC / (m2 year)

Page 21: Fast Opt

Uncertainty in prior net flux

Uncertainty in net carbon flux from prior values 1980-2000gC / (m2 year)

Page 22: Fast Opt

NEP anomalies: global and tropical

global flux anomalies

tropical (20S to 20N) flux anomalies

Page 23: Fast Opt

IAV and processes

Major El Niño events

Major La Niña event

Post Pinatubo period

Page 24: Fast Opt

Interannual Variability I

Normalized CO2 flux and ENSO

Lag correlation(low-pass filtered)

ENSO and terr. biosph. CO2:Correlations seems strong with a maximum at ~4 months lag,for both El Niño and La Niña states.

Page 25: Fast Opt

Interannual Variabiliy II

Lagged correlation on grid-cell basis at 99% significance

correlation coefficient

Page 26: Fast Opt

Low-resolution CCDAS

• A fully functional low resolution version of CCDAS, BETHY runs on the TM2 grid (appr. 10° x 7.8°)

• 506 vegetation points compared to 8776 (high-res.)• About a factor of 20 faster than high-res. Version -> ideal

for developing, testing and debugging• On a global scale results are comparable (can be used

for pre-optimising)

Page 27: Fast Opt

Including the ocean • A 1 GtC/month pulse lasting for three months is used as

a basis function for the optimisation• Oceans are divided into the 11 TransCom-3 regions• That means: 11 regions * 12 months * 21 yr / 3 months =

924 additional parameters• Test case:

all 924 parameters have a prior of 0. (assuming that our background ocean flux is correct)

each pulse has an uncertainty of 0.1 GtC/month giving an annual uncertainty of ~2 GtC for the total ocean flux

Page 28: Fast Opt

Including the ocean

Seasonality at MLOGlobal land flux

Observations

Low-res incl. ocean basis functions Low resolution model

High resolution standard model

Page 29: Fast Opt

Conclusions

• CCDAS with 58 parameters can fit 20 years of CO2 concentration data; ~15 directions can be resolved

• Terr. biosphere response to climate fluctuations dominated by El Nino.

• A tool to test model with uncertain parameters and to deliver a posterior uncertainties on parameters and prognostics.

• With the ability of including ocean basis functions in the optimisation procedure CCDAS comprises a ‘normal’ atmospheric inversion.

Page 30: Fast Opt

Future

• Explore more parameter configurations.• Include missing processes (e.g. fire).• Upgrade transport model and extend data.• Include more data constraints (eddy fluxes,

isotopes, high frequency data, satellites) -> scaling issue.

• Projections of prognostics and uncertainties into future.

• Extend approach to a prognostic ocean carbon cycle model.

Page 31: Fast Opt

Visit:

http://www.ccdas.org