fatigue course dnv-rp-c203_fatigue design of offshore steel structures_tcm153-578957

Download Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

If you can't read please download the document

Upload: myoung-choi

Post on 14-Apr-2018

250 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    1/288

    1

    Part 1 Introduction to DNV-RP-C203

    Fatigue Course DNV-RP-C203Fatigue Design of Offshore Steel Structures

    Houston

    September 26, 2013

    Content

    1. Basics of Fatigue

    Fatigue failure modes

    Low cycle and high cycle fatigue

    Examples of fatigue in structures

    2. Fatigue Design based on Nominal Stresses

    Definition of S-N curves and stresses to be used

    Validity of S-N curves

    Effect of yield strength and environment

    Fatigue limit and effect of variable amplitude loading

    Thickness effects for different types of connections

    S-N curves for welded structures of normalized steels and stainless steels,cast and forged joints

    3. Stress Concentration Factors

    Effect of fabrication tolerances on fatigue capacity

    Stress concentration factors for plated structures, ship details, tubularjoints, pipelines

    Det Norske Veritas AS. All rights reserved Slide 227 September 2013

    THIS IS A PROPERTY OF DNV GL TRAINING,AND IS NOT TO BE DISTRIBUTED WITHOUT PERMISSION FROM DNV GL.

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    2/288

    2

    Content - continued

    4. Fillet Welds and Partial Penetration Welds

    5. Fatigue Design Based on Hot Spot Stress Using Finite Element Analysis

    Finite element modeling of hot spot region

    Hot spot stress derivation

    Hot spot stress S-N curve

    6. Examples of Fatigue Analysis Based on Prescribed Long Term Distr ibuti onof Stress Ranges

    7. Uncertainties in Fatigue Life Prediction and Selection of Design FatigueFactors

    8. Improvement Techniques

    Grinding

    TIG dressing

    Hammer peening

    Det Norske Veritas AS. All rights reserved Slide 327 September 2013

    Rules (Recommended Practice)

    Norsok N-004 and DNV-RP-C203 developed at the same time (1997).Funded by the industry.

    Hobbacher, A. (1996), Fatigue Design of Welded Joints andComponents. IIW. XIII-1539-96/ XV-845-96. Revised 2009.

    DNV-RP-C203 Fatigue Design of Offshore Structures, revised 2011.Referred to in Norsok (www.standard.no).

    http://exchange.dnv.com/publishing/Codes/ToC_edition.asp#Recommended Practices

    DNV CN 30.7 Fatigue Strength Assessment of Ship Structures (Firstissued as DNV Report for fatigue assessment in 1993).Revised Jan 2009.

    DNV-RP-C206 Fatigue Methodology for Offshore Ships. Issued in 2006.

    ISO 19902 Design of Steel Offshore Structures. 2007.

    API RP 2A Recommended practice for planning, designing andconstructing fixed offshore platforms.

    Det Norske Veritas AS. All rights reserved Slide 527 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    3/288

    3

    Failure modes considered in DNV-RP-C203

    1. Fatigue crack growth from the weld toe

    2. Fatigue crack growth from a notch in the

    base material

    3. Fatigue crack growth from the weld root

    into the plate below the fillet weld

    4. Fatigue crack growth from the weld root

    through the weld

    Det Norske Veritas AS. All rights reserved Slide 627 September 2013

    Fatigue history

    15 October 1842:Fatigue failure ofshaft in train at

    Versailles. 60 killed.

    Testing of shafts:

    Whler kurverafter 1850.

    Several Cometcrashes in 1950s

    due to fatiguecracks initiating from

    corners of squarewindows.

    At 18.30 27 March

    1980: Fatigue failurein one of importantmembers of floating

    platform Alexander L.Kielland

    123 killed. Worstaccident in Norwegian

    oil industry.

    Det Norske Veritas AS. All rights reserved Slide 727 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    4/288

    4

    The Alexander L. Kielland platform

    Built as drilling platform in

    France in 1976

    Used for accommodation in

    the North Sea in 1980

    Det Norske Veritas AS. All rights reserved Slide 827 September 2013

    The Alexander L. Kielland accident

    Det Norske Veritas AS. All rights reserved Slide 927 September 2013

    D-6 failed

    D was lost

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    5/288

    5

    The Alexander L. Kielland accident

    Det Norske Veritas AS. All rights reserved Slide 1027 September 2013

    Hydrophone holderBrace

    a

    Fatigue crack that initiated

    from the fillet welds

    Failed member

    Det Norske Veritas AS. All rights reserved Slide 1127 September 2013

    The Alexander L. Kielland accident

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    6/288

    6

    Fatigue crack growth in failed member

    Crack initiation in filletwelds

    Fatigue crack growth

    around the brace

    Final fracture in storm

    Det Norske Veritas AS. All rights reserved Slide 1227 September 2013

    Shuttle tanker operating for 9 years in North Sea

    Det Norske Veritas AS. All rights reserved Slide 1327 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    7/288

    7

    Side plate shuttle tanker s/t = 825/16

    Det Norske Veritas AS. All rights reserved Slide 1427 September 2013

    9 years old double hull tanker for oil Cracks found at the intersection

    between inner side and bulkhead.

    The cracks were found in several

    cargo tanks.

    First time experienced this type of

    cracking by DNV.

    Owner has similar experience from

    similar ships.

    Det Norske Veritas AS. All rights reserved Slide 1527 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    8/288

    8

    Repair

    Det Norske Veritas AS. All rights reserved Slide 1627 September 2013

    Updates in Latest DNV-RP-C203

    Det Norske Veritas AS. All rights reserved Slide 1727 September 2013

    Addition of a new Section 2.3.6 on fillet welds at doubling plates.

    Addition of text and figures in section 3.3.7 on stress concentration factors for tubular buttwelds.

    Equations for stress concentration factors for tubular butt welds with machined sectionsare included.

    Derivation of hot spot stress in tubular joints is included in Section 4.2.

    Some more information of effect of hammer peening is included in Section 7.5. In addition anew Section D.15 on alternative S-N curves for improved welds by grinding and peening isadded in Appendix D Commentary.

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    9/288

    9

    DNV-RP-C203 Fatigue Design of Offshore SteelStructures

    Time Part

    Topics

    Headlines

    0800-0830 Welcome Expectations and objectives

    0830-0845 1

    Introduction to RP-C203

    Presentation of the content of RP-C203.

    Definitions used in fatigue

    0845-0930 2

    S-N data

    Definition of S-N data and stresses to be used

    Nominal stress

    Hot spot stress

    Notch stress

    Palmgren-Miner rule, constant amplitude fatigue limit,

    variable amplitude loading

    0930-0945 Coffee Break

    0945-1015 2

    S-N data

    Cont.

    1015-1145 3

    Stress concentration

    factors

    Stress concentration factors for plated structures and tubular

    joints

    1145-1230 Lunch Det Norske Veritas AS. All rights reserved Slide 1827 September 2013

    DNV-RP-C203 Fatigue Design of Offshore SteelStructures

    1230 1315 4Fatigue analysis of local details

    Modelling of details.Read out of hot spot stress.Hot spot stress S-N curve.

    1315-1345 5Examples

    Examples FE modelling, read out of hot spotstress and fatigue life calculation.

    1345-1400 Coffee Break

    1400-1430 6Simplified fatigue analysis

    Weibull distribution of long term stress rangesClosed form equation for fatigue damageUse of design charts in fatigue design

    1430-1500 7Uncertainties

    Uncertainties in fatigue analysis and DFFs

    1500-1530 8Fillet welds

    Design of partial penetration and fillet welds.Examples

    1530-1600 9Fabrication and improvement

    Improvement of details by grinding and peening

    1600 Wrap up and closure

    Det Norske Veritas AS. All rights reserved Slide 1927 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    10/288

    1

    DNV-RP-C203Fatigue Design of OffshoreSteel Structures

    Part 2 Basics of Fatigue

    Houston

    September 26, 2013

    Det Norske Veritas AS. All rights reserved Slide 225 September 2013

    Content

    Introduction

    Failure modes

    Nominal stress S-N curves

    Hot spot stress S-N curve

    Fatigue damage accumulation:

    Palmgren - Miner rule Effect of principal stress direction

    Stress concentration factors

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    11/288

    2

    Det Norske Veritas AS. All rights reserved Slide 325 September 2013

    1. Fatigue crack growth from the weld toe

    Det Norske Veritas AS. All rights reserved Slide 425 September 2013

    2. Fatigue crack growth from a notch

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    12/288

    3

    Det Norske Veritas AS. All rights reserved Slide 525 September 2013

    3. Fatigue crack growth from the weld root

    Det Norske Veritas AS. All rights reserved Slide 625 September 2013

    Specimen 3 Fatigue crack into bulb

    B-B

    B

    B

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    13/288

    4

    Det Norske Veritas AS. All rights reserved Slide 725 September 2013

    3. Fatigue from the weld root. Mitigation

    Full penetration

    L = 10 t

    Det Norske Veritas AS. All rights reserved Slide 825 September 2013

    4. Fatigue crack growth from the weld root

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    14/288

    5

    Det Norske Veritas AS. All rights reserved Slide 925 September 2013

    Definitions

    Low cycle fatigue (LCF): N

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    15/288

    6

    Det Norske Veritas AS. All rights reserved Slide 1125 September 2013

    Specimen in testing machine

    Det Norske Veritas AS. All rights reserved Slide 1225 September 2013

    Specimen in testing machine

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    16/288

    7

    Det Norske Veritas AS. All rights reserved Slide 1325 September 2013

    Section through weld

    Det Norske Veritas AS. All rights reserved Slide 1425 September 2013

    Strain gauges on specimen

    3 4

    8765

    21

    w a2=20

    a1=55

    a2=20

    a1=55

    3 4

    8765

    21

    w a2=20

    a1=55

    a2=20

    a1=55

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    17/288

    8

    Det Norske Veritas AS. All rights reserved Slide 1525 September 2013

    Design S-N curve from fatigue test data

    10

    100

    1000

    10000 100000 1000000 10000000

    Design S-N curve:

    Mean 2 St. Dev.

    Number of cycles

    Stress

    range

    Characteristic fatigue

    strength (FAT class)

    Det Norske Veritas AS. All rights reserved Slide 1625 September 2013

    S-N curve The basic design S-N curve is given as

    or:

    Alternatively in air environment, the S-N curve can be defined by the

    characteristic fatigue strength at 2106 cycles (FAT class)

    logmalogNlog

    where

    N = predicted number of cycles to failure

    for stress range = stress rangem = negative inverse slope of S-N curve

    alog = intercept of log N-axis by S-N curve

    maN

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    18/288

    9

    Det Norske Veritas AS. All rights reserved Slide 1725 September 2013

    Thickness effect

    - For tubular joints tref

    = 32 mm.

    - For bolts tref= 25 mm.

    - tref= 25 mm for welded connections.

    - k: 0 - 0.30 for different details.

    k

    reft

    tlogmalogNlog

    tref = reference thickness

    t = thickness through which a

    crack will most likely grow.t = trefis used for thickness

    less than tref.

    k = thickness exponent onfatigue strength k

    tref = reference thickness

    t = thickness through which a

    crack will most likely grow.t = trefis used for thickness

    less than tref.

    k = thickness exponent onfatigue strength k

    Det Norske Veritas AS. All rights reserved Slide 1825 September 2013

    S-N curves in DNV-RP-C203

    10

    100

    1000

    1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

    Number of cycles

    Stressrange(MPa)

    B1B2

    C

    C1

    C2

    DE

    F

    F1

    F3G

    W1

    W2

    W3

    (FAT-class)Designation

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    19/288

    10

    Det Norske Veritas AS. All rights reserved Slide 1925 September 2013

    DNV-RP-C203

    N107cyclesS-N curve

    m1 1loga

    N107cycles

    2loga

    m2 = 5.0

    Fatigue limit at

    107cycles *)

    Thickness exponent k Stress concentration in the

    S-N detail as derived by the

    hot spot method

    B1 4.0 15.117 17.146 106.97 0

    B2 4.0 14.885 16.856 93.59 0

    C 3.0 12.592 16.320 73.10 0.15

    C1 3.0 12.449 16.081 65.50 0.15

    C2 3.0 12.301 15.835 58.48 0.15

    D 3.0 12.164 15.606 52.63 0.20 1.00

    E 3.0 12.010 15.350 46.78 0.20 1.13

    F 3.0 11.855 15.091 41.52 0.25 1.27

    F1 3.0 11.699 14.832 36.84 0.25 1.43

    F3 3.0 11.546 14.576 32.75 0.25 1.61

    G 3.0 11.398 14.330 29.24 0.25 1.80

    W1 3.0 11.261 14.101 26.32 0.25 2.00

    W2 3.0 11.107 13.845 23.39 0.25 2.25

    W3 3.0 10.970 13.617 21.05 0.25 2.50

    T 3.0 12.164 15.606 52.63 0.25 for SCF 10.0

    0.30 for SCF >10.0

    1.00

    *) see also section 2.10

    Det Norske Veritas AS. All rights reserved Slide 2025 September 2013

    Size effect

    Increased weld length and increased possibility fordefects that can initiate to fatigue cracks.

    Volume effect:

    More flow of stress into a long/thick attachmentthan into a short.At tachment length:

    The notch stress is increased with increasing platedimensions as the notch radius is not increasing inthe same proportion as the other geometry.

    Thickness of plate:

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    20/288

    11

    Det Norske Veritas AS. All rights reserved Slide 2125 September 2013

    Influence of environment

    ENVIRONMENTS

    Air

    SeawaterwithCathodic

    Protection

    Seawaterand Free

    Corrosion

    Det Norske Veritas AS. All rights reserved Slide 2225 September 2013

    Basic S-N curve

    10

    100

    1000

    1.00E+04 1 .00E+05 1 .00E+06 1 .00E+07 1 .00E+08 1 .00E+09

    Number of cycles

    Stressrange(Mpa)

    Air

    Seawater with cathodic protection

    Seawater free corrosion

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    21/288

    12

    Det Norske Veritas AS. All rights reserved Slide 2325 September 2013

    IIW/Eurocode 3

    S-N curves in air

    HSE/ISO Draft C

    S-N curves in seawater withand without cathodicprotection

    DNV- RP- C203

    To be applied for structuresin air and seawater

    Change in s lopemoved f rom N = 5*106

    to N = 107

    IIW/Eurocod e 3 S-N format

    Eurocode 3 thicknesseffect

    Derivation of S-N curves in DNV-RP-C203

    February 2004

    Det Norske Veritas AS. All rights reserved Slide 2425 September 2013

    Illustration of stress at a bracket toe

    Bracket toe

    Fillet weld

    AA

    Hot spot

    stress

    Nominal stress

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    22/288

    13

    Det Norske Veritas AS. All rights reserved Slide 2525 September 2013

    Stress distribution at a bracket toe

    Notch stress

    t/2 3t/2

    Stress

    Hot spot stress

    Surface stress

    Notch stress

    Hot spot stress

    Membrane stress

    Bracket toe

    t

    Fillet weld

    Nominal stress

    Section A-A:

    Det Norske Veritas AS. All rights reserved Slide 2625 September 2013

    S-N curve based on nominal stress

    Nominal stress

    Number of cycles

    Stress

    range

    Nominal stress

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    23/288

    14

    Det Norske Veritas AS. All rights reserved Slide 2725 September 2013

    S-N curve based on hot spot stress

    Hot spot

    stress

    Nominal stress

    Number of cycles

    Stress

    range

    Hot spot stress

    Nominal stress

    alNogspotHot K min

    Det Norske Veritas AS. All rights reserved Slide 2825 September 2013

    Different types of S-N curve

    Notch stress

    Hot spot stress

    Nominal

    stress

    Number of cycles

    Stress

    range

    Notch stressHot spot stress

    Nominal stress

    alNowgstressNotch KK min

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    24/288

    15

    Det Norske Veritas AS. All rights reserved Slide 2925 September 2013

    Definitions constant amplitude loading

    Number of cycles

    Stress

    range

    m = 3.01

    Constant amplitude

    fatigue limit

    (recently doubted)

    Det Norske Veritas AS. All rights reserved Slide 3025 September 2013

    When is a detailed fatigue analysis required?

    N

    S

    Fatigue limit

    Stress cycling

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    25/288

    16

    Det Norske Veritas AS. All rights reserved Slide 3125 September 2013

    S-N curve for variable amplitude loading

    Number of cycles

    Stress

    rangem = 3.0

    1

    m = 5.0

    Haibachs correction:

    m = 2m - 1

    Det Norske Veritas AS. All rights reserved Slide 3225 September 2013

    Definitions variable amplitude loading

    N

    S

    Fatigue limit

    Stress cyclinga

    b

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    26/288

    17

    Det Norske Veritas AS. All rights reserved Slide 3325 September 2013

    na

    1

    N

    nD

    mk

    1i

    ii

    k

    1i i

    i

    S-N fatigue approach under the assumption

    of linear cumulative damage

    (Palmgren-Miner rule).

    Palmgren - Miner Rule

    Det Norske Veritas AS. All rights reserved Slide 3425 September 2013

    Example Palmgren - Miner Rule

    Number of cycles

    Stress

    range1

    1N

    1

    1

    N

    nD

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    27/288

    18

    Det Norske Veritas AS. All rights reserved Slide 3525 September 2013

    Example Palmgren Miner Rule

    Number of cycles

    Stress

    range1

    2

    1N 2N

    2

    2

    1

    1

    N

    n

    N

    nD

    Det Norske Veritas AS. All rights reserved Slide 3625 September 2013

    Relative fatigue damage in S-N curve

    1.E+04 1.E+05 1.E+06 1.E+07 1.E+08 1.E+09 1.E+10 1.E+11

    Load cycle in S-N curve

    R

    elativedamageratio

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    28/288

    19

    Det Norske Veritas AS. All rights reserved Slide 3725 September 2013

    Fatigue strength versus tensile strength

    Note for welded structure, the fatigue

    strength is independent of yield strength !

    Det Norske Veritas AS. All rights reserved Slide 3825 September 2013

    Different mean stresses (R-ratio)

    Time

    Dynamic

    stress

    amplitude

    1. Static stress tension

    2. Zero static stress (alternating stress)

    3. Static stress compression

    1

    2

    3

    Tension

    1.0R1R

    max

    min

    R

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    29/288

    20

    Det Norske Veritas AS. All rights reserved Slide 3925 September 2013

    S-N curves and joint classification

    For practical fatigue

    design, welded joints are

    divided into several

    classes, each with a

    corresponding design S-

    N curve.

    All tubular joints are

    assumed to be class T.

    Other types of joint are

    depending upon:

    - The geometrical arrangement of

    the detail;

    - The direction of the fluctuating

    stress relative to the detail;

    - The method of fabrication and

    inspection of the detail.

    Det Norske Veritas AS. All rights reserved Slide 4025 September 2013

    Example: Cross joint

    23

    1

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    30/288

    21

    Det Norske Veritas AS. All rights reserved Slide 4125 September 2013

    From DNV RP-C203 Table A7:

    Hot spot 1 and 2

    l

    6. Gusset plate welded tothe edge of a plate or

    beam flange.

    7. Flange welded to

    another flange at

    crossing joints.

    6 and 7:The distance l is

    governing detail category

    for the stress directionshown in sketch. For

    main stress in the other

    beam the distance L will

    govern detail category.

    G l 150mm

    W1 150 < l 300mm

    W2 l > 300mm

    Det Norske Veritas AS. All rights reserved Slide 4225 September 2013

    Hot spot 1 and 2

    From DNV RP-C-203 Table A7:

    5.

    E150mmr,

    W

    r

    3

    1

    F

    3

    1

    W

    r

    6

    1

    F1

    6

    1

    W

    r

    10

    1

    F3

    10

    1

    W

    r

    16

    1

    G

    16

    1

    W

    r

    25

    1

    5. Gusset plate with aradius welded to theedge of a plate or beam

    flange.

    5. The specified radius tobe achieved by grinding.

    Improved fabrication

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    31/288

    22

    Det Norske Veritas AS. All rights reserved Slide 4325 September 2013

    Hot spot 3

    F 2. 2.Ends of continuouswelds at copeholes.

    2.:

    - Cope hole not to be

    filled with weld

    material.

    From DNV RP-C-203 Table A4:

    Det Norske Veritas AS. All rights reserved Slide 4425 September 2013

    S-N Classification of Cross joint

    Hot spot 1 and 2: Depends on length of weld

    DNV RP-C-203 Table A7

    l < 300 mm: W1

    Hot spot 3: F DNV RP-C-203 Table A4

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    32/288

    23

    Det Norske Veritas AS. All rights reserved Slide 4525 September 2013

    Topside Support Stool - Fixed type

    Principal stress direction

    Force direction

    Bracket toe

    Welded attachment, l > 300mm: Table A7 Detail 1

    Full Penetration weld or fillet weld

    S-N curve: F3

    Det Norske Veritas AS. All rights reserved Slide 4625 September 2013

    Definition of local (nominal) stress

    45 deg 45 deg

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    33/288

    24

    Det Norske Veritas AS. All rights reserved Slide 4725 September 2013

    Fatigue cracking along weld toe

    Principal stress

    direction

    Weld

    toe

    Section

    Fatigue crack

    ////

    Principal stress

    direction

    Weld

    toe

    Section

    Fatigue crack

    ////

    //

    //

    Det Norske Veritas AS. All rights reserved Slide 4825 September 2013

    Principal stress more parallel with weld toe

    Principal stress

    direction Weld

    toe

    Section

    Fatigue crack

    ////

    Principal stress

    direction Weld

    toe

    Section

    Fatigue crack

    ////

    //

    //

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    34/288

    25

    Det Norske Veritas AS. All rights reserved Slide 4925 September 2013

    F detail for stress normal to the weld

    C2C2

    F F

    EEDD

    Principal stress

    direction

    Weld

    toe

    Section

    C2C2

    F F

    EEDD

    Principal stress

    direction

    Weld

    toe

    Section

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    35/288

    1

    DNV-RP-C203Fatigue Design of Offshore Steel Structures

    Part 3 Stress Concentration Factors

    Houston

    September 26, 2013

    Det Norske Veritas AS. All rights reserved Slide 227 September 2013

    Definition of a Stress Concentration Factor:

    Stress magnification at a structural detail due to the detail itself or

    due to a fabrication tolerance with the nominal stress as reference

    value

    nominal

    spothot

    SCF

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    36/288

    2

    Det Norske Veritas AS. All rights reserved Slide 327 September 2013

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    1.80

    2.00

    2.20

    2.40

    2.60

    2.80

    3.00

    1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00

    Relative distance from centre of hole x/r

    Relativestress

    r

    Stress direction

    x/r

    Line for calculation of stress

    Line for calculation

    of stress

    r

    x

    Stress Distribution at a Hole

    Det Norske Veritas AS. All rights reserved Slide 427 September 2013

    Fatigue Life?

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    37/288

    3

    Det Norske Veritas AS. All rights reserved Slide 527 September 2013

    Soft transitions, avoid stress concentrations

    Crack in main deck

    Fatigue Life?

    Det Norske Veritas AS. All rights reserved Slide 627 September 2013

    Notch region

    t

    a)

    b)

    Effect of Eccentricity

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    38/288

    4

    Det Norske Veritas AS. All rights reserved Slide 727 September 2013

    N

    Static system:

    Deflected shape:

    N

    N

    Bending moment:

    Axial + bending stress:

    A - A

    Effect of Eccentricity

    Det Norske Veritas AS. All rights reserved Slide 827 September 2013

    Single Side Welded Connections

    m

    Shift in neutral axis

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    39/288

    5

    Det Norske Veritas AS. All rights reserved Slide 927 September 2013

    Classical Beam Theory (Plate)

    m

    Neutral axisN

    Moment distributionM = N*m/2

    M = 0? DNV-RP-C203

    M = N*m/2

    Det Norske Veritas AS. All rights reserved Slide 1027 September 2013

    Classical Beam Theory (Plate)

    tt

    N

    t

    N

    W

    M mammb

    33

    6/

    2/22

    m

    Moment distributionM = N*m/2

    tSCF m

    31

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    40/288

    6

    Det Norske Veritas AS. All rights reserved Slide 1127 September 2013

    Stress Concentration Factors forButt Welds

    5.1

    5.1

    0m

    1

    61SCF

    T

    tt

    t

    where

    m = maximum misalignment

    t = tT eccentricity due to change in thickness

    0 = 0.1t is misalignment inherent in the S-N data for butt weldsT = thickness of thicker plate

    t = thickness of thinner plate

    1 9

    44

    3 0

    Det Norske Veritas AS. All rights reserved Slide 1227 September 2013

    Joint with Transition in Thickness

    Neutral

    axis

    1

    nominal

    Tt

    t

    T = 40 mm

    T = 25 mmt = 0.5 (40 -25) = 7.5 mm

    m = 4 mm (due to fabrication)

    0 = 0.1 t = 2.5 mm

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    41/288

    7

    Det Norske Veritas AS. All rights reserved Slide 1327 September 2013

    Calculation of SCF

    5.1

    5.1

    0m

    1

    61SCF

    t

    Tt

    t Equation 3.1.2

    72.1

    02.325

    )9(61

    25

    40125

    5.25.7461SCF

    5.1

    5.1

    Det Norske Veritas AS. All rights reserved Slide 1427 September 2013

    100 MPa

    Transverse Frame

    Side 1 and 2

    ZY

    X

    End 1

    End 2

    Axial Stress

    Buttweld

    5.1

    t

    t

    T1

    1

    t

    )(61SCF

    m

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    1.7

    0 100 200 300 400

    Position along weld measured from longitudinal (mm)

    SCF

    Analysis with cope hole

    Analysis without cope hole

    SCF equation (3)

    Plate on Longitudinal Stiffeners

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    42/288

    8

    Det Norske Veritas AS. All rights reserved Slide 1527 September 2013

    SCFs for Welded Penetrations

    H

    tp

    A A

    tr

    AA

    r

    tr

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0.0 0.5 1.0 1.5 2.0

    tr/tp

    SCF

    100

    50

    20

    10

    r/t p

    H

    tp

    A A

    tr

    AA

    r

    tr

    H

    tp

    A A

    tr

    AA

    r

    tr

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    SCF

    tr/tp

    r/tp

    10

    20

    50

    100

    -1.2

    -1.0

    -0.8

    -0.6

    -0.4

    -0.2

    0.0

    0.2

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

    SCF

    tr/tp

    r/tp

    10

    20

    50

    100

    Det Norske Veritas AS. All rights reserved Slide 1727 September 2013

    SCFs for Scallops

    SCF = 2.4 at point A (misalignment not included) SCF = 1.27 at point B

    A

    B

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    43/288

    9

    Det Norske Veritas AS. All rights reserved Slide 1827 September 2013

    Scallops

    SCF = 1.27 at point A (misalignment not included)

    SCF = 1.27 at point B

    A

    B35

    120

    Det Norske Veritas AS. All rights reserved Slide 1927 September 2013

    Scallops

    SCF = 1.17 at point A (misalignment not included)

    SCF = 1.27 at point B

    150

    35

    B

    A

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    44/288

    10

    Det Norske Veritas AS. All rights reserved Slide 2027 September 2013

    Un-symmetrical stiffeners on laterally loaded panels, Kn

    Neutral axis

    nominal

    Kn1nominalKn2nominal

    Kn3nominal

    Stress Concentration Factors LateralLoading

    Example:

    L340x12+150x15 -> Lif e = 15 years

    T340x12+150x15 -> Life = 24 years

    Det Norske Veritas AS. All rights reserved Slide 2127 September 2013

    Tethers and Risers Subjected to Axial

    Tension

    kl

    klN

    tanh0

    EI

    Nk

    N

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    45/288

    11

    Det Norske Veritas AS. All rights reserved Slide 2227 September 2013

    Concentricity

    A A

    Section A-Aa) Concentricity

    t

    t

    m

    Det Norske Veritas AS. All rights reserved Slide 2327 September 2013

    Transition in Thickness

    A A

    b) Thickness Section A-A

    T

    t

    (T-t)t

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    46/288

    12

    Det Norske Veritas AS. All rights reserved Slide 2427 September 2013

    Out of Roundness

    A

    Section A-Ac) Out of roundness

    A

    t

    t

    m

    mm

    Det Norske Veritas AS. All rights reserved Slide 2527 September 2013

    Eccentricity

    A A

    Section A-Ad) Center eccentricity

    t

    t

    mm

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    47/288

    13

    Det Norske Veritas AS. All rights reserved Slide 2627 September 2013

    2.5

    t

    T1

    1

    tD

    1.82L

    SCF at Thickness Transition

    -t e

    t

    T1

    1

    t

    )(61SCF

    m

    2

    0.30.15.1

    t

    DLog

    t

    DLog

    Det Norske Veritas AS. All rights reserved Slide 2727 September 2013

    SCF at Thickness Transition

    -t e

    t

    T1

    1

    t

    )(61SCF

    m

    2

    0.30.15.1

    t

    DLog

    t

    DLog

    1.0

    1.2

    1.4

    1.6

    1.8

    2.0

    2.2

    2.4

    2.6

    10 100 1000 10000

    Diameter thickness ratio D/t

    Exponent

    1.0

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    10 100 1000 10000

    Diameter thickness ratio D/t

    SCF

    SCFplates Eq. (3)

    New proposal Eq. (6)

    Shell theory Eq. (5)

    Axisymmetric FE analysis

    FE analysis calibrated D/t = 25 Eq. (4)

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    48/288

    14

    Det Norske Veritas AS. All rights reserved Slide 2827 September 2013

    SCF at Thickness Transition on Outside

    -t e

    t

    T1

    1t

    )(61SCF

    m

    Thickness transition on outside is recommended!

    (when SCF is considered together with S-N curve)

    Det Norske Veritas AS. All rights reserved Slide 3027 September 2013

    Ar 2r

    .

    t

    Deformed shape

    Hot spot

    Ringstiffener

    rA

    rt1.56t1

    insidefor the

    0.541SCF

    outsidefor the

    0.541SCF

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    49/288

    15

    Det Norske Veritas AS. All rights reserved Slide 3127 September 2013

    tant

    )t(tDt0.61SCF

    2

    cj

    Conical Transition

    Det Norske Veritas AS. All rights reserved Slide 3227 September 2013

    Conical Transition with Ring Stiffeners

    r

    j

    r

    j

    r

    j

    r

    j

    r

    j

    A

    tDt1.101

    junctiondiameterlargerinsidetheat

    1tan

    A

    t0.91D0.541SCF

    junctiondiameterlargeroutsidetheat

    1tan

    A

    t0.91D0.541SCF

    junctiondiametersmallerinsidetheat

    1tan

    A

    t0.91D0.541SCF

    junctiondiametersmalleroutsidetheat

    1tan

    A

    t0.91D0.541SCF

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    50/288

    16

    Det Norske Veritas AS. All rights reserved Slide 3327 September 2013

    Cone with Eccentric Ring Stiffener

    5)(

    681

    1tan3

    13

    csj

    s

    e

    ttD

    ItSCF

    Ds

    D L

    ts

    t L

    tc

    e

    h

    ts

    b

    tc

    trh

    ts

    b

    tc

    tr

    Det Norske Veritas AS. All rights reserved Slide 3427 September 2013

    SCF in RP-C203 Appendix B SCFs for tubular joints

    Appendix C SCFs for cut-outs

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    51/288

    17

    Det Norske Veritas AS. All rights reserved Slide 3527 September 2013

    Tubular Joints Definitions

    Det Norske Veritas AS. All rights reserved Slide 3627 September 2013

    Tubular Joint Hot Spot Locations

    SCFAC: SCF from axial force at crown

    SCFAS: SCF from axial force at saddle

    SCFMIP: SCF from in-plane bending moment

    SCFMOP: SCF from out-of-plane bending moment

    SCFbrace SCFChord

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    52/288

    18

    Det Norske Veritas AS. All rights reserved Slide 3727 September 2013

    Axial load

    zx y

    1 2

    34

    56

    7

    8

    In-plane Out-of-planebending moment bending moment

    Tubular Joint Hot Spot Positions

    Det Norske Veritas AS. All rights reserved Slide 3827 September 2013

    Combination of Stresses

    mzMOPmyMIPxASAC8

    mzMOPxAS7

    mzMOPmyMIPxASAC6

    myMIPxAC5

    mzMOPmyMIPxASAC4

    mzMOPxAS3

    mzMOPmyMIPxASAC2

    myMIPxAC1

    SCF22

    1SCF2

    2

    1)SCF(SCF

    2

    1

    SCFSCF

    SCF22

    1

    SCF22

    1

    )SCF(SCF2

    1

    SCFSCF

    SCF22

    1SCF2

    2

    1)SCF(SCF

    2

    1

    SCFSCF

    SCF22

    1SCF2

    2

    1)SCF(SCF

    2

    1

    SCFSCF

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    53/288

    19

    Det Norske Veritas AS. All rights reserved Slide 3927 September 2013

    Use of Stress Concentration Factors

    SCFs for Tubular joints see Appendix B of DNV-RP-C203 Equations developed by Efthymiou

    SCFs applies for the outside of the tubular on the brace side and on the

    chord side

    Classification of tubular joints based on geometry and force flow through

    the joint

    SCFX > SCFY > SCFK

    Det Norske Veritas AS. All rights reserved Slide 4027 September 2013

    Definition of Joint Type, Examples

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    54/288

    20

    Det Norske Veritas AS. All rights reserved Slide 4127 September 2013

    Definition of Joint Type, Examples

    Det Norske Veritas AS. All rights reserved Slide 4227 September 2013

    Definition of Geometrical Parameters

    saddleD

    T

    crown crown

    L

    t

    d

    D

    d

    D

    2L

    2T

    D

    T

    t

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    55/288

    21

    Det Norske Veritas AS. All rights reserved Slide 4327 September 2013

    Definition of Geometrical Parameters

    D

    d AA

    D

    d BB

    T

    t AA

    T

    t BB

    T

    BRACE A

    D

    g

    d

    BRACE B

    A

    t A

    Bt

    dB

    AB 2T

    D

    D

    g

    Det Norske Veritas AS. All rights reserved Slide 4427 September 2013

    Definition of Geometrical Parameters

    D

    d AA D

    d BB

    D

    d C

    C

    T

    t AA T

    t BB

    T

    t CC

    AB

    T

    t

    d

    B

    A t

    BC

    D

    B

    t

    C

    d

    d

    B

    B

    C

    CA

    A

    A C

    g g

    2T

    D

    D

    g ABAB

    D

    g BCBC

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    56/288

    22

    Det Norske Veritas AS. All rights reserved Slide 4527 September 2013

    Validity Range Of Equations for SCFs

    0.2 1.0

    0.2 1.0

    8 32

    4 40

    20 90

    sin

    0.6 1.0

    Det Norske Veritas AS. All rights reserved Slide 4627 September 2013

    Fatigue Testing in Laboratory of Y-Joint

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    57/288

    23

    Det Norske Veritas AS. All rights reserved Slide 4727 September 2013

    Bending Moment in Chord

    P

    M = PL/8

    L

    P

    M = PL/8

    L End fixation described by C-parameterC = 0.5: Fixed

    C = 1.0: Free

    C= 0.7: Recommended

    Alternative to use rotational springs

    Det Norske Veritas AS. All rights reserved Slide 4827 September 2013

    SCFs for T Joint

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    58/288

    24

    Det Norske Veritas AS. All rights reserved Slide 4927 September 2013

    Determination of Chord Length

    To include the effect of the chord bending moment the length of the

    chord to nearest joints needs to be determined

    The stresses in the chord crown can be calculated as:

    Nom

    cbcb

    SCF

    brace

    chord

    AP

    8W

    PL

    dtP

    TD0.258

    PL2

    0.25

    0.25

    D

    2L

    D

    d

    T

    t

    P

    M = PL/8

    L

    P

    M = PL/8

    L

    Det Norske Veritas AS. All rights reserved Slide 5027 September 2013

    lLe 3

    2

    P

    M = PL/8

    L

    P

    M = PL/8

    L

    Moment in Beam due to Local Pressure Loads

    At supports: M= pl2/12Loading: p

    CaissonSupport welded to the caisson

    At supports: Q= pl

    l

    To get a correct bending moment

    and SCF for the crown point

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    59/288

    25

    Det Norske Veritas AS. All rights reserved Slide 5127 September 2013

    Riser Supports in New Platforms

    0.5P 0.67P 0.67P P P P

    5941 6900 2200 3250 4750 3750 7292

    0.5P 0.67P 0.67P P P P

    5941 6900 2200 3250 4750 3750 7292

    P

    M

    L

    PP

    For more loads:

    Input to analysis: Lequivalent that gives M for load P

    Det Norske Veritas AS. All rights reserved Slide 5227 September 2013

    SCF as Function of Length to Diameter

    0

    5

    10

    15

    20

    25

    30

    0 20 40 60 80 100 120 140

    ALFA

    SCF

    Chord saddle

    Brace saddle

    Chord crown

    Brace crown

    Chord Analysis

    P

    M = PL/8

    L

    P

    M = PL/8

    L

    D

    L2

    Basis for Efhymious equations T-joints

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    60/288

    26

    Det Norske Veritas AS. All rights reserved Slide 5327 September 2013

    Pitfall using Influence Functions

    l

    pl2/12

    Efthymious

    equation

    Actual bending moment

    MWL

    Det Norske Veritas AS. All rights reserved Slide 5427 September 2013

    Proposed Modification of SCF Equation

    +Mchord/(braceWchord)

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    61/288

    27

    Det Norske Veritas AS. All rights reserved Slide 5527 September 2013

    Tubular Joints with Gusset Plates

    Geometry SCF

    RHS 250x16 with favourablegeometry of gusset plate

    2.9

    RHS 250x16 with simple shape ofgusset plate

    3.8

    250x16 with favourable geometryof gusset plate

    2.3

    250x16 with simple shape ofgusset plate

    3.0

    10TYP.

    40TYP.

    Det Norske Veritas AS. All rights reserved Slide 5627 September 2013

    Pipelines

    Welded Pipes

    Seamless Pipes

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    62/288

    28

    Det Norske Veritas AS. All rights reserved Slide 5727 September 2013

    Pipelines

    dtm e

    t

    SCF /31

    Det Norske Veritas AS. All rights reserved Slide 5827 September 2013

    Stresses at Weld

    t

    D

    m

    A

    A B

    B

    A -A

    -

    +

    B -B

    +

    -

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    63/288

    29

    Det Norske Veritas AS. All rights reserved Slide 5927 September 2013

    Classification of Welds in Pipelines

    Description

    Welding Geometry and hot

    spot

    Tolerance requirement S-Ncurve Thicknessexponent kSCF

    min(0.15t, 3 mm) F1 0.00 1.0Single side

    Hot spot min(0.15t, 3 mm) F3 0.00 1.0

    min(0.1t, 2 mm) F 0.00 1.0Single side

    on backing

    Hot spot min(0.1t, 2 mm) F1 0.00 1.0

    Det Norske Veritas AS. All rights reserved Slide 6027 September 2013

    Single side D 0.15 Eq. (2.9.1)

    Double side D 0.15 Eq. (2.9.1)

    Classification of Welds in Pipelines

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    64/288

    30

    Det Norske Veritas AS. All rights reserved Slide 6127 September 2013

    Seamless Pipes

    where

    Thickness = (tmax tmin)/2

    Ovality = Dmax - Dmin if the pipes are supported such that flush outside at one pointis achieved (no pipe centralising)

    Ovality = (Dmax - Dmin)/2 if the pipes are centralised during construction

    Ovality = (Dmax - Dmin)/4 if the pipes are centralised during construction androtated until a good fit around the circumference is achieved

    22

    OvalityThicknessTot

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    65/288

    1

    DNV-RP-C203

    Fatigue Design of OffshoreSteel Structures

    Part 4 Finite Element Analysis and Hot Spot Stress

    Houston

    September 26, 2013

    Version Slide 227 September 2013

    Finite Elements and the Hot Spot Stress MethodDefinition of Stresses

    Nominal Stress

    Hot Spot Stress

    Notch Stress

    Link between different stresses and S-N curves

    Background for hot spot S-N curve

    Recommendations on finite element modeling

    Read out of hot spot stress

    Effect of stress gradient through thickness

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    66/288

    2

    Version Slide 327 September 2013

    The Hot Spot Stress Concept

    Long term di stribution of Sea states

    Structural model of FPSO

    Long term distribution o f nominal stress ranges

    Structural stressconcentrationfactor Kg forconsidered detail

    hot spot=Kg*nominal

    Finite elementmodel ofconsidered detail

    hot spot

    Hot spot S-N curve

    Calculated fatigue life

    Scope of FPSO -FatigueCapacity JIP

    Long term di stribution of Sea states

    Structural model

    Long term distribution o f nominal stress ranges

    Structural stressconcentrationfactor Kg forconsidered detail

    hot spot=Kg*nominal

    Finite elementmodel ofconsidered detail

    hot spot

    Hot spot S-N curve

    Calculated fatigue life

    Version Slide 427 September 2013

    Structural Analysis

    Global model

    Meshrefinement

    Coarsemesh

    Finemesh

    Intermediatesub-model

    Sub-modelSCF-model, orlocal model, orfine meshmodel

    =

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    67/288

    3

    Version Slide 527 September 2013

    Illustration of Stress at a Bracket Toe

    Bracket toe

    Fillet weld

    AA

    Hot spot

    stress

    Nominal stress

    Version Slide 627 September 2013

    Different Types of S-N Curve

    Notch stressHot spot stress

    Nominal stress

    Number of cycles

    Stress

    range

    Notch stress

    Hot spot stress

    Nominal stress

    alNowgstressNotch KK min

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    68/288

    4

    Version Slide 727 September 2013

    Method A

    Shell element FE model:- 4 node and 8 node elements- Size t x t

    - Extrapolation of surface stress from 0.5t and 1.5t to the intersection line

    Solid FE model

    - 20-node isoparametric elements

    - Size t x t

    - Extrapolation of surface stress from 0.5t and 1.5t to the weld toe

    Version Slide 827 September 2013

    Method B

    Stress 0.5t from the intersection line in shell FE models

    Stress 0.5t from the weld toe in solid FE models

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    69/288

    5

    Version Slide 927 September 2013

    Test Specimens from HHI

    1

    54

    32

    Version Slide 1027 September 2013

    Link Between Nominal and Hot Spot Stress

    alnogstressspotHot K min

    Specimen

    no

    1

    2

    3

    4

    5

    K-factor resulting

    from fatigue S-N data

    from the HHI tests

    1.320

    1.958

    1.334

    1.641

    1.689

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    70/288

    6

    Version Slide 1127 September 2013

    Hot Spot Stress S-N Data from the HHI Tests

    10

    100

    1000

    10000 100000 1000000 10000000

    Number of cycles

    Hotspotstressrange(MPa)

    No 1

    No 2

    No 3

    No 4

    No 5

    Mean

    Mean minus 2 std

    FAT 90

    Version Slide 1327 September 2013

    Derivation of Hot Spot Stress

    t/2 3t/2Distance

    t/2 3t/2

    Stress

    Extrapolated geometric stress(Method A)

    Direct calculated geometric stress(Method B)

    Weld toe or int ersection line

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    71/288

    7

    Version Slide 1427 September 2013

    Hotspot

    Intersectionline

    Element for stressextrapolation

    Main stressdirection

    End ofbracket

    Plate

    8 node shellelement

    t

    t

    Example of FE Modeling 8-node Shell Elements

    Version Slide 1527 September 2013

    Derivation of Hot Spot Stress

    Intersection

    line

    Hot

    spot

    1

    4 3

    2

    A

    0.5 t

    Gaussian integration

    point

    1

    4 3

    2

    1.5 t

    Extrapolated

    hot spot stress

    B

    Intersection

    line

    Hot

    spot

    1

    4 3

    2

    A

    0.5 t

    Gaussian integration

    point

    1

    4 3

    2

    1.5 t

    Extrapolated

    hot spot stress

    B

    Intersection

    line

    Hot

    spot

    1

    4 3

    2

    A

    0.5 t

    Gaussian integration

    point

    1

    4 3

    2

    1.5 t

    Extrapolated

    hot spot stress

    B

    Intersection

    line

    Hot

    spot

    1

    4 3

    2

    A

    0.5 t

    Gaussian integration

    point

    1

    4 3

    2

    1.5 t

    Extrapolated

    hot spot stress

    B

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    72/288

    8

    Version Slide 1827 September 2013

    Mesh Size using 4-Node Shell Elements

    Recommended mesh size 0.5t x 0.5t to 2t x 2t.

    Larger mesh sizes at the hot spot region may provide non-conservative results.

    Method A:Hot spot stress based on linear extrapolation of stresses at 0.5t and1.5t when linked to D - curve.

    Method B:Hot spot stress from 0.5t should be linked to Ecurve(or stress to be multiplied with 1.12 and Dcurve).

    Version Slide 1927 September 2013

    Mesh Size using 8-Node Shell Elements

    Recommended mesh size from t x t up to 2t x 2t.

    Smaller and larger mesh sizes at the hot spot region may provide

    non-conservative results.

    Method A :

    Hot spot stress based on linear extrapolation of stresses 0.5t and

    1.5t when linked to D - curve.

    Method B :

    Hot spot stress based on read out points 0.5t when linked to E

    curve

    (or stress to be multiplied with 1.12 and Dcurve)

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    73/288

    9

    Version Slide 2027 September 2013

    Mesh Size using Solid Elements

    For 20-node hexahedral elements it is sufficient with one element overthe thickness to pick up a linear stress distribution.

    For simple 8-node brick elements at least 4 elements are required for

    the same purpose.

    Width length ratio within 1:4.

    Modelling of a fillet weld will likely limit the size of the mesh at the hot

    spot region.

    In order to capture St Venant torsion it is recommended to use several

    elements for modelling of a bulb section.

    Version Slide 2627 September 2013

    Method A

    = 0.90 if the detail is classified as C2 with stress parallel to the weld, ref. Table A-3.

    = 0.80 if the detail is classified as C1 with stress parallel to the weld, ref. Table A-3.

    = 0.72 if the detail is classified as C with stress parallel to the weld, ref. Table A-3.

    The effective hot spot stress is derived as

    Principal stress

    direction

    Fatigue crack

    //

    //

    Principal stress

    direction

    Fatigue crack

    //

    //

    //

    //

    Principal stress

    direction

    Fatigue crack

    //

    //

    Principal stress

    direction

    Fatigue crack

    //

    //

    //

    //

    2

    1

    2

    //

    2 81.0

    max

    Eff

    Read stress from 0.5 t and 1.5t and

    extrapolate to intersection line

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    74/288

    10

    Version Slide 2927 September 2013

    Method B

    = 0.90 if the detail is classified as C2 with stress parallel to the weld, ref. Table A-3.

    = 0.80 if the detail is classified as C1 with stress parallel to the weld, ref. Table A-3.

    = 0.72 if the detail is classified as C with stress parallel to the weld, ref. Table A-3.

    The effective hot spot stress is derived as

    Principal stress

    direction

    Fatigue crack

    //

    //

    Principal stress

    direction

    Fatigue crack

    //

    //

    //

    //

    Principal stress

    direction

    Fatigue crack

    ////

    Principal stress

    direction

    Fatigue crack

    ////

    //

    //

    2

    1

    2

    //

    2

    12.1

    12.1

    81.012.1

    max

    Eff

    Read stress directly from 0.5 t

    Version Slide 3327 September 2013

    Derivation of Effective Hot Spot Stressfrom FE Analysis

    At hot spots with significant plate bending one might derive an effectivehot spot stress for fatigue assessment based on the following equation:

    Only to be used at hot spots with possibility for redistribution of stresses

    spotbspotaspote ,,, 60.0

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    75/288

    11

    Version Slide 3427 September 2013

    Stress Extrapolation in a Three-dimensional Model

    Warning on Presented Procedure

    Should not be used for single sided butt welds (Nominal S-N curve is W3,

    F3 or F, G if welded on backing)

    Should not be used for cruciform joints as calculated KG = 1.0 from FEA

    with shell or 3D analysis model (Nominal S-N curve is E, F)

    Can not be used for fatigue cracking of the root in fillet welds

    Version Slide 3527 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    76/288

    1

    DNV-RP-C203

    Part 5a Case Study Hot Spot Stress Method

    Houston

    September 26, 2013

    Case Study Hot Spot Stress

    Stochastic (spectral) fatigue analysis of typical detail (longitudinal

    stiffener to transverse bulkhead connection)

    Two configurations of the connection analyzed

    Full penetration welding (only weld toe cracking under consideration)

    Steps of the analysis

    - Global and local FE modeling (SESAM PatranPre)

    - Load transfer (HydroD / Wadam)

    - Submodeling (SubMOD)

    - Structural analysis (SESTRA)

    - Fatigue calculations (STOFAT)

    - Presentation of results (Xtract)

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    77/288

    2

    Global and Local Models

    Global model

    Local model

    Analyzed Configurations

    Configuration #1 Original

    Configuration #2 - Improved

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    78/288

    3

    Loads

    Load transfer (pressure and inertia loads) Prescribed displacements

    Calculation Method

    Method A for hot spot stress calculation

    Omni directional scatter diagram for GoM

    S-N Curve: D in Air and SW with CP used

    20 years design life

    DFF = 1.0

    Membrane Stress at Gaussian points used for visualization purposes

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    79/288

    4

    Calculated Fatigue Damage (Unfactored)

    Original configuration, S-N Curve D in SW with CP

    Calculated Fatigue Damage (Unfactored)

    Improved configuration, S-N Curve D in SW with CP

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    80/288

    5

    Derivation of Hot Spot Stress

    Method A (Curve D)

    Hot Spot Stress Fatigue Results

    Calculated Fatigue Damage (Unfactored) for considered hot spots

    Note: The same No. of cycles for both configurations, with different stress range

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    81/288

    1

    DNV-RP-C203

    Part 6 Simplified Analysis Method

    Houston

    September 26, 2013

    Version Slide 227 September 2013

    Long Term Distribution of Stresses

    Deterministic Fatigue Analysis

    Weibull Distribution

    Closed form Fatigue Damage

    Allowable Extreme Stress

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    82/288

    2

    Det Norske Veritas AS. All rights reserved Slide 327 September 2013

    Example Miner Palmgren

    Number of cycles

    Stress

    range1

    2

    1N 2N

    3

    2

    1

    1

    N

    n

    N

    nD

    Version Slide 427 September 2013

    Norsok N-004 Annex K Deterministic fatigue

    H0

    H1

    H2

    H3

    H

    LOGNn1n2n3

    123

    i

    ni

    H S

    N

    LOGN

    N1N2N3 Ni

    Waveexceedancediagram

    Long- termdistributionof hot- spot stresses S-NCurve

    1 2

    3

    456

    7

    8

    D=100

    i=1

    niNi

    H0H1H2H3

    Member endhot- spots

    Calculationin eachwave action

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    83/288

    3

    Version Slide 527 September 2013

    Simplified Fatigue Assessment

    For fatigue assessment in conceptualdesign phase

    For mass dominated structures such asSemisubmersibles, Ships, FPSOs andTLPs

    Less appropriate for drag dominatedstructures such as jackets and truss towerswith slender tubular members

    Version Slide 627 September 2013

    Weibull Distribution

    h

    q

    exp)Q(

    where

    Q = probability for exceedance of the stress range

    h = Weibull shape parameter

    q = Weibull scale parameter is defined from the stress range level,0, as

    1/h

    0

    0

    )n(lnq

    0 is the largest stress range out of n0 cycles.

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    84/288

    4

    Version Slide 727 September 2013

    Weibull Distribution. Example h = 0.70

    0

    50

    100

    150

    200

    250

    300

    0.1 1 10 100 1000 10000 100000 100000010000000100000000

    Stressrange(MPa)

    Log n

    Version Slide 827 September 2013

    Example h = 0.70

    0

    50

    100

    150

    200

    250

    300

    1 10 100 1000 10000 100000 1000000 1000000

    0

    1E+08

    Log n

    Stressrange(MPa

    h

    nLog

    nLog/1

    20

    20 1

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    85/288

    5

    Version Slide 927 September 2013

    Weibull Long Term Stress Range Distribution

    o

    no Log n

    h > 1

    h < 1

    1/no 1 Q()Probability o fexceedance

    h = 1

    Integrated Fatigue Damage

    Version Slide 1027 September 2013

    Damage calculated based on One-slope SN curve

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    86/288

    6

    Version Slide 1127 September 2013

    Integrated Fatigue Damage

    h

    0

    h

    0

    1h

    0h),q(

    Sexp

    h),q(

    Shh),f(S,

    1/h

    0

    00

    ))(ln(nh),q(

    dS(S)N

    h),f(S,TvdS

    (S)N

    h),f(S,TvD

    0

    1

    1

    S 1

    0d0

    S

    0 2

    0d0

    Damage calculated based on Two-slope SN curve

    Version Slide 1227 September 2013

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

    Weibull shpe parameter h

    AllowablestressrangeinMPa

    E D C2 C1 C B2 B1

    F

    F1

    F3

    G

    W1

    W2

    W3

    Allowable Extreme Stress Range

    during 108

    cycles

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    87/288

    7

    Version Slide 1327 September 2013

    Allowable extreme stress range in MPa during 108

    cycles for components in air

    Weibull shape parameter h

    S-N curves

    0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

    B1 1449.3 1092.2 861.2 704.7 594.1 512.9 451.4 403.6

    B2 1268.1 955.7 753.6 616.6 519.7 448.7 394.9 353.1

    C 1319.3 919.6 688.1 542.8 445.5 377.2 326.9 289.0

    C1 1182.0 824.0 616.5 486.2 399.2 337.8 292.9 258.9

    C2 1055.3 735.6 550.3 434.1 356.3 301.6 261.5 231.1

    D and T 949.9 662.1 495.4 390.7 320.8 271.5 235.4 208.1

    E 843.9 588.3 440.2 347.2 284.9 241.2 209.2 184.9

    F 749.2 522.3 390.8 308.2 253.0 214.1 185.6 164.1

    F1 664.8 463.4 346.7 273.5 224.5 190.0 164.7 145.6

    F3 591.1 412.0 308.3 243.2 199.6 169.0 146.5 129.4

    G 527.6 367.8 275.2 217.1 178.2 150.8 130.8 115.6

    W1 475.0 331.0 247.8 195.4 160.4 135.8 117.7 104.0

    W2 422.1 294.1 220.1 173.6 142.5 120.6 104.6 92.5

    W3 379.9 264.8 198.2 156.0 128.2 108.6 94.2 83.2

    Allowable Extreme Stress Range

    Version Slide 1427 September 2013

    Utilisation factors as function of design life and Design

    Fatigue Factor

    Design life in yearsDFF

    20 25 30

    1 1.00 0.80 0.67

    2 0.50 0.40 0.33

    3 0.33 0.27 0.22

    5 0.20 0.16 0.13

    10 0.10 0.08 0.07

    Design Charts (Different Design Lives and DFFs)

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    88/288

    8

    Version Slide 1527 September 2013

    Reduction factor on stress to correspond with utilisation factor for C W3 curves in air environmentWeibull shape parameter hFatigue

    damage

    utilisation 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20

    0.10 0.497 0.511 0.526 0.540 0.552 0.563 0.573 0.582

    0.20 0.609 0.620 0.632 0.642 0.652 0.661 0.670 0.677

    0.22 0.627 0.899 0.852 0.822 0.802 0.789 0.781 0.775

    0.27 0.661 0.676 0.686 0.695 0.703 0.711 0.719 0.725

    0.30 0.688 0.697 0.706 0.715 0.723 0.730 0.737 0.743

    0.33 0.708 0.717 0.725 0.733 0.741 0.748 0.754 0.760

    0.40 0.751 0.758 0.765 0.772 0.779 0.785 0.790 0.795

    0.50 0.805 0.810 0.816 0.821 0.826 0.831 0.835 0.839

    0.60 0.852 0.856 0.860 0.864 0.868 0.871 0.875 0.878

    0.67 0.882 0.885 0.888 0.891 0.894 0.897 0.900 0.902

    0.70 0.894 0.897 0.900 0.902 0.905 0.908 0.910 0.912

    0.80 0.932 0.934 0.936 0.938 0.939 0.941 0.942 0.944

    1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

    Reduction Factor on Stress for Lower Utilisation

    Version Slide 1627 September 2013

    Example Use of Design Charts

    Detail on deck of FPSO in air environment classified as F3

    Design life 25 years and DFF = 2

    Thickness t = 35 mm

    Weibull shape parameter from CN 30.7 h = 0.97

    Allowable stress range?

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    89/288

    9

    Version Slide 1727 September 2013

    Topside Support Stool - Fixed Type

    Principal stress direction

    Force direction

    Bracket toe

    Welded attachment, l > 300mm: Table A7.1

    Full Penetration weld or fillet weld

    S-N curve: F3

    Version Slide 1827 September 2013

    Bending Moments at 10-8 Probability Level

    Mwo,s = - 0.11kwmCwL2 B ( CB + 0.7 ) (kNm)

    Mwo,h = 0.19 kwm CwL2B CB (kNm)

    hwoswo MMM ,,20

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    90/288

    10

    Version Slide 1927 September 2013

    Bending Moments at 10-8 Probabilty Level

    Mwo,s = - 0.11kwmCwL2 B ( CB + 0.7 ) (kNm)

    Mwo,h = 0.19 kwm CwL2B CB (kNm)

    hwoswo MMM ,,20 d

    Z

    M2020

    Version Slide 2027 September 2013

    Allowable Stress Range for 20 Years

    The tables for allowable stress ranges in DNV-RP-C203

    presents values only for selected values of the Weibull shape

    parameter h.

    Therefore, interpolation in the tables may be required.

    Example of interpolation using values from Table 5-2 for 20

    years and DFF = 1 for t = 25 mm:

    This gives allowable stress range for h = 0.97 by interpolation

    in h :

    199.6-(199.6-169.0) (0.97-0.90)/(1.0-0.90) = 178.18 MPa

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    91/288

    11

    Version Slide 2127 September 2013

    Example Use of Design Charts

    25 years and DFF = 2 gives = 0.40

    Reduction factor = 0.779+(0.785-0.779)(0.97-0.90)/(1.0-0.90) = 0.783

    178.18*0.783 = 139.55 MPa

    Allowable stress range 139.55*(25/35)0.25 = 128.9 MPa

    Version Slide 2227 September 2013

    Example Fatigue Assessment of Ship Side

    s = 800 mm

    t

    p = 85.3kN/m2

    12

    2spM

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    92/288

    12

    Version Slide 2327 September 2013

    Required Plate Thickness DNV-RP-C203

    Maximum stress range is calculated as2

    222

    26/

    12 t

    sptsp

    W

    M

    Calculate the pressure from another DNV document: CN 30.7 Fatigue

    Assessment of Ship Structures.

    Pressure in CN 30.7 is given at 10-4probability level.

    h

    rf/15.0

    where h = Weibull shape parameter

    To get the stress on 10-8probability level the stress at 10-4probability level

    is divided by a factor

    Calculate h = 1.0 from equations in CN 30.7.

    Version Slide 2427 September 2013

    Required Plate Thickness DNV-RP-C203

    From simplified fatigue assessment the maximum stress

    range during 108 cycles is 215.3 MPa for detail E,

    Weibull parameter 1.0

    5.02/1

    *2

    *5.0/

    spt

    h

    mmt 163.215*2

    800.0*1000*5.0/3.85

    5.020.1/1

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    93/288

    1

    Fatigue Course DNV-RP-C203Fatigue Design of Offshore Steel Structures

    Part 7 Uncertainties in Fatigue Life Calculations and Design Fatigue Factors (DFF)

    Houston

    September 26, 2013

    Det Norske Veritas AS. All rights reserved Slide 227 September 2013

    Uncertainties In Fatigue Life Calculation

    Factors contributing to uncertainty

    Failure probability

    Design Fatigue Factors

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    94/288

    2

    Det Norske Veritas AS. All rights reserved Slide 327 September 2013

    Uncertainties In Fatigue Life Predictions

    Environment

    Load modelling

    Error in estimating number of load cycles

    Structural model for response analysis (Transfer-function for

    stress)

    Stress concentration factors

    S-N data

    Miner Palmgren damage accumulation

    Fabrication tolerances

    Workmanship

    Corrosion protection effectiveness over the life of the structure

    (including maintenance).

    Uncertainties in SN Data

    Det Norske Veritas AS. All rights reserved Slide 427 September 2013

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    95/288

    3

    Det Norske Veritas AS. All rights reserved Slide 627 September 2013

    20 Years Design Life and Statistical Scatter inS-N Data Only

    0.00

    0.10

    0.20

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    0 20 40 60 80 100 120 140 160 180 200

    Time in service (years )

    Accumulatedprobability

    Det Norske Veritas AS. All rights reserved Slide 827 September 2013

    Accumulated Probability of Fatigue Failure

    0.0000001

    0.000001

    0.00001

    0.0001

    0.001

    0.01

    0.1

    1

    0 2 4 6 8 10 12 14 16 18 20

    Time in service (years)

    Accu

    mulatedprobabilityoffatiguefailure

    Unc. in S-N curveonly

    Unc. in S-N, Miner,

    CoVnom = 0.15,CoVhs = 0.05

    Unc. in S-N, Miner,CoVnom = 0.20,

    CoVhs = 0.05

    Unc. in S-N, Miner,

    CoVnom = 0.15,CoVhs = 0.10

    Unc. in S-N, Miner,

    CoVnom = 0.20,CoVhs = 0.10

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    96/288

    4

    Det Norske Veritas AS. All rights reserved Slide 927 September 2013

    Failure Probability

    Det Norske Veritas AS. All rights reserved Slide 1027 September 2013

    Design Fatigue Factors (DFF) Norsok

    Access for inspection and repair

    Accessible

    Classificationof structuralcomponentsbased ondamageconsequence

    No access orin the splashzone Below splash

    zone

    Above splash

    zone orinternal

    Substantialconsequences 10 3 2

    Withoutsubstantialconsequences

    3 2 1

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    97/288

    5

    Det Norske Veritas AS. All rights reserved Slide 1127 September 2013

    Design Fatigue Factors FPSOs

    Structural Elements Class FMS

    Internal structures, accessible and not welded

    directly to the submerged part of the shell plate1 2

    Internal structure, accessible and welded directly to

    the submerged part of the shell plate2 3

    External structure above lowest inspection

    waterline, accessible for inspection and repair1 2

    External structure below lowest inspection

    waterline, accessible for inspection by divers2 3

    External structure below lowest inspection

    waterline, inaccessible for inspection by divers3 10

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    98/288

    1

    DNV-RP-C203

    Fatigue Design of OffshoreSteel Structures

    Part 8 Partial Penetration and Fillet Welds

    Houston

    September 26, 2013

    Version Slide 827 September 2013

    Partial penetration/Fillet weld

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    99/288

    2

    Version Slide 927 September 2013

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

    2ai/tp

    h/tp

    tp = 50 mm

    tp = 25 mm

    tp = 12 mm

    tp = 6mm

    Weld toe failure

    Weld root failure

    Failure from the weld root?

    Version Slide 1027 September 2013

    Fillet weld connection with symbols

    Th

    t

    a

    L

    PT

    h

    t

    a

    L

    P

    Throatsection

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    100/288

    3

    Version Slide 1127 September 2013

    Throatsection

    2

    //

    22

    w 0.2

    Stress components in fillet welds

    Version Slide 1227 September 2013

    Design S-N curve: W3

    10

    100

    1000

    1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

    Number of cycles

    Stressrange(MPa)

    B1B2

    C

    C1

    C2

    DE

    F

    F1

    F3G

    W1

    W2

    W3

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    101/288

    1

    DNV-RP-C203

    Part 9 Fabrication and Improvement

    Houston

    September 26, 2013

    Version Slide 227 September 2013

    Methods for fatigue life improvement

    Grinding

    TIG dressing

    Hammer peening

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    102/288

    2

    Version Slide 327 September 2013

    Example of joints suitable for improvements

    Version Slide 427 September 2013

    Example unsuitable for improvement

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    103/288

    3

    Version Slide 527 September 2013

    Pneumatic grinders and burrs

    Version Slide 627 September 2013

    The weld toe burr grinding technique

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    104/288

    4

    Version Slide 727 September 2013

    Grinding of weld toe

    Version Slide 927 September 2013

    Correctly ground weld toe

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    105/288

    5

    Version Slide 1027 September 2013

    Incorrectly ground weld toe

    Version Slide 1127 September 2013

    Gauge for measuring weld groove

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    106/288

    6

    Version Slide 1227 September 2013

    Grinding

    Depth of grinding shouldbe 0.5mm below bottomof any visible undercut.BA

    T

    Version Slide 1327 September 2013

    Weld ProfilingT

    R

    Weld profiling by grinding

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    107/288

    7

    Version Slide 1427 September 2013

    Weld ProfilingT

    R

    5.025.0 )/()(tan17.047.0 RT

    BendingMembranereducedLocal

    5.025.0)/()(tan13.060.0 RT

    BendingMembraneLocal

    Weld profiling by grinding

    Version Slide 1527 September 2013

    TIG dressing of welds

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    108/288

    8

    Version Slide 1627 September 2013

    Fillet weld before and after TIG dressing

    Version Slide 1727 September 2013

    Hammer peening

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    109/288

    9

    Version Slide 1827 September 2013

    Hammer peening operation

    Version Slide 2127 September 2013

    Warnings for hammer peening Hammer peening should only be used on members where failure

    will be without substantial consequences

    Overload in compression must be avoided, because the residual

    stress set up by hammer peening will be destroyed. The same may

    occur with spectrum loading.

    Peening tip must be small enough to reach weld toe.

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    110/288

    10

    Version Slide 2727 September 2013

    Improvement on fatigue life by different methods

    Improvement method Minimum specified yieldstrength Increase in fatigue life(factor on life)1)

    Grinding Less than 350 MPa 0.01f y

    Higher than 350 MPa 3.5

    TIG dressing Less than 350 MPa 0.01f y

    Higher than 350 MPa 3.5

    Hammer peening3) Less than 350 MPa 0.011f y

    Higher than 350 MPa 4.0

    Improvement on Fatigue Life

    Version Slide 2827 September 2013

    Commentary D.15

    Factor for improvement or new S-N

    curve should likely be a function of

    considered connection

    The maximum improvement should also

    be a function of fabrication and NDT

    Testing is recommended

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    111/288

    RECOMMENDED PRACTICE

    DETNORSKEVERITASAS

    The electronic pdf version of this document found through http://www.dnv.com is the officially binding version

    DNV-RP-C203

    Fatigue Design ofOffshore Steel Structures

    OCTOBER 2012

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    112/288

    Det Norske Veritas AS October 2012

    Any comments may be sent by e-mail to [email protected]

    This service document has been prepared based on available knowledge, technology and/or information at the time of issuance of this document, and is believed to reflect the best ofcontemporary technology. The use of this document by others than DNV is at the user's sole risk. DNV does not accept any liability or responsibility for loss or damages resulting fromany use of this document.

    FOREWORD

    DNV is a global provider of knowledge for managing risk. Today, safe and responsible business conduct is both a licenseto operate and a competitive advantage. Our core competence is to identify, assess, and advise on risk management. Fromour leading position in certification, classification, verification, and training, we develop and apply standards and best

    practices. This helps our customers safely and responsibly improve their business performance. DNV is an independentorganisation with dedicated risk professionals in more than 100 countries, with the purpose of safeguarding life, propertyand the environment.

    DNV service documents consist of among others the following types of documents:

    Service Specifications. Procedural requirements. Standards. Technical requirements. Recommended Practices. Guidance.

    The Standards and Recommended Practices are offered within the following areas:A) Qualification, Quality and Safety MethodologyB) Materials TechnologyC) StructuresD) SystemsE) Special FacilitiesF) Pipelines and RisersG) Asset Operation

    H) Marine OperationsJ) Cleaner Energy

    O) Subsea SystemsU) Unconventional Oil & Gas

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    113/288DET NORSKE VERITAS AS

    Recommended Practice DNV-RP-C203, October 2012

    Changes Page 3

    CHANGES

    General

    This document supersedes DNV-RP-C203, October 2011.

    Text affected by the main changes in this edition is highlighted in red colour. However, if the changes involve

    a whole chapter, section or sub-section, normally only the title will be in red colour.

    Main changes

    General

    A number of editorial corrections have been made.

    Sec.3

    3.3.7.3: new section Stress concentration factors for butt welds between members with equal thickness. 3.3.12 Stress concentration factors for joints with gusset plates: Added recommendations for applicable

    S-N curves at inside of tubulars.

    Sec.4 4.2 Tubular joints: correction of equation. 4.3.7: insertion of a new paragraph regarding simple cruciform joints.

    Sec.10

    References /88/ and /89/ added.

    App.C

    Changes in Figure C-19 and Figure C-23.

    App.D

    5 S-N curves (B1, B2, C, C1 and C2) deleted in D.15 Table D-9.

    In addition to the above stated main changes, editorial corrections may have been made.

    Editorial Corrections

  • 7/27/2019 Fatigue Course DNV-RP-C203_Fatigue Design of Offshore Steel Structures_tcm153-578957

    114/288DET NORSKE VERITAS AS

    Recommended Practice DNV-RP-C203, October 2012

    Contents Page 4

    CONTENTS

    1. INTRODUCTION ................................................................................................................. 7

    1.1 General...................................................................................................................................................7

    1.2 Validity of standard ..............................................................................................................................71.2.1 Material...................................................................................................................................................................71.2.2 Temperature............................................................................................................................................................71.2.3 Low cycle and high cycle fatigue........................................................................................................................... 7

    1.3 Methods for fatigue analysis ................................................................................................................7

    1.4 Definitions..............................................................................................................................................8

    1.5 Symbols ..................................................................................................................................................9

    2. FATIGUE ANALYSIS BASED ON S-N DATA............................................................... 10

    2.1 Introduction.........................................................................................................................................10

    2.2 Fatigue damage accumulation...........................................................................................................12

    2.3 Fatigue analysis methodology and calculation of Stresses ..............................................................122.3.1 General..................................................................................................................................................................12

    2.3.2 Plated structures using nominal stress S-N curves ...............................................................................................122.3.3 Plated structures using hot spot stress S-N curves ...............................................................................................132.3.4 Tubular joints .......................................................................................................................................................132.3.5 Fillet welds at cruciform joints.............................................................................................................................152.3.6 Fillet welds at doubling plates ..............................................................................................................................152.3.7 Fillet welded bearing supports..............................................................................................................................16

    2.4 S-N curves............................................................................................................................................162.4.1 General..................................................................................................................................................................162.4.2 Failure criterion inherent the S-N curves ............................................................................................................. 162.4.3 S-N curves and joint classification ....................................................................................................................... 162.4.4 S-N curves in air ................................................................................................................................................... 182.4.5 S-N curves in seawater with cathodic protection .................................................................................................192.4.6 S-N curves for tubular joints ................................................................................................................................202.4.7 S-N curves for cast nodes.....................................................................................................................................20

    2.4.8 S-N curves for forged nodes.................................................................................................................................202.4.9 S-N curves for free corrosion ...............................................................................................................................212.4.10 S-N curves for base material of high strength steel.............................................................................................. 212.4.11 S-N curves for stainless steel................................................................................................................................222.4.12 S-N curves for small diameter umbilicals ............................................................................................................222.4.13 Qualification of new S-N curves based on fatigue test data.................................................................................23

    2.5 Mean stress influence for non welded structures.............................................................................23

    2.6 Effect of fabrication tolerances..........................................................................................................23

    2.7 Requirements to NDE and acceptance criteria................................................................................24

    2.8 Design chart for fillet and partial penetratio