featuredinsights alternativefuel final

Upload: jose-jeronimo-velez

Post on 07-Aug-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    1/512013

    FEATURED INSIGHT

    PRODUCTION COSTS

    OF ALTERNATIVE

    TRANSPORTATION FUELS

    Influence of Crude Oil Priceand Technology Maturity

    PIERPAOLOCAZZOLA, GEOFFMORRISON, HIROYUKIKANEKO,FRANOISCUENOT, ABBASGHANDIANDLEWISFULTON

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    2/51

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    3/512013

    This paper reflects the views of the IEA Secretariat but does not necessarily reflect the views or policies of the IEAs individual

    member countries. The paper does not constitute advice on any specific issue or situation. The IEA makes no representation or

    warranty, express or implied, in respect of the papers content (including its completeness or accuracy) and shall not be responsiblefor any use of, or reliance on, the paper. Comments are welcome, directed to [email protected].

    PRODUCTION COSTS

    OF ALTERNATIVE

    TRANSPORTATION FUELS

    Influence of Crude Oil Priceand Technology Maturity

    PIERPAOLOCAZZOLA, GEOFFMORRISON, HIROYUKIKANEKO,FRANOISCUENOT, ABBASGHANDIANDLEWISFULTON

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    4/51

    INTERNATIONAL ENERGY AGENCY

    The International Energy Agency (IEA), an autonomous agency, was established in November 1974.Its primary mandate was and is two-fold: to promote energy security amongst its member

    countries through collective response to physical disruptions in oil supply, and provide authoritative

    research and analysis on ways to ensure reliable, affordable and clean energy for its 28 membercountries and beyond. The IEA carries out a comprehensive programme of energy co-operation amongits member countries, each of which is obliged to hold oil stocks equivalent to 90 days of its net imports.The Agencys aims include the following objectives:

    n Secure member countries access to reliable and ample supplies of all forms of energy; in particular,through maintaining effective emergency response capabilities in case of oil supply disruptions.

    n Promote sustainable energy policies that spur economic growth and environmental protectionin a global context particularly in terms of reducing greenhouse-gas emissions that contributeto climate change.

    n Improve transparency of international markets through collection and analysis ofenergy data.

    n Support global collaboration on energy technology to secure future energy supplies

    and mitigate their environmental impact, including through improved energyefficiency and development and deployment of low-carbon technologies.

    n Find solutions to global energy challenges through engagement anddialogue with non-member countries, industry, international

    organisations and other stakeholders.IEA member countries:

    Australia

    Austria

    Belgium

    Canada

    Czech Republic

    Denmark

    Finland

    France

    Germany

    Greece

    Hungary

    Ireland

    Italy

    Japan

    Korea (Republic of)

    Luxembourg

    NetherlandsNew Zealand

    Norway

    Poland

    Portugal

    Slovak Republic

    Spain

    Sweden

    Switzerland

    Turkey

    United Kingdom

    United States

    The European Commission

    also participates in

    the work of the IEA.

    OECD/IEA, 2013

    International Energy Agency9 rue de la Fdration

    75739 Paris Cedex 15, France

    www.iea.org

    Please note that this publicationis subject to specific restrictionsthat limit its use and distribution.

    The terms and conditions are available online athttp://www.iea.org/termsandconditionsuseandcopyright/

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    5/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|3

    TableofContents

    Acknowledgements................................................................................................................... 5

    ExecutiveSummary................................................................................................................... 6

    Introduction............................................................................................................................ 10

    DescriptionofMainAnalysisandKeyAssumptions................................................................. 12

    Inputstreamcosts...................................................................................................................12

    DifferencesbetweentheCurrentTechnologyScenarioandtheMatureTechnologyScenario..............................................................................14

    Capitalcosts,O&Mcosts,coproducts....................................................................................14

    Fueltransport,distributionandrefuellinginfrastructurecosts..............................................17

    Liquidfuels.......................................................................................................................18

    Hydrogen..........................................................................................................................

    18

    NaturalgasandbioSNG..................................................................................................18

    Electricity.........................................................................................................................19

    Travelcostassumptions..........................................................................................................20

    Results.................................................................................................................................... 22

    SensitivityAnalysisandDiscussion.......................................................................................... 26

    Conclusions............................................................................................................................. 29

    Annexes.................................................................................................................................. 30

    AnnexADescriptionofinputstreamcostmethods.............................................................30

    PetroleumIntensityMethod...........................................................................................30

    HistoricalTrendMethod..................................................................................................30

    AnnexBCapitalcosts:keysourcesusedforthecharacterisationoftheenergypathways....35

    AnnexCPlantsizeandscaling..............................................................................................36

    AnnexDPlantefficiencies....................................................................................................37

    AnnexEGaseousfuels:keysourcesandexplanationofthechoicesmadeforthecharacterisationofdifferentcases..............................................................................38

    AnnexFElectricity:keysourcesandexplanationofthechoicesmadeforthecharacterisationofdifferentcases..............................................................................39

    Acronyms,abbreviations

    and

    units

    of

    measure

    .......................................................................

    41

    References.............................................................................................................................. 43

    ListofFigures

    Figure1 CostoffuelproductionversusoilpriceforselectfuelsinCurrentTechnologyScenario....6Figure2 CostoffuelforCurrentTechnologyScenarioversusMatureTechnologyScenario

    forUSD60/bbl(top)andUSD150/bbl(bottom)...........................................................7Figure3 CostoffuelforPetroleumIntensityMethodandHistoricalTrendMethod

    (USD150/bbl).................................................................................................................8

    Figure

    4

    Energy

    feedstock

    commodities

    and

    oil

    price,

    2000

    10

    ................................................

    13

    Figure5 RelationshipbetweendownstreamIHSCERAindexandhistoricalrealcrudeprice...16

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    6/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|4

    Figure6 CostoffuelproductioninCurrentTechnologyScenario.............................................23Figure7 CostoffuelproductioninMatureTechnologyScenario.............................................24Figure8 SensitivityanalysisforselectedalternativefuelsevaluatedatUSD150/bbl

    inCurrentTechnologyScenario...................................................................................26Figure9 Monthlycoalandnaturalgaspricesasafunctionoftheoilprice,January2000to

    October2012

    ................................................................................................................

    30

    Figure10Monthlypricesofvegetableoilsasafunctionoftheoilprice,January2000toOctober2012................................................................................................................31

    Figure11Monthlywheatandcornpricesasafunctionoftheoilprice,January1980toOctober2012................................................................................................................32

    Figure12Monthlycanepriceasafunctionoftheoilprice,May2000toOctober2012 ..........33Figure13Monthlylogandsawnwoodpriceasafunctionoftheoilprice,January2000to

    October2012................................................................................................................33

    ListofTables

    Table1 Energypathwaysconsidered........................................................................................11Table2 Directeffectsofpetroleumenergyused......................................................................12Table3 ComparisonbetweenPetroleumIntensityMethodandHistoricalTrendMethodfor

    estimatinginputstreamcostsundervariableoilprices,CurrentTechnologyScenario...13Table4 Summaryofsizesofproductionfacilities(expressedasannualoutput)

    forCurrentTechnologyScenarioandMatureTechnologyScenario............................15Table5 Investmentcostcomponentsfordifferentenergypathways(USD60/bbl).................16Table6 Investmentcostcomponentsfordifferentenergypathways(USD150/bbl)...............17Table7 Costoftransport,distributionandrefuellinginfrastructure

    forenergypathways(USD60/bbl)................................................................................17Table8 Costoftransport,distributionandrefuellinginfrastructure

    forenergypathways(USD150/bbl)..............................................................................18Table9 Assumptionsonthecharacteristicsofrecharginginfrastructureforpluginhybrid

    electricvehicles(PHEVs)andEVs,andresultingcostestimates..................................20Table10FueleconomyassumptionsforCurrentTechnologyScenario

    andMatureTechnologyScenariousedtoestimatetravelcost(USD/km)byfueloptions,forthetypicalfleetaveragepassengerlightdutyvehicle..................21

    Table11DrivingcostsoffuelscalculatedforCurrentTechnologyScenarioandMatureTechnologyScenariowhencrudeoilisatUSD60/bblandUSD150/bbl....25

    Table12Plantefficienciesassumedfordifferentlargescalepathways.....................................37

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    7/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|5

    Acknowledgements

    The InternationalEnergyAgency (IEA)DirectorateofSustainableEnergyPolicyandTechnology(SPT)prepared thispublication. The reports authorswere PierpaoloCazzola,GeoffMorrison,HiroyukiKaneko,FranoisCuenot,AbbasGhandiand LewisFulton.Thepaperwouldnothavebeen completedwithout considerablehelp and guidance fromAlexander Krner. The authorsalsowishtothankJohnDulac,TaliTriggandSteveHeinenfortheirvaluableinput.

    DidierHoussin,DirectorofSPT,BoDiczfalusy,formerDirectorofSPT,JeanFranoisGagne,Headof theEnergyTechnologyPolicy (ETP)Division,andCeciliaTeam,Headof theEnergyDemandTechnologyUnit, provided valuable guidance, in the compilationof this report. Thank you toSimonWatkinsonforeditingsupportandtheIEACommunicationandInformationOffice(CIO),inparticular, Muriel Custodio, Angela Gosmann and Cheryl Haines. A special thanks to AnnetteHardcastle, Hanneke Van Kleef and Katerina Rus for their support on the production of thisreport.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    8/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|6

    ExecutiveSummary

    Thisstudyexaminestheproductioncostsofarangeoftransportfuelsandenergycarriersundervaryingcrudeoilpriceassumptionsandtechnologymarketmaturationlevels.Itusesanengineeringbottomupapproachtoestimatetheeffectofboththeinputcostofoilandvarioustechnologicalassumptionsonthefinishedpriceofthesefuels. Intotal,theproductioncostsof20fuelswereexaminedforcrudeoilpricesbetweenUSD60perbarrelofoil(USD/bbl)andUSD150/bbl(USD60/bblwasthereferencepointasa longtermseriesofdatawere linkedto lowoilprices,whichonlyincreasedinthelastdecadeorso).

    Thepaperuseddatafromarangeofsources,collectedaspartoftheInternationalEnergyAgency(IEA)MobilityModel(MoMo)project(Fulton,CazzolaandCuenot,2009).TheestimatespresentedhereconstituteoneofthesourcesthatfeedintoIEAanalyses,suchastheIEAEnergyTechnologyPerspectives 2012 (IEA,2012a), and are part of a wider range of inputs unrepresentative ofofficial IEA estimates. Thisworkingpaper is intendedboth to show the resultsof specific IEAanalysis,andsolicitcommentsonthemethodologyanddataused.Thefuelcostestimatestake

    intoaccount

    the

    costs

    of

    feedstock

    procurement

    and

    transportation;

    feedstock

    conversion

    to

    fuel;andfueltransportationanddistribution (includingcostsofconstructing infrastructureanddispensingstations).Specificattentionispaidtothetransmissionanddistribution(T&D)costsofhydrogen (H2),biosyntheticnaturalgas (bioSNG),andelectricity forelectricvehicles (EVs),asthesefuelsinfrastructuresaretheleastdevelopedofthepathwayscurrentlyconsidered.

    Figure1CostoffuelproductionversusoilpriceforselectfuelsinCurrentTechnologyScenario

    Note:BTL=biomasstoliquids;CTL=coaltoliquids;NG=naturalgas;USD2010/bbl=2010nominalUSDperbarrelofoil;USD2010/GJLHV=2010nominalUSDpergigajouleusinglowerheatingvalue.FuelproductioncostsinthisfigureareextrapolatedfromtheirUSD60/bblvalueusinganarithmeticalaverageofthetwomethods(PetroleumIntensityandHistoricTrend)arediscussedbelow(seeChapterResults).

    Source:unlessotherwisestated,allmaterialinfiguresandtablesderivefromIEAdataandanalysis.

    Forthefeedstockandprocurementstage,twoseparateprocedureswereusedtoestimatehowchanges inoilpricesaffect fuelproduction costs.The firstprocedure, thePetroleum IntensityMethod,estimatesthequantityofpetroleumusedtoproduceandtransporteachfeedstock.As

    the

    oil

    price

    increases,

    feedstocks

    with

    the

    highest

    petroleum

    intensity

    incur

    the

    highest

    rises

    in

    cost.Thesecondprocedure,theHistoricalTrendMethod,reliesonthehistoricalbivariaterelationship

    0

    20

    40

    60

    80

    100

    60 70 80 90 100 110 120 130 140 150

    CostperGJ(USD2010/GJLHV)

    Costperbarrel(USD2010/bbl)

    H fromNG(central)

    Electricity(biomass)

    Lignocellulosicethanol

    BTL

    Gasoline

    Electricity(naturalgas)

    Cornethanol

    Sugarcaneethanol

    CTL

    Naturalgas

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    9/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|7

    between the price of oil and the average global price of a given feedstock. As the oil priceincreases,thecostofagivenfeedstockchangesaccordingtothisrelationship.Resultsfrombothproceduresarepresented,andrepresentwhatisconsideredasthetwoextremesoftheinfluenceofoilpriceontransportationfuelcosts.

    Fuelproduction

    costs

    are

    estimated

    for

    todays

    market

    environment

    (Current

    Technology

    Scenario)

    in

    whichemergingtechnologieshavenotfullybenefitedfromeconomiesofscaleorknowhow(Figure1).

    Future fuel costsarealsoestimated fora situation inwhicha fullymature supplychainexistsindependentlyforeachfuelusingaMatureTechnologyScenario(Figure2).Forsomeemergingenergypathways,suchaselectricity(andelectrictransport),technologicalmaturitymaynotbeachievedbefore2020,andinafewcases(e.g.H2)itmaynotbeuntil2030orlater.However,themainpurposeofthisScenariosanalysisistofindasetofparametersthatenablecomparabilityofenergyfortransportationandquantificationoftheeffectofhighercrudeoilpricesontheproductioncostsoffuels.

    Figure2CostoffuelforCurrentTechnologyScenarioversusMatureTechnologyScenario

    forUSD60/bbl(top)andUSD150/bbl(bottom)

    Note:USD/GJ=USDpergigajoule,etOH=ethanol.

    0

    20

    40

    60

    80

    100

    USD/GJoffuel

    USD60/bblCurrent USD60/bblMature

    Gasoline

    0

    20

    40

    60

    80

    100

    USD/GJoffuel

    USD150/bblCurrent USD150/bblMature

    Gasoline

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    10/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|8

    Therearetwomethodsforestimatingfuelcosts:

    linking the cost of production to the quantity of petroleum products used in production(PetroleumIntensityMethod);

    linkingtheinputstoproductiontothehistoricalrelationshipsbetweeninputcommoditiesand

    thefuel

    of

    interest

    (Historical

    Trend

    Method).

    The Petroleum IntensityMethod accounts fordirect effects anduses energy inputoutput coefficientsfromtheGreenhouseGases,RegulatedEmissions,andEnergyUseinTransportation(GREET)Model(Wang,2007).TheHistoricalTrendMethodaccountsforboththedirectandindirecteffects.WhenusingthetwomethodsformaturetechnologywithoilpricedatUSD150/bbl,theHistoricalTrendMethodyieldsslightlyhigherestimatedcoststhanthePetroleumIntensityMethod(Figure3).

    Figure3CostoffuelforPetroleumIntensityMethodandHistoricalTrendMethod(USD150/bbl)

    Thisreportwillbeusefultopolicymakersandpractitionersseekingtounderstandhowandwhytransportfuelsaresensitivetocrudeoilpricefluctuations,andhowthecostcompetitivenessofdifferentfuelsmaychangewiththesefluctuations. Italsoshouldbeofusetoenergyproviderswhoseektominimisetheirexposuretofutureoilpricevolatility.

    Ninemainresultsandrecommendationsweredrawnfromthisanalysis:

    Policymakers should not assume that in a futurewith higher oil prices, nonpetroleum

    transportationfuels

    will

    be

    economically

    competitive.

    Rather,

    because

    most

    production

    processesofalternative transportation fuels relyonpetroleum thesealternativeswill likelyfaceincreasingcostsasoilpricesincrease.

    Feedstockpricesplayamajorroleinthefinal(untaxed)costsofalternativefuels.Sincefeedstockpricescanvaryconsiderably,theyshouldbecarefullyaccountedforinthecostbenefitanalysisofdifferentfueloptions.

    Severalfuelscouldcompetewithgasolineifhighgasolinepricesarecomparedtoafuel

    cost estimate that assumed low crude oil prices. This underscores the importance ofclearly stating the oil price assumptions in technoeconomic analyses, and using thisassumptionwhendevelopingcostassumptionsforotherfuels.

    Alternative

    transportation

    fuels

    vary

    in

    sensitivity

    towards

    oil

    price

    changes.

    A

    1%

    increase

    intheoilpriceleadstoa0.0%to0.68%increaseintheproductioncostoffuelsintheCurrent

    0

    20

    40

    60

    80

    100

    USD/GJoffuel

    USD150/bblPetroleumIntensity USD150/bblHistoricalTrend

    Gasolineat

    USD150/bbl

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    11/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|9

    Technology Scenario. The fuels with production costs least sensitive to oil price changesincludebioSNG,sugarcaneethanolandH2fromcoalgasification.Ontheotherhand,cornorlignocellulosic ethanol, biodiesel, BTL, and gastoliquids (GTL) have the largest productioncostchangesastheoilpricefluctuates.Consideringtheimpactofchangingoilpricesonotherfeedstocks,firstandsecondgenerationbiofuelssuchascornethanol, lignocellulosicethanol

    andBTL

    tend

    not

    to

    achieve

    levels

    of

    cost

    competitiveness

    that

    are

    comparable

    with

    other

    alternativeenergypathways.

    Fuelswith thegreatest sensitivity to inputparameters includeH2pathways,electricity

    fromsolarphotovoltaic(PV),andlignocellulosicethanol.ThefuelswiththeleastsensitivitytofuturecostsincludecornethanolandCTL.

    Themostsensitive inputparametersusedtoestimateproductioncosts in thisanalysis

    varybyfueltype.Theconversionefficiencyfromprimarytosecondaryenergy,thepriceofoil,andthe feedstockacquisitioncost (thatare linkedtotheoilprice,asassumed intheHistoricalTrendMethod),however,aregenerallythemostsensitiveparameters.

    Refuellinginfrastructurecostscansignificantlyimpacttheintroductionofanumberofalternative

    fuels,depending

    on

    their

    specific

    characteristics.

    This

    effect

    is

    much

    stronger

    in

    immature

    markets,wheretheratioofinfrastructuretotheamountoffuelsoldmayberelativelyhigh.

    IntheCurrentTechnologyScenario,fewalternativefuelsarelikelytocompetewithoilbelow

    USD90/bbl.Onanenergybasis,onlynaturalgasandCTLenjoy lowerproductioncosts.Fornaturalgas,thisresultisheavilydependentontherateofusageoftherefuellinginfrastructure.Onaperkilometrebasis,naturalgas,CTLandallelectricitypathwayshave lowerproductioncosts,thelatterthankstothemuchhigherefficiencyofelectricmotorscomparedtointernalcombustionengines.

    ManyalternativefuelscancompetewithaUSD100/bblintheMatureTechnologyScenario.

    Onlyfuelsthatcanbemixedwithoilwould immediatelyreducetheoveralldrivingcosts.Otherfuelsthatneedalternativepowertraintechnologies(suchasgaseousfuels,electricitythat

    need

    substantial

    retrofits

    and

    ethanol

    based

    fuels

    that

    need

    slight

    retrofit

    to

    make

    the

    vehiclecompatiblewiththosefuels)willrequireimportantleadtimestohaveasignificantmarketshare.Theyalsoneedambitiousinfrastructuredeploymentprogrammesthatfocusonfuelcosts,whicharenotconsideredinthisanalysis.Ofthecheaperoptions,CTLisonlyreadilyavailablefortheexistingvehiclefleet.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    12/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|10

    Introduction

    Theestimationofproductioncostsfortransportationfuelshasbeenthesubjectofmajorresearch(NAS,2004;Parker,2004;Yousifetal.,2011;Fornell,BerntssonandAsblad,2012) inrecentyears.Suchestimationsareusedbyenergystakeholderstodeterminetheeconomicviabilityofaparticularfueltechnologyorconversionprocess.However,amissingcomponentinnearlyalltheseanalyseshasbeen thediscussion about theeffectofoilprice changesonproduction costs.Thispaperattempts to fill this research gap by evaluating global welltotank supply chain costs for20transportationenergypathways1atoilpricelevelsbetweenUSD60/bblandUSD150/bblincurrenttechnologicalconditions(CurrentTechnologyScenario),andaconditioninwhichafullydevelopedsupplychainexistsindependentlyforeachfuelalternative(MatureTechnologyScenario).

    Workingonaglobalaverageisclearlytoosimplifiedandtheaimofthisanalysisisnottoaddressspecificregionalsituationsorbreakevenpriceswithcrudeoil.Itspurposeisrathertohighlightstructurallinkagesbetweenthecostofcrudeoilandtheproductioncostsofalternatives,andinvestigatewhetheranincreaseincrudeoilpricecouldpotentiallypreventvariousoptionsfrombecomingcostcompetitive.

    Thecost

    of

    aparticular

    fuel

    or

    energy

    carrier

    can

    be

    broken

    into

    three

    general

    categories:

    The inputstreamcost,whichincludestheprocurementoftheprimaryenergyfeedstockandthe transportation of the feedstock to the conversion facility. Feedstock storage andpreparation(e.g.biomasspelletisation)costsarenotcoveredhere.

    Theproductioncost,whichincludeslevellisedcapitalcostsandtheoperationandmaintenance(O&M)costsoftheconversionfacility.Thisincludesrefineries,gasprocessingunits,gasifiers,etc.

    Thefueltransport/T&Dcosts,which includecapitalandinfrastructureneededtotransportthefuel/energycarrierfromtherefineryanddispenseittoendusers.Specificattentionisgiventothecostsoffuelswithextremelylowcurrentmarketpenetration(i.e.H2andelectricityfortransportation).

    Alargetechnicalmanual isusedtoestimateeachofthesethreecostsforthe20transportationenergypathways.Allcostsaregivenin2010USD.UnitcostsaregiveninUSDpergigajouleusinglower heating value (USD/GJLHV),USD per litre of gasolineequivalent using low heating value(USD/lgeLHV),orUSDperkilometre travelled (USD/km).Thisanalysis considers relevantenergypathways (Table1). Though many potentially important emerging pathways are omitted, thebreadthofpathwaysacrossdifferentprimaryenergysourcesenablesanumberofconclusionstobedrawnabouttheeffectofoilpriceonproductioncosts.

    Foreaseofpresentation,alldatatablesanddiscussioninthisreportconcernresultsatUSD60/bblandUSD150/bbl.Theaveragepriceof crudeoilwasUSD39.2/bbl from1985 to2010, in real2010USD,andanaverageofUSD72.2/bblfrom2005to2010.

    TheIEAassumesthatoilpriceswillrisesteadily,reachingpricesofUSD145/bblandUSD125/bbl,

    respectively,in

    2035

    (IEA,

    2012b).

    Only

    in

    the

    450

    parts

    per

    million

    of

    carbon

    dioxide

    scenario,

    do

    oil

    pricesstaynearthe2011levelsofUSD100/bbl(IEA,2012b).Forthisanalysis,USD60andUSD150/bblhavebeenselectedasreasonablelowandhighoilpricestoreflectthewiderangeofpossibilities.

    Asengineefficienciesdifferbetweendifferentenergytypes(i.e.electricmotorsaremoreefficientthansparkignitionengines),a furtheranalysis isconducted toestimate thecostperkilometretravelled for each energy pathway. This provides another perspective about the viability ofdifferentenergyoptions.

    1Here,anenergypathway isdefinedasaparticular feedstockandconversionprocess.Anexampleenergypathway isBTLproductionusingwoodyforestresidueinafixedbedgasifier.Theanalysisstopsatthislevelofdetail(i.e.doesnotdiscussthespecific

    type

    of

    farming

    equipment,

    biomass

    pre

    treatment

    process,

    etc.)

    since

    the

    focus

    is

    to

    identify

    the

    broad

    relationship

    betweenthecrudeoilpriceandproductioncosts.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    13/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|11

    Table1Energypathwaysconsidered

    Primary energy source Final energy type Process

    Crude oilGasoline*

    Diesel fuel**Oil refining

    Natural gas

    Middle distillates (GTL)Compressed natural gas

    H2

    Electricity

    Gasification and Fischer-Tropsch conversionProcessing, compression

    Reforming, compression

    Gas turbine (50% efficiency assumed)

    Coal

    Middle distillates (CTL)

    H2

    Electricity

    Gasification and Fischer-Tropsch conversion

    Coal gasification

    Integrated gasification combined cycle

    Nuclear energyH2

    Electricity

    Water splitting

    Fission

    Oil-seed crops Biodiesel (rapeseed) Transesterification, hydrogenation

    Grain crops Ethanol (corn) Biochemical conversion

    Cane crops Ethanol (sugarcane) Fermentation

    Biomass from cropsand/or waste products

    Biodiesel (BTL)

    Lignocellulosic ethanol

    Bio-SNG

    H2

    Electricity

    Gasification and Fischer-Tropsch conversion

    Biochemical conversion

    Biomass gasification

    Electricity generation from power plants(co-firing and dedicated) and point-of-use electrolysis

    Direct combustion (dedicated)

    Solar energy Electricity PV cells

    Hydroelectric energy Electricity Large hydroelectric turbines

    *Referencefuel.

    **Assumedthesamecostpergigajouleasgasoline.

    Thecost

    estimates

    in

    this

    study

    were

    based

    on

    aset

    of

    technical

    and

    economic

    parameters

    such

    asconversionefficiency,energydensityof feedstocks,scaling factors, lifetimeof infrastructureandconversionfacilities,interestrate,historicalcostmovementsandothersoutlinedbelow.Tounderstand the importance of each of these input parameters to the final cost estimate, asensitivityanalysiswasperformedforeachfuel.

    Asisusualwiththistypeofstudy,anumberofcaveatsdeservemention.Thecostestimatesherereflecttheglobalaveragedeliverycosttoconsumerslocatedreasonablyclosetoconversionplants.Thesecostswillinevitablydifferfromestimationsatregionalorlocallevels,fromthoseconsideringparticularlylongtransportationdistancesfromthepointoffinalconsumption/distributionofthefuelsand/or fromestimationswithparticularly longtransportationdistances forthefeedstocks

    in

    each

    pathway

    (except

    for

    natural

    gas),

    where

    transportation

    costs

    are

    assumed

    to

    be

    included

    inthefeedstockprice).Globalstudieshavegonealongwaytocombinecostestimates.However,thespatialdesignofthesupplychain,theendowmentofresourceswithinaregion,thecostofaregionslabourforce,exchangerates,costsofthelongdistancetransportationofenergycarriersandtheirrequiredfeedstocks,aswellasdifferingregionalpoliciesimplemented,couldshiftsupplychaincostsawayfromtheestimatesgivenhere.Theaveragecosttoproducersalsodiffersfromthe consumerprice,which canvaryowing tomarketmediatedeffects.Another caveat is thattechnologicaladvancementisuncertainandwilllikelybeheterogeneousacrossenergypathways.Thisreportdetailsproductioncosts,notmarketprices(exceptforoilasan input).Additionally,thisanalysisdoesnotconsiderthetimelagbetweenoilpricechangesandchangestoproductioncosts.Rather,allestimationsassumethatenergy,capital,andlabourmarketshavereadjustedto

    the

    new

    stable

    oil

    price.

    Finally,

    this

    analysis

    does

    not

    estimate

    vehicle

    costs,

    which

    will

    likely

    be

    animportantfactorintheexpansionofemergingenergytechnologiesasmuchasfuelcosts.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    14/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|12

    DescriptionofMainAnalysisandKeyAssumptions

    This section describes the three main components of cost input streams, production, andtransportationanddistribution ingreaterdetail. Information about thedrivetrainefficiencyassumptionsusedtoestimatethecostperkilometreforeachfuelisuseful(Table10).Additionaldetailsarealsoofinterest(AnnexesAtoF).

    Inputstreamcosts

    Inputstreamsincludeallphysicalinputstotherefining/conversionprocessincludingtheprimaryfeedstock,chemicalsandelectricity.Inthisanalysis,inputstreamcostsalsoincludethetransportationfromthepointsofextraction/harvesttotheconversionfacility.Thecostsofthefeedstockrepresentoneofthelargestoverallcostsintheproductionoffuels(Yousifetal.,2011).Thelinkagebetweeninputstreamcostsandcrudeoilpricereflectsanumberofdirecteffectse.g.oilusedinfertiliserproduction,forfarmtractors,biomasstransport,etc.(Table2).The linkagebetweeninputstreamcostsandcrudeoilpricealsoreflectsindirecteffects(e.g.asoilpricesincrease,theattractivenessofnaturalgasorbiofueluseincreasesandplacesanupwardpressureonnaturalgasorbioenergyfeedstockprices)aremainlyrelatedtothemarketrelationshipsoffeedstockprices(Figure4).

    Table2Directeffectsofpetroleumenergyused

    Primary energy source Final energy type

    Petroleum intensity of energy source(megajoule of oil/gigajoule of final energy)

    Production Transportation

    Natural gas

    GTL

    H2(central production)

    Electricity

    3.99

    3.99

    3.99

    0.00

    0.00

    0.00

    Coal

    CTL

    H2(gasification)

    Electricity

    11.3

    11.3

    11.3

    19.4

    19.4

    19.4

    Nuclear energyH2

    Electricity

    3.98

    3.98

    0.00

    0.00

    Oil-seed crops Biodiesel (rapeseed) 29.8 22.7

    Grain crops Ethanol (corn) 20.1 25.7

    Sugar crops Ethanol (sugarcane) 15.6 9.19

    Biomass from cropsand/or waste products

    BTL (forest residues)

    Lignocellulosic ethanol (corn stover)

    Biogas (landfill)

    H2(corn stover)Electricity (forest residues)

    40.5

    39.6

    0.00

    39.640.5

    49.9

    24.7

    0.00

    24.749.9

    Solar energy Electricity (PV) 0.00 0.00

    Hydroelectric energy Electricity 0.00 0.00

    InthePetroleum IntensityMethod,using theGREETmodel, thequantityofpetroleumused inthe production of each commodity (i.e.only capturing the direct effects)was estimated. ThePetroleumIntensityMethod(theamountofmegajoulesofpetroleumusedtoproduce1gigajouleoffinalfuel)establishedabasepriceofUSD60/bbl.SubsequentchangesfromUSD60werebasedonthecommodityspetroleumintensity(seeAnnexAforasamplecalculation).InalltablesandfiguresshowingboththePetroleumIntensityMethodandHistoricalTrendMethod,thecostsof

    productionat

    USD

    60/bbl

    are

    equal

    for

    the

    two

    methods.

    As

    oil

    prices

    exceed

    USD

    150/bbl,

    the

    twomethodsgiveslightlydifferentresults.Thereadermustdecidewhichmethodispreferable.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    15/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|13

    Figure4Energyfeedstockcommoditiesandoilprice,200010

    Note:USD2010/t=2010nominalUSDpertonne;FOB=freeonboard;US=UnitedStates.

    Sources:IMF,2013;BLS,2012.

    Table3ComparisonbetweenPetroleumIntensityMethodandHistoricalTrendMethod

    forestimatinginputstreamcostsundervariableoilprices,CurrentTechnologyScenario

    Primaryenergysource

    Final energy type

    Amortised input stream costs (USD/GJ)

    Petroleum Intensity Method Historical Trend Method

    USD 60/bbl USD 150/bbl USD 60/bbl USD 150/bbl

    Natural gas

    GTL

    Gaseous (for CNG)

    H2(central production)

    Electricity

    10.97

    5.42

    9.15

    10.84

    9.94

    4.82

    8.32

    9.65

    10.97

    5.42

    9.15

    10.84

    24.71

    13.39

    20.21

    26.77

    Coal

    CTL

    H2(gasification)

    Electricity

    7.27

    6.27

    6.39

    9.78

    8.34

    9.24

    7.27

    6.27

    6.39

    14.34

    20.21

    14.41

    Nuclearenergy

    H2

    Electricity

    1.62

    2.38

    1.62

    2.38

    1.62

    2.38

    1.62

    2.38Oil-seed crops Biodiesel (rapeseed) 26.80 31.59 26.80 52.97

    Grain crops Ethanol (corn) 19.58 21.02 19.58 41.56

    Sugar crops Ethanol (sugarcane) 13.38 14.16 13.38 24.06

    Biomassfrom cropsand/or wasteproducts

    BTL (forest residues)

    Lignocellulosic ethanol (corn stover)

    Biogas (landfill)

    H2(agricultural residues)

    Electricity (forest residues)

    10.80

    16.32

    8.43

    9.97

    10.53

    15.27

    22.19

    11.82

    14.03

    16.05

    10.80

    16.32

    8.43

    9.97

    10.53

    16.12

    24.55

    12.25

    14.80

    15.85

    Solar energy Electricity (PV) 0.00 0.00 0.00 0.00

    Hydroelectric

    energy

    Electricity 0.00 0.00 0.00 0.00

    Note:Excludescarboncaptureandstoragetechnologies.

    0

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    Commodityprice(USD2010

    /t)

    Oilprice(USD/bbl)

    Maize(corn),USNo.2Yellow,FOBGulfofMexico

    Wheat,No.1HardRedWinter,ordinaryprotein,FOBGulfofMexico

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    16/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|14

    Forestresidues,whichrequirealargequantityofpetroleumintheircollectionandtransportationtothebiorefinery,arethemostsensitivefeedstockcoststochangesinoilpriceinthispaper.Ontheotherhand, the leastoilpricesensitive feedstocksarebiogas from landfill,electricity fromsolar, and electricity from hydroelectric plantswhich, according to theGREETmodel, require0megajoulesofpetroleumtocollectandtransporttotheconversionfacility.

    Theothermethodforestimating inputstreamcostsfordifferentcrudeoilprice levels istousetheHistoricalTrendMethod.Usingnominaldatafor2012fromboththeInternationalMonetaryFund (IMF)and the consumerprice index (CPI)of theUnitedStates from theBureauof LaborStatistics(BLS),realcornandwheatcommoditypricesfromMexicochangedsignificantlyinrelationto theoilprice from2000 to2010 (Figure4).Certainly, theoilprice isnot theonly importantdeterminantofhistoricalcommoditypricefluctuations.However,formostenergycommodities,theoilpricesexplanatorypowerisveryhighandprovidesastraightforwardapproachtomodellingcostchanges.AnnexAprovidesfurtherdetailsonthismethod.

    The costsofproduction and transportationof feedstocks atUSD60/bbl are the same for thePetroleumIntensityMethodandtheHistoricTrendMethod(Table3).However,asoilpricesrise

    fromUSD

    60/bbl

    to

    USD

    150/bbl,

    the

    Petroleum

    Intensity

    Method

    cost

    is

    generally

    lower

    than

    theHistoricalTrendMethodcost.

    DifferencesbetweentheCurrentTechnologyScenarioandthe

    MatureTechnologyScenario

    Adjustments incostsfromtheCurrentTechnologyScenariototheMatureTechnologyScenarioaremadeusingassumptionsoncropyield increases, increasingefficienciesofconversionsandchangingtransportationdistancesfromthepointofextraction/harvesttotheconversionfacility.It should be noted that in alreadywelldeveloped pathways (e.g.corn ethanol), themarginalimprovementissmall(Figures2and3).

    Capitalcosts,O&Mcosts,coproducts

    Capitalcostsincludethecostofconstruction,interestpayments,insurance,licensing,contingencies,androyalties.O&Mcostsincludethelabourcostsforworkersandsupervisorsandthecostsforconductingroutinemaintenanceonthefacility.Lastly,someagriculturalfeedstocksgeneratecoproductrevenue.

    For each energy pathway (e.g.woodwaste to BTL),multiple literature sourceswere used toestimate an average total capital cost of the fuel production facility.As some sources reportregarding levellisedcosts forbothsmallpilotplantsand largescaleplants,effortwas taken to

    resizeplants

    to

    equal

    sizes

    using

    the

    equation

    in

    Annex

    B.

    See

    also

    Annex

    C

    for

    details

    on

    the

    assumptionsretainedfortheenergyefficiencyoftheplants.Thefuelproductionplantcapacitiesweredeterminedconsideringmedium tolargescaleproductionfacilities(Table4).TheincreaseinsizefromtheCurrentTechnologyScenariototheMatureTechnologyScenariodependsonthecurrentmaturityof the industryandhow largeaconversion facilitywillbecome following thecorresponding energy pathways successful largescale exploitation. The resulting assumptionalso includes the effectsofpathwayspecific limiting factors (such as the concentrated sparsenatureofthefeedstocks,whichleadstomuchlowerscalesforplantsusingbiomassfeedstocks,incomparisonwiththoserelyingonfossilfuelsornuclearenergy).

    To estimate the effects of crude oil price on capital costs, a refinery cost index from IHSCambridgeEnergyResearchAssociates(CERA) isused.Thisindextracksthecostsofequipment,

    facilities,materials,

    and

    personnel

    used

    in

    the

    construction

    of

    over

    30

    refining

    and

    petrochemical

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    17/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|15

    constructionprojects(IHS,2012)and,forpowergeneration,thecostsofbuildingcoal,gas,wind,

    and nuclear power plants. It is similar to the CPI and aims to provide a clear benchmark for

    trackinginvestmentcosts.Thisindexincreaseswithrisingoilprices(Figure5).Inthisanalysis,the

    oilpricehasbeenassumedtobethedriverthatdetermineschangesoftheIHSCERAindicesover

    theyears.Whilethisisclearlyasimplification,ithelpsgiveasenseofsmallchangesinthecapital

    andO&M

    costs

    of

    the

    price

    of

    oil.2

    As

    with

    other

    studies,

    the

    O&M

    costs

    in

    this

    analysis

    are

    assumedtobe10%ofthelevellisedcapitalcosts.

    Table4Summaryofsizesofproductionfacilities(expressedasannualoutput)forCurrentTechnologyScenarioandMatureTechnologyScenario

    Primary energy source Final energy typeCurrent TechnologyScenario (GJLHV/yr)

    Mature TechnologyScenario (GJLHV/yr)

    Natural gas GTL

    H2(central production)

    Electricity

    57 000 000

    28 000 000

    5 200 000

    140 000 000

    50 000 000

    9 400 000

    Coal CTL

    H2(gasification)

    Electricity

    57 000 000

    22 000 000

    9 400 000

    140 000 000

    33 500 000

    17 000 000

    Nuclear energy H2

    Electricity

    28 000 000

    6 700 000

    33 500 000

    12 000 000

    Oil-seed crops Biodiesel (rapeseed) 2 500 000 6 300 000

    Grain crops Ethanol (corn) 2 500 000 6 300 000

    Sugar crops Ethanol (sugarcane) 2 500 000 6 300 000

    Biomass from cropsand/or waste products

    BTL (forest residues)

    Lignocellulosic ethanol (corn stover)

    Biogas (landfill)

    H2(biomass)

    Electricity (forest residues)

    2 500 000

    2 500 000

    2 500 000

    4 000 000

    1 100 000

    6 300 000

    6 300 000

    6 300 000

    24 000 000

    2 000 000

    Solar energy Electricity (PV) 2 500 000 4 000 000

    Hydroelectric energy Electricity 17 000 000 17 000 000

    Note:GJLHV/yr=gigajoulesusinglowerheatingvalueperyear.

    Capital and O&M costs evaluated at USD60/bbl and USD150/bbl show a significant cost

    reductionpotentialforallfuels(Tables5and6).Aninterestrateof10%andanaveragelifetime

    of25yearsforproductionfacilitieswereassumedinthecalculations.

    Forallenergypathways,exceptelectricity, theseestimates result fromthecombinationofthe

    information collected from relevant literature on capital costs (see Annex B for a detailed

    description

    of

    the

    relevant

    sources)

    and

    those

    derived

    from

    the

    normalised

    IHS

    CERA

    Downstreamindex(IHS,2012).3Forpowergeneration,thisanalysisreliesontheIHSCERAPower

    CapitalCostsIndexforNorthAmerica,withandwithoutnuclear(IHS,2012).

    2Sincethemajorityofsourcesfoundinliteratureforinvestmentcostsrefertoaperiodwhereoilpriceswereintherangeof

    USD40/bbltoUSD50/bbl,theinformationhasbeencorrectedusingtheIHSCERAindexestomatchtheoilpriceassumptions

    selectedhere(USD60/bblandUSD150/bbl,dependingonthecase).Thisreassessmentwasmadewithoutapplyingafactor

    totheoriginalcostinformationthatequalsthenormalisedIHSCERAdownstreamindexevaluatedattheaverageoilpricethat

    correspondedtotherelevanttimeperiodfortheselectedliteraturesource(USD60/bblorUSD150/bbl,dependingonthecase).3 Since the IHS CERA index is associated with real prices, it has been normalised using the US CPI, published by the

    Organisation forEconomicCooperationandDevelopment (OECD).Additionally, the IHSCERAdownstream index refers to

    projectsthat

    are

    in

    the

    downstream

    oil

    sector

    and

    not

    in

    other

    alternative

    fuel

    production

    sectors.

    Nevertheless,

    it

    was

    appliedheretoallprocessesexceptforpowergeneration.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    18/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|16

    Figure5RelationshipbetweendownstreamIHSCERAindexandhistoricalrealcrudeprice

    Table5Investmentcostcomponentsfordifferentenergypathways(USD60/bbl)

    Primary energysource

    Final energytype

    Amortised costs (USD2010/GJLHV)

    Current Technology Scenario Mature Technology Scenario

    Total fixedcosts

    Capitalcosts

    O&Mcosts

    Total fixedcosts

    Capitalcosts

    O&Mcosts

    Natural gas

    GTL

    H2

    Electricity

    7.18

    2.78

    3.08

    6.60

    2.44

    2.76

    0.58

    0.34

    0.33

    5.70

    1.59

    2.64

    5.24

    1.34

    2.36

    0.46

    0.25

    0.28

    Coal

    CTL

    H2

    Electricity

    4.03

    3.70

    8.26

    3.70

    3.19

    7.38

    0.33

    0.51

    0.87

    2.91

    1.51

    7.71

    2.67

    1.31

    6.89

    0.24

    0.21

    0.82

    Nuclear energyH2

    Electricity

    12.46

    17.55

    11.31

    13.37

    1.14

    4.17

    7.46

    15.72

    6.75

    11.99

    0.70

    3.74

    Oil-seed crops Biodiesel 2.31 2.12 0.19 1.61 1.48 0.13

    Grain crops Ethanol 3.33 3.06 0.27 2.44 2.24 0.20

    Sugar crops Ethanol 3.00 2.75 0.24 1.98 1.82 0.16

    Biomass fromcrops and/orwaste products

    BTL

    Lignocellulosicethanol

    Biogas

    H2

    Electricity

    13.96

    13.35

    9.22

    6.31

    18.71

    12.84

    12.27

    8.47

    5.51

    16.73

    1.12

    1.08

    0.74

    0.79

    1.98

    10.01

    10.66

    7.62

    5.04

    16.95

    9.27

    9.80

    7.00

    4.35

    15.16

    0.74

    0.86

    0.61

    0.69

    1.79

    Solar energy Electricity 43.75 39.13 4.63 19.40 17.35 2.05

    Hydroelectricenergy

    Electricity 15.33 13.71 1.62 14.15 12.66 1.50

    100

    120

    140

    160

    180

    200

    220

    240

    260

    25 35 45 55 65 75 85 95 105

    CERAindexes,correctedwithCPI

    Oilprice(USD2010/bbl)CERADownstr eam CERAPower(includingnuclear) CERAPower(excludingnuclear)

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    19/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|17

    Table6Investmentcostcomponentsfordifferentenergypathways(USD150/bbl)

    Primary energysource

    Final energytype

    Amortised costs (USD2010/GJLHV)

    Current Technology Scenario Mature Technology Scenario

    Total fixed

    costs

    Capital

    costs

    O&M

    costs

    Total fixed

    costs

    Capital

    costs

    O&M

    costs

    Natural gas

    GTL

    H2

    Electricity

    11.463

    3.796

    4.677

    10.883

    3.457

    4.351

    0.580

    0.339

    0.326

    9.090

    2.456

    4.009

    8.630

    2.209

    3.729

    0.460

    0.247

    0.279

    Coal

    CTL

    H2

    Electricity

    6.432

    5.767

    12.528

    6.098

    5.262

    11.655

    0.334

    0.505

    0.873

    4.633

    2.357

    11.693

    4.393

    2.151

    10.878

    0.240

    0.207

    0.815

    Nuclear energyH2

    Electricity

    19.784

    25.286

    18.642

    21.115

    1.143

    4.171

    11.830

    22.659

    11.128

    18.921

    0.702

    3.738

    Oil-seed crops Biodiesel 3.683 3.497 0.186 2.576 2.446 0.130

    Grain crops Ethanol 5.311 5.042 0.269 3.892 3.695 0.197

    Sugar crops Ethanol 4.781 4.539 0.242 3.155 2.996 0.160

    Biomass fromcrops and/orwaste products

    BTL

    Lignocellulosic.ethanol

    Biogas

    H2

    Electricity

    22.271

    21.300

    14.706

    9.879

    28.397

    21.153

    20.223

    13.962

    9.085

    26.417

    1.118

    1.077

    0.744

    0.794

    1.980

    16.016

    17.010

    12.156

    7.853

    25.724

    15.272

    16.150

    11.541

    7.162

    23.931

    0.744

    0.860

    0.615

    0.692

    1.793

    Solar energy Electricity 66.398 61.769 4.629 29.441 27.388 2.052

    Hydroelectricenergy

    Electricity 23.266 21.644 1.622 21.476 19.979 1.497

    Fueltransport,

    distribution

    and

    refuelling

    infrastructure

    costs

    The costs for the various fuels transportation, distribution, and refuelling infrastructure giveeachfuelgroupspecificcharacteristics(Tables7and8).

    Table7Costoftransport,distributionandrefuellinginfrastructureforenergypathways(USD60/bbl)

    Energy carrier

    Amortised costs (USD2010/GJLHV)

    Current Technology Scenario Mature Technology Scenario

    Total costsTransport

    costs

    Storage andrefuelling

    costsTotal costs

    Transportcosts

    Storage andrefuelling

    costs

    CTL, BTL, GTL 3.266 3.198 0.068 3.260 3.198 0.061Ethanol 3.522 3.412 0.110 3.511 3.412 0.099

    Biodiesel 1.719 1.641 0.079 1.711 1.641 0.071

    Natural gas, bio-SNG 7.675 3.152 4.523 2.687 1.367 1.320

    Centralised H2 86.457 70.898 15.559 13.820 4.191 9.629

    Electricity 13.168 2.173 10.996 8.440 1.965 6.475

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    20/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|18

    Table8Costoftransport,distributionandrefuellinginfrastructureforenergypathways(USD150/bbl)

    Energy carrier

    Amortised costs (USD2010/GJLHV)

    Current Technology Scenario Mature Technology Scenario

    Total costs

    Transport

    costs

    Storage and

    refuellingcosts Total costs

    Transport

    costs

    Storage and

    refuellingcosts

    CTL, BTL, GTL 3.609 3.534 0.075 3.602 3.534 0.068

    Ethanol 3.892 3.771 0.121 3.880 3.771 0.109

    Biodiesel 1.900 1.813 0.087 1.891 1.813 0.078

    Natural gas, bio-SNG 7.675 3.152 4.523 2.687 1.367 1.320

    Centralised H2 86.457 70.898 15.559 13.820 4.191 9.629

    Electricity 13.643 2.648 10.996 8.867 2.392 6.475

    Liquidfuels

    Allcases

    accounted

    for

    the

    levellised

    cost

    of

    liquid

    fuel

    transported,

    distributed

    and

    dispatched

    throughrefuellingstations.Asaresult,thesecostswerehigherforliquidfuelswithalowerenergydensity.Ethanoltransportandrefuellingcostsentailthetransportationcostsfromthebiorefineryto thedispensing station,aswellas thecostsofholding tanks,gasolineblending systems, railmodifications, contingencies and dispensing stations. Ethanol infrastructure requirements areconsiderablylessthanotheremergingtransportationfuels.Ethanolisprimarilyblendedwithgasoline,whichleadstorelativelylowfuelstorageandrefuellingstationcosts.Thecostoftransportingethanolfuel frombiorefineries todispensingstationscanbehigher thanother liquid fuels,particularlybecausebiorefineriesareoftenfarfromlargedemandcentres.DifferencesbetweentheCurrentTechnologyScenarioandtheMatureTechnologyScenarioethanolinfrastructurecostsaretakenfromastudy(Morrow,GriffinandMatthews,2006).

    Hydrogen

    H2canbetransmittedanddistributed inagaseouspipeline, liquidtruck,orgaseoustrucks.ForcentrallyproducedH2, the lowest costdeliverymethoddependson thedistancebetween theproductionfacilityanddistributionpointaswellasthedistancebetweenthedistributionpointtothe dispensing station (Yang andOgden,2008).Here,we combined themethod suggested inYangandOgden(2008)withvehicleandpopulationprojectionsfromtheIEAMoMoproject.

    ThecostscharacterisingtheCurrentTechnologyScenariocorrespondtoasituationwithfewstations(mainly locatedinlargecitiesandmotorways),the lackofH2use intransportand inotherenduses,anda transmissionandyettobebuiltdistributionnetworks.Under thesecircumstances,

    theestimated

    cost

    of

    H2

    transport

    and

    distribution

    costs

    from

    centralised

    production

    facilities

    is

    so

    highthatcentralisedH2productionismoreexpensivethandistributedproductionfromelectrolysis.This confirms the conclusions of one of a number of studies (IEA, 2005). The transport anddistributioncostsusedintheMatureTechnologyScenarioreflectarealitywithmanystations,averyhighnumberofcarsperstation,andestablishedT&Dnetworkswhoseexploitationissharedwithotherenduses.Inthiscontext,centralisedproductionofH2becomescheaperthandistributedproductionfromelectrolysis.MoreinformationonthecalculationofH2transportanddistributioncostsisincluded(AnnexE).

    NaturalgasandbioSNG

    Thecurrent infrastructurefornaturalgas,bioSNGT&D ismoredevelopedthan it isforH2,but

    stillless

    developed

    than

    it

    is

    for

    transportation

    fuels.

    In

    2009,

    only

    3%

    of

    transportation

    fuel

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    21/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|19

    worldwideconsistedofnaturalgasand2.1%ofthiswasusedinfivecountries:Pakistan,Argentina,Iran,BrazilandIndia.Othersectorsusednaturalgasmoreubiquitously.Some40%ofresidentialhouseholdshadaccesstonaturalgasand21%ofelectricpowergenerationusesnaturalgasasthe primary energy feedstock (IEA,2011). Thus, natural gas T&D infrastructure exists inmostregionsforindustrybutitsuseinthetransportationsectorismorelimited.

    In the Current Technology Scenario, fuel transport and distribution costs combine with fewvehicles and a limitednumberof stations located in large citiesandonmainmotorways.Theassumedwidespreaduseofmethaneinotherenduses(e.g.buildings),andasubsequentlywelldevelopedT&Dnetwork,assumesthattransportanddistributioncosts inthisScenarioarestillrelativelyhighwithafuelstationusagerateapproaching50%.

    IntheMatureTechnologyScenario,manystationsaccommodateaveryhighnumberofvehiclesandhavemuch lower fuel transportanddistributioncostsalongwithahighlydevelopedT&Dpipelinenetwork.

    Electricity

    Twomaininfrastructurerequirementsarenecessaryformakingelectricityavailabletovehicles:

    transmittingelectricityfromthegenerationfacilitytothevehiclerecharginglocation;

    equipmentandsystemstocontrol,monitorandsafelytransferelectricitytothevehicle.

    Accordingtosomeresearch,T&Dlossesin2007accountedforabout7%oftheelectricitygeneratedinOECDmember countries (IEA,2012c).Thisvaluehasbeenused throughout thisanalysis.4 Ifsmartmeteringisused,therecharginginfrastructurerequiresanadvancedsystemthatinteractswiththegridtocontrolchargingtimes,rates,etc.,andtoallowtheuseofvehiclesaselectricitystorageunitsforgridstabilisationpurposes.

    Threemaintypesofrecharginginfrastructureareconsideredinthisanalysis:

    slowresidential;

    slowpublic(parkinglot/roadside);

    fastpublicchargingdevices.

    In the Current Technology Scenario, these costs are based on the current costs of availablecomponents,oftenatlowvolumes.IntheMatureTechnologyScenario,thesecostsareassumedtobe lessthantodayscostsowingtoeconomiesofscale.Theestimatesareassociatedwithagivensetofaveragechargerusagepatternsthatdependprimarilyonhomerecharging.ThepriceofcrudeoilisnotassumedtoaffectelectricityT&Dtotransportation.

    Infrastructurecostsforchargingdependontheinvestmentrequiredforthechargingdevice(the

    chargerand

    the

    control/safety

    systems

    associated

    with

    it)

    and

    the

    amount

    of

    electricity

    associated

    withtherechargingoperationofagivencharger(becausethisisthebasisuponwhichthechargerscostswillbepaid).Thissecondcost,inturn,dependsonvehicleefficiency,energystoragecapacityanddailytravelpatterns.

    Itdrawson informationcollected fromother researchand includesadifferentiatedestimationforusagepatternsandcosts thatcorrespond toan initialdeploymentphaseandtoasituationwhere themarket isalreadyestablished.Assumptionsof the costof theelectricity recharginginfrastructureperkilowatthour(USD0.04perkilowatthour[USD/kWh]pervehicleintheCurrent

    4Thisaveragevaluemayresultinsomemisallocationsbecauseoftheignoredeffectsassociatedwithintermittentelectricitysources and decentralised production. Intermittent sources such as onshore or offshorewind are likely to need backupcapacity

    or

    the

    coupling

    with

    energy

    storage

    units

    (e.g.

    with

    hydroelectric

    plants

    capable

    of

    pumped

    storage),

    and

    the

    use

    of

    storageunitsleadstohigherlosses.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    22/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|20

    Technology Scenario andUSD0.023/kWh in theMature Technology Scenario) and the annualcostsofcharginginfrastructurepervehicleorperunitenergythatareassociatedtoeachtypeofchargerarealsopresented(Table9).5

    Table9Assumptionsonthecharacteristicsofrecharginginfrastructureforpluginhybridelectricvehicles

    (PHEVs)and

    EVs,

    and

    resulting

    cost

    estimates

    Current Technology Scenario Mature Technology Scenario

    Slowhome

    Slowpublic

    FastSlowhome

    Slowpublic

    Fast public

    Maximum power of chargers (kW or kVA) 4.00 4.60 47.0 4.00 4.60 47.0

    Investment cost (USD/plug) 650 6 600 33 000 460 5 500 24 000

    Annualised cost (USD/plug) 85 870 4 300 60 720 3 200

    Frequency of use (charges/yr) 312 52 52.0 312 52 52.0

    Average refill time (minutes/charge) 104 107 10.0 104 107 10.0

    Assumed charger occupancy rate (% of time) 6.00 54.0 27.0 7.00 77.0 33.0Charger ratio to vehicles (%) 100 2.00 0.40 83.0 1.40 0.30

    Infrastructure: total costs per unitelectricity output (USD/kWh or USD/GJ)

    0.04 or 11.1 0.02 or 6.57

    Notes:kVA=kilovoltampere;kW=kilowatt;USD/plug=USDperrechargingplugforEVs/PHEVs;minutes/charge=minutesperfullchargeofvehicle;charges/yr=numberoffullvehiclechargesperyear.Otherassumptions include15000kilometres(km)travelledpervehicleperyear,150kmrangeperchargeand30kilowatthours(kWh)ofenergyatfullcharge.

    Source:Kaneko,CazzolaandFulton,2011.

    Inordertodeliverelectricityatthesamecostperkilowatthour,fastchargersrequireanoccupancyrateofroughly30%.Thisvalueincreasestoroughly50%to80%forslowpublicchargers.Lossesareassumedtorangefrom4%fordecentralisedproduction,to7%forcentralisedgenerationplants.

    Travelcostassumptions

    Inaddition toestimatingthecostof fuelproduction inunitsofUSD/GJ,anattempt ismadetoestimatedrivingcostsinUSDperkilometreforeachfuelafteraccountingfordifferencesinengineefficiency levels.Also, an attempt ismade to account forhow efficiencies improveover timebecauseofhybridisation,weightreductionsandgovernmentimposedfuelconsumptionstandards.FuelconsumptiondatasetsintheCurrentTechnologyScenarioandMatureTechnologyScenarioaretakenfromtheMoMo(Table10).TheCurrentTechnologyScenariocostsusethe2010fleetaveragefuelconsumptionwhilethelongtermcostsusethe2050fleetaveragefuelconsumption.

    Severalengine

    technologies

    are

    more

    efficient

    than

    gasoline

    engines.

    In

    particular,

    electric

    motorsandH2vehiclesvastlyoutperformgasolineengines.

    5CostsinTable9reflecttheutilisationratesandelectricitythroughputattherechargingstationsdescribedinAnnexF.Thesame Annex contains a detailed description of the key sources of information used for this evaluation. If the recharginginfrastructure is used less often priceswould rise accordingly. For example, in a situationwheremany fast chargers areinstalled

    around

    acity

    early

    on,

    but

    are

    rarely

    used

    in

    the

    first

    few

    years,

    the

    costs

    could

    be

    considerably

    higher.

    If

    they

    were

    usedonefifthofthetimesassumedhere,thecostperkWhwouldincreasefivefold,asalsoexplainedinAnnexF.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    23/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|21

    Table10FueleconomyassumptionsforCurrentTechnologyScenarioandMatureTechnologyScenario

    usedtoestimatetravelcost(USD/km)byfueloptions,forthetypicalfleetaveragepassengerlightdutyvehicle

    Final energy typeFuel economy (lge/100 km)

    Current Technology Scenario Mature Technology Scenario

    GTL 9.63 6.85

    Natural gas 8.84 7.16

    H2(natural gas, central) 5.36 3.94

    Electricity (natural gas) 1.84 1.51

    CTL 9.63 6.85

    H2(coal) 5.36 3.94

    Electricity (coal) 1.84 1.51

    H2(nuclear energy) 5.36 3.94

    Electricity (nuclear energy) 1.84 3.94

    Biodiesel (rapeseed) 8.95 6.18

    Corn ethanol 9.63 6.85

    Sugar cane ethanol 9.63 6.85

    BTL 9.63 6.85

    Lignocellulosic ethanol 9.63 6.85

    Bio-SNG 8.84 7.16

    H2(biomass) 5.36 3.94

    Electricity (biomass) 1.84 1.51

    Electricity (solar PV) 1.84 1.51

    Electricity (hydroelectric energy) 1.84 1.51

    Diesel* 8.95 6.18

    Gasoline 9.63 6.85

    *Dieselfuelisincludedtogiveanothercomparisontogasolinecosts(Table12).Intheresultssectionbelow,dieselisincludedinthecomparisonoftravelcosts.Afulltechnoeconomicanalysishasnotbeenconductedfordiesel.Itsproductioncost isassumedtobeequal togasoline inUSD/GJ.However,as shown in theresultssection,becausedieselvehicleefficienciesarehigher than thoseofgasoline,thecostperkilometreislowerfordiesel.

    Notes:lge/100km=litresofgasolineequivalentper100kilometres.Boldmeansgasolineisthereferencefuel.

    Source:IEA,2009.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    24/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|22

    Results

    The results sectionpresentscostestimatesatUSD60/bbl for theCurrentTechnologyScenarioandUSD150/bblfortheMatureTechnologyScenario.Fuelcostsper100kmtravelledarethenderivedforeachvehiclefuelcombination.Drivingcostisalwaysimperativeforthevehicleuser.

    Disaggregated cost for the20energypathways compared to gasolineunderdifferentoilpriceassumptionsdoesnotalways leadtothesameconclusions intermsofcostcompetitivenessforthedifferentenergyproductionpathwaysconsidered.AtUSD60/bbl thecostof the referencefuelgasolineisUSD18.4/GJ,whileatUSD150/bblthecostofgasolineisUSD45.9/GJ.

    Arisingoilpricetendstoresultinhigheralternativefuelproductioncoststhanthosecalculatedwhen oil price rises are not considered. For example, the production cost of BTLwith oil atUSD60/bbl(topBTLline)islessthantheestimatesobtainedwithoilatUSD150/bbl.Inthefirstcase, BTL is costcompetitive with petroleum fuels (whose price reference at USD150/bbl isrepresentedbytherightblackverticallineontheright),ifitscostisestimatedwithaconstantoilpriceofUSD60/bbl,butthis isnotthecaseforthecostestimatesobtainedwiththePetroleum

    IntensityMethod

    and

    the

    Historical

    Trend

    Method,

    both

    centred

    on

    USD

    150/bbl.

    Similar

    results

    are found for conventional biodiesel, lignocellulosic ethanol and a few electricity generationpathways.Inthefirsttwocases,thegapismainlyduetoincreasingfeedstockcosts,whileinthecaseofelectricityitdependsprimarilyonchangingcapitalcosts.AccordingtotheHistoricalTrendMethod, options like corn ethanol and GTL fuels are not costcompetitive with gasoline atUSD150/bbl,whiletheyremaincostcompetitiveaccordingtothePetroleumIntensityMethod.Asimilarprofilecharacterisesnaturalgas intheCurrentTechnologyScenario(Figure6).For liquidfuels, thedifference resultsmainly from larger increases in feedstock costs that are generallyassociatedwith theHistoricalTrendMethod.Fornaturalgas, thiseffect is combinedwith theestimatesstemmingfromtheassumptionscharacterisingfueltransport,distributionandrefuelling.Anumberof alternatives, includingall centralisedH2pathways and soleelectricitygeneration

    technologies,are

    always

    more

    expensive

    in

    terms

    of

    cost

    per

    unit

    energy

    of

    the

    energy

    carrier

    thanoilbased fuels(mainlybecauseofthetransportanddistributioncostsofH2asdetailed incertainresearch[IEA,2012a]).OptionslikeCTLfuelsandsugarcaneethanolremaincostcompetitivewithallthemethods,andinallthecircumstances,considered.

    Inamaturemarket(MatureTechnologyScenario),fewoptions(CTLfuels,naturalgas,andsugarcaneethanol) are competitivewithpetroleum fuels atUSD60/bbl (Figure7). Theseoptions remaincostcompetitivewithliquidpetroleumfuelsunderallcircumstances.Fornaturalgas,thisispartlyduetothemoreoptimisticassumptionontransportandrefuellingcostsintheMatureTechnologyScenario.ThisisalsothecaseforcentralisedH2productionpathways,whichbecomemuchcheaperbutremainabovegasolinepricesoncetheyareevaluatedwithoilatUSD60/bbl.Estimatingthe

    fuel

    production

    costs

    with

    the

    Petroleum

    Intensity

    and

    Historical

    Trend

    methods

    highlights

    that

    a

    growthintheoilprice(e.g.toUSD150/bbl)cancompromisethecostcompetitivenessofalternativefuels(suchasbiodieselfromvegetableoil, lignocellulosicethanol,BTLandbioSNG)thatwouldbecheaperthanpetroleumfuelsiftheircostisestimatedwithaconstantoilprice.TheHistoricalTrendMethodleadstosimilarconclusionsforcornethanolandGTLfuels,whichareunaffectedbyoilpriceincreaseswhenanalysedwiththePetroleumIntensityMethodbecauseofthelowoiluseinitsproduction,transport,distributionandrefuellingprocesses.

    Usingtheengineefficiencyvalues(Table10)andtheproductioncostsoffuels(Figures6and7),costperkilometreofdrivingisderivedandexpressedinUSDper100km(USD/100km)(Table11).

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    25/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|23

    Figure6CostoffuelproductioninCurrentTechnologyScenario

    Notes: foreach fuel, three costestimatesare shown: the costatUSD60/bbl, the costatUSD150/bblwhenusing thePetroleumIntensityMethod forpredicting input prices and the cost atUSD150/bblwhenusing inputprices based on theHistorical Trend

    Methodwith

    oil

    price.

    The

    black

    vertical

    lines

    represent

    the

    gasoline

    price

    when

    crude

    oil

    price

    is

    USD

    60/bbl

    (left

    line)

    and

    USD150/bbl(rightline).Fuelswithcoproductsareshiftedlefttoreflectcostreductionswithcoproductcredits.

    10 0 10 20 30 40 50 60 70 80 90 100 110

    Electricity(hydroelectricenergy)

    Electricity(solarPV)

    Electricity(biomass)

    Hydrogen(biomass)

    BioSNG

    LignocellulosicetOH

    BTL

    Sugarcaneethanol

    Cornethanol

    Biodiesel(vegetableoil)

    Electricity(nuclear)

    Hydrogen(nuclear)

    Electricity

    (coal)

    Hydrogen(coal)

    CTL

    Electricity(naturalgas)

    Hydrogen(NG,central)

    Naturalgas

    GTL

    Gasoline

    USD/GJ

    Feedstockcost Inputstreams(nonfeedstock,nonelect.)

    Inputstreams(energy) Electrictyinputcost

    Capitalcosts O&Mcosts

    Coproductgain Fueltransport

    Fuelstorageandrefuelling Referencecost

    USD150/bbl

    USD60/bbl

    USD60/bbl

    USD150/bblPetroleumIntensityMethod

    USD150/bblHistoricTrendMethod

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    26/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|24

    Figure7CostoffuelproductioninMatureTechnologyScenario

    IntheCurrentTechnologyScenario,pathwayswithlowercoststhanliquidpetroleumfuels(gasolineanddieselfuel)whenthecrudepriceisUSD60/bblincludeallelectricitygenerationoptions(mainly

    becauseof

    the

    high

    efficiency

    of

    electric

    motors),

    natural

    gas,

    CTL

    fuels

    and

    sugarcane

    cane

    ethanol.

    ForH2pathways,thebetterfuelefficiencyofvehiclesisnotenoughtocompensateforthehigh

    10 0 10 20 30 40 50 60 70 80 90 100 110

    Electricity(hydroelectricenergy)

    Electricity(solarPV)

    Electricity(biomass)

    Hydrogen(biomass)

    BioSNG

    LignocellulosicetOH

    BTL

    Sugarcaneethanol

    Cornethanol

    Biodiesel(vegetableoil)

    Electricity(nuclear)

    Hydrogen(nuclear)

    Electricity(coal)

    Hydrogen(coal)

    CTL

    Electricity(naturalgas)

    Hydrogen(NG,central)

    Naturalgas

    GTL

    Gasoline

    USD/GJ

    Feedstockcost Inputstreams(nonfeedstock,nonelect.)

    Inputstreams(energy) Electrictyinputcost

    Capitalcosts O&Mcosts

    Coproductgain Fueltransport

    Fuelstorageandrefuelling Referencecost

    USD60/bbl

    USD150/bbl

    USD60/bbl

    USD150/bblPetroleumIntensityMethod

    USD150/bblHistoricTrendMethod

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    27/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|25

    costsperunitofenergyof fuel (including transport,distribution and refuelling resulting fromaforementionedassumptions).AtUSD150/bbl,optionssuchasGTL,cornethanolandconventionalbiodiesel,have lower costsperkilometre thanpetroleum fuels ifcostsareestimatedwith thePetroleumIntensityMethod,butnotwiththeHistoricalTrendMethod.Interestingly,bioSNGisaffectedthe leastbychanges intheestimationmethod,but it isalsoheavily influencedbythe

    assumptionsmade

    on

    refuelling

    costs

    of

    gaseous

    fuels.

    If

    natural

    gas

    prices

    remain

    coupled

    with

    oilprices,GTLisunlikelytobecompetitive(HistoricalTrendMethod).IntheMatureTechnologyScenario,mostof thealternative fueloptionshavea lowercostperkilometre thanpetroleumfuelswhen crude price is atUSD60/bbl.H2 pathways, in particular,have farmore optimisticassumptionsfortransport,distributionandrefuellingcostsperunitofenergy.Significantexceptionsincludeconventionalbiodiesel,lignocellulosicethanol,BTLandbioSNG.Asmostfuelshavecostsper kilometre that are consistently lower or comparable with those of petroleum fuels, theresultsaresimilarwithoilatUSD150/bbl.Inthiscase,however,biofuelssuchas lignocellulosicethanol,BTL,conventionalbiodieselandbioSNGareamongthe leastcompetitiveoptionswithrespecttopetroleumfuels,whiletheperformanceofGTLfuelsdependsstronglyontheevolutionofnaturalgasandoilprices.

    Table11DrivingcostsoffuelscalculatedforCurrentTechnologyScenarioandMatureTechnologyScenario

    whencrudeoilisatUSD60/bblandUSD150/bbl

    Final energy type

    Driving costs (USD/100 km)

    Current Technology Scenario Mature Technology Scenario

    USD 60/bbl

    USD 150/bbl(Petroleum

    IntensityMethod)

    USD 150/bbl(Historical

    TrendMethod)

    USD 60/bbl

    USD 150/bbl(Petroleum

    IntensityMethod)

    USD 150/bbl(Historical

    TrendMethod)

    Gasoline 6.05 15.13 15.13 4.31 10.76 10.76

    Diesel 5.63 14.06 14.06 3.88 9.71 9.71

    GTL 7.75 15.61 13.38 4.56 7.41 8.44

    Natural gas (natural gas) 4.04 5.35 6.50 2.03 1.88 4.02

    H2(natural gas, central) 18.65 20.72 20.68 3.31 3.66 4.85

    Electricity (natural gas) 1.67 2.61 2.86 1.05 1.27 1.95

    CTL 5.44 12.12 8.20 3.21 5.42 5.40

    H2(coal) 18.35 21.46 19.53 2.92 3.60 3.71

    Electricity (coal) 1.72 3.59 2.55 1.11 2.08 1.72

    H2(nuclear energy) 19.12 24.20 20.19 3.06 5.29 3.67

    Electricity (nuclear energy) 2.09 4.36 2.59 3.58 7.65 4.53

    Biodiesel (rapeseed) 10.40 21.49 16.95 5.54 7.27 10.62

    Corn ethanol 9.78 17.75 14.73 4.45 6.12 9.34

    Sugarcane ethanol 6.91 14.01 10.95 4.09 5.39 6.69

    BTL 10.10 26.34 13.88 5.36 11.63 7.89

    Lignocellulosic ethanol 11.82 29.43 14.51 5.50 12.41 7.96

    Bio-SNG 8.45 18.75 10.69 4.51 9.44 6.50

    H2(biomass) 19.66 25.13 20.80 3.67 5.60 4.60

    Electricity (biomass) 2.73 6.59 3.72 1.84 3.94 2.58

    Electricity (solar PV) 3.52 9.24 4.97 1.36 3.45 1.89

    Electricity (hydroelectric energy) 1.77 3.78 2.28 1.15 2.67 1.53

    Note:boldmeanscostsarelowerthangasoline.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    28/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|26

    SensitivityAnalysisandDiscussion

    Inadditiontocrudeoilprices,otherparameterscansignificantlyaffectthetotalestimatedcostofafuel.Asensitivityanalysiswasundertakenusingasimplemethodologyinwhicheachparameterwasalteredintherangeof20%andtheresultingchangeintotalpricewasplottedontheYaxis(Figure8).

    Figure8SensitivityanalysisforselectedalternativefuelsevaluatedatUSD150/bbl

    inCurrentTechnologyScenario

    Conclusionsfromthesensitivityanalysisarecategorisedbyfuelgroup.Forbiomassrelatedfuels,

    the

    most

    sensitive

    parameter

    tends

    to

    be

    plant

    conversion

    efficiency.

    Bio

    SNG

    and

    BTL

    are

    also

    sensitivetocapitalcostassumptionsandgasolineprice.Inaddition,otherbiofuelsaresensitive

    20%

    15%

    10%

    5%

    0%

    5%

    10%

    15%

    20%

    80% 85% 90% 95% 100% 105% 110% 115% 120%

    HydrogenfrombiomassCapitalcosts

    O&Mpercentage

    Quantityofcoproductproduced

    Storageandrefuellingstationcost

    Feedstockcost

    Plantconversionefficiency

    Discountrate

    Biorefinergy liftetime

    Plantloadfactor

    20%

    15%

    10%

    5%

    0%

    5%

    10%

    15%

    20%

    80% 90% 100% 110% 120%

    BTL

    20%

    15%

    10%

    5%

    0%

    5%

    10%

    15%

    20%

    80% 85% 90% 95% 100% 105% 110% 115% 120%

    CTL

    20%

    15%

    10%

    5%

    0%

    5%

    10%

    15%

    20%

    80% 85% 90% 95% 100% 105% 110% 115% 120%

    Cellulosicethanol

    20%

    15%

    10%

    5%

    0%

    5%

    10%

    15%

    20%

    80% 85% 90% 95% 100% 105% 110% 115% 120%

    Biodiesel(vegetableoil)

    Yaxis:percentage

    change

    in

    production

    cost

    Xaxis:percentagechangeinparametervalue

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    29/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|27

    to feedstockprocurementcosts. It isnoteworthy thatCTLandGTLaresensitive toconversionefficiencies,gasolineprice,the IHSCERAIndexandcapitalcosts,whileCNG ismostsensitivetodistributioncosts,gasolinepriceandfeedstockcosts.H2pathwaystendtobemostsensitivetofueltransportationcosts(e.g.pipelinesandtrucks),gasolineprice,andconversionefficiencies.Electricitypathwaystendtobemostsensitivetocapitalcosts,theIHSCERAIndexandgasolineprices.

    Themostsensitiveparameterstendtohaveelasticitiesbetween0.5and0.9(Figure8).Thismeansthata1%changeresultsina0.5%to0.9%changeintheproductioncostofthemostoilpricesensitivefuel.Amongallofthefuelsanalysed,thelargesteffectobservedwastheefficiencyofconversionforrapeseedoil,whichresultedina0.9%increaseincostforevery1%decreaseinefficiency.6Future research should focusonestimating rangesofproduction costsbasedon arangeoninputparameters.ThereisnolargedifferenceinthemagnitudeofsensitivitiesbetweentheCurrentTechnologyScenarioandMatureTechnologyScenario.

    The 11 results in this research paper are mainly consistent with energy providers currentinvestmentchoices:

    Considering

    the

    price

    of

    the

    feedstock,

    sugarcane

    ethanol

    is

    cost

    competitive

    when

    oil

    is

    at

    USD150/bbl.The costcompetiveness at loweroilpricesdependsheavilyon the sugarcanepriceunderconsideration(canepriceaccountsforabout60%ofthefuelsproductioncost).InBrazil,sugarcaneandethanolmillshistorically relyon lowercanepricesandveryhighcaneyields,andtakeadvantageoflargerunitsizesthanthoseassumedhere(andthereforelowercostsperunitoffuel).

    Cornethanol isnotas costcompetitivewithpetroleum fuelswhen theoilprice is close toUSD60/bbl.WithoilpricesclosetoUSD150/bbl,itscostcompetitivenessdependsoncornprices.

    FewCTLplantsexisttoday.TheyareoftenlocatedincoalrichareassuchasSouthAfricaandChina.The increasingcostcompetitivenessofCTL foranoilpriceaboveUSD60/bbljustifiesrecentinterestinthetechnology,especiallyincoalrichareasoftheworld.Ontheotherhand,

    CTLfuels

    are

    associated

    with

    extremely

    high

    greenhouse

    gas

    emissions,

    making

    investment

    riskyunderpotentialfuturecarbonpricing.

    Naturalgasiscurrentlypromotedinmanycountriesasatransportfuel.Theneartermhurdlesrelated to the costof installing refuelling stationsaregenerallyoffsetby subsidies, suchasdifferentiatedtaxation.Countriesthatpromotetheuseofnaturalgasasatransportfuelhavelargeresourcesofnaturalgas.Naturalgasisalsopromotedincountrieswithpoorairquality.Countrieshavinglimitedavailabilityofoilandmorerobustfueldiversificationpoliciesconstituteathirdgroup.

    BioSNGcanbuildontheexperienceofbiogasplants,butitwouldneedtosurpassitscurrentstatetocompetewithgasolineprice. InitialapplicationsofbioSNGmaynotberelevant for

    transport,

    but

    rather

    for

    power

    generation.

    If

    the

    introduction

    of

    natural

    gas

    as

    a

    transport

    fuelprovessuccessfulandbioSNGcanexploitthenaturalgasT&DnetworkthenbioSNGwilllikelybesuitableforlargescaledeployment inthetransportsector.OnemajoradvantageofbioSNGasatransportfuelisitsrelativeimmunitytoincreasesinoilprice.

    Secondgeneration liquidbiofuelsarecurrentlyfacingobstaclestoachievingcostparitywithgasoline,evenwiththeimplementationofpoliciesforrenewablefuelsandadditionaltechnologicalimprovementswillbeneededtoallowtheirlargescaleadoption.Undermaturemarketconditions,theycanachievecostcompetitivenesswithgasoline.Thismaynotbethecaseifmarketeffectsnotincludedinourrathersimplisticmodelcomeintoplay.

    6As

    efficiency

    is

    already

    in

    percentages,

    a10%

    decrease

    in

    efficiency

    refers

    to

    the

    percentage

    as

    awhole

    and

    not

    percentage

    points(e.g.10%of45%efficiencyis4.5%).

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    30/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|28

    Biodieselderivedfromvegetableoilrequiresrelativelylittlecapitalinvestmentanditsproductionisbasedonwellestablishedindustrialprocesses,withlimitedprocessrelatedcostreductionsahead.Nevertheless,asaderivativeofvegetableoil,conventionalbiodiesel ischaracterisedbyrelativelylowyieldsperunitoflandcomparedtootherbiofuels.Additionally,somebiodieselfeedstocks(e.g.palmoil)arecoupledwithenvironmentalproblemssuchasdeforestationandthe

    subsequent

    eutrophication

    of

    water

    bodies.

    These

    issues

    may

    preclude

    their

    use

    on

    the

    large scale. To date, the development of conventional biodiesel has been associatedwithmandatesorothersupportiveprogrammes,suchastaxincentives.Basedontheaboveresults,biodieselishighlysensitivetoincreasesinoilprice,evenunderafullymaturemarketcondition.

    Underamaturemarket,centralisedH2productionpathwaysareexpectedtobecheaperthangasolineonaperkilometrebasis,butnotperunitofenergy.

    Ifmeasured inUSD/GJ,electricityproductionoptions aremore expensive thanmostotherfuels.Themuchhigherefficiencyofelectricmotors(morethandouble)comparedtointernalcombustionengines,however,makesthecostofusingEVscomparativelylowerthanconventionalcars.Thechallengeofelectrifiedtransportexpansionprobablyliesinthevehiclecostgap.

    Fortransport,

    the

    incremental

    costs

    associated

    with

    the

    need

    to

    recharge

    vehicles

    using

    ad

    hoc

    recharging infrastructure have been estimated to be close to USD0.04/kWh if the cost isentirely linked to theelectricityneeded to load thevehicles,andwellbelowUSD0.01/kWh(aboutonetenth as less) if the costof the recharging infrastructure is spreadover all theelectricitysales.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    31/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|29

    Conclusions

    Thisresearchquantifieshowshiftsinoilpricesaffecttheproductioncostsofalternativetransportfuels. One major finding of this report is that several fuels could be costcompetitive withgasoline ifthe impactofhighoilpricesonalternative fuelcosts isnottaken intoaccount.Thisfinding underscores the importance of clearly stating input assumptions in technoeconomicanalyses.Indeed,manybiofuelswouldbefullycostcompetitivewithgasolineathighoilpricesifthepriceoffeedstockcommoditiessuchascereals,sugarcaneandbiomasswasunaffectedbyanincrease in thepriceofoil.However, if risingoilprices affect feedstock costs, the anticipatedcompetitivegainforbiofuelsmaynotmaterialise.

    While theoilprice isnot themostsensitive inputparameter for the fuels investigatedhere, itranksamongthetoptwoorthreemostimportant(outoftheonesexamined)parametersforallfuels.A1%increaseinthegasolinepriceleadsfromniltoa0.48%increaseinproductioncostacrossthe fuels examined. Transport fuels that use biomass as a feedstock, particularly petroleumintensivebiomass suchas forest residue,will likelybe themost sensitive to shifts in crudeoil

    price.Fuels

    such

    as

    nuclear

    electricity,

    hydro

    electricity,

    PV

    electricity,

    and

    H2

    from

    coal

    exhibit

    the least sensitivity towards changes in crudepricebecause fewplaces in their supply chainsrequiretheuseofpetroleumandtheprimaryfeedstocksusedfortheseenergycarriersaremoredistantlyrelatedtocrudemarketsthanotherprimaryfeedstocks.

    Thisanalysisshowsthatfewalternativefuelsarelikelytobecompetitiveonanenergybasiswithoilinthenearterm.Onlysugarcaneethanol,verylargeCTLplants,GTLandnaturalgasareclosetobeingfullycostcompetitivewithgasolineanddieseliftheoilpriceisatUSD60/bbl.

    Inthe longerterm(or inestablishedmarketconditions,beyondaninitialdevelopment),severaloptionsmayachieveacompetitivepositiononanenergybasis,evenwithanoilpriceofUSD60/bbl.Astheoilprice increasesfromthislowerprice,morefuelsbecomecompetitive, includingsome

    electricity

    generation

    pathways.

    When

    compared

    on

    a

    per

    kilometre

    basis,

    nearly

    all

    fuels

    (with

    the importantexceptionofsomebiofueloptions)have lowercoststhangasoline intheMatureScenariowhencrudeisatUSD150/bbl.

    Refuellinginfrastructurecostscanalsohaveasignificantimpactontheintroductionofalternativefuels.Thisissuemeritsscrutinyinthecaseofelectricityandgaseousfuels(includingnaturalgasandH2),and this isextremely relevant in thedeploymentphaseof technologies. Inparticular,accountingforthecostsassociatedwiththe infrastructuredevelopmentwilllikelyaddacostofclosetoUSD0.04/kWhforelectricity,bothinamarketdevelopmentandmaturemarketphase.

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    32/51

    ProductionCostsofAlternativeTransportationFuels:InfluenceofCrudeOilPriceandTechnologyMaturity OECD/IEA2013

    Page|30

    Annexes

    AnnexADescriptionofinputstreamcostmethods

    Thefollowing

    sections

    describe

    the

    reasoning

    that

    underpins

    the

    hypotheses

    taken

    on

    the

    variation

    ofprimaryenergymarketpriceswithrespecttooilprices.

    PetroleumIntensityMethodThismethodlinksthechangesininputstreamcostfromUSD60/bblusingthefollowingformula:

    inputstreamcosti=Bi+(Pi*Cp*K)

    Where Bi is the base cost of commodity i, at USD60/bbl in USD/GJ of feedstock (using theaverage real cost foroilofUSD60/bbl for theyears200010 [IMF,2013]).Pi is thepetroleum

    intensityof

    feedstock

    expressed

    in

    megajoules

    of

    petroleum

    per

    gigajoule

    of

    feedstock

    (using

    GREET[Wang,2007].CpisthecostofpetroleuminUSDpermegajouleandKisthechangeinthepriceofoilawayfromUSD60/bbl(e.g.forUSD100/bbl,thevalueofKisUSD40).

    HistoricalTrendMethodFossilfuels

    Someofthe representativepricesofcoalandnaturalgashaveevolvedasa functionoftheoilprice(Figure9).

    Figure9Monthlycoalandnaturalgaspricesasafunctionoftheoilprice,January2000toOctober2012

    Note:Btu=Britishthermalunit.

    Sources:IMF,2013;BLS,2012.

    0

    100

    200

    300

    400

    500

    600

    700

    Commodityprice(USD2010perunit)

    Oilprice(USD/bbl)

    Naturalgas,Russiannaturalgas

    borderpriceinGermany,USD

    perthousandcubicmetresof

    gas

    Naturalgas,Indonesian

    liquefiednaturalgasinJapan,

    USDpercubicmetreofliquid

    Naturalgas,naturalgasspot

    priceattheHenryHubterminalinLouisiana,USDperthousand

    cubicmetresofgas

    Coal,Australianthermalcoal,

    12000Btuperpound, less

    than1%sulphur,14%ash,FOB

    Newcastle/PortKembla,USD

    permetrictonne

  • 8/21/2019 FeaturedInsights AlternativeFuel FINAL

    33/51

    ProductionCostsofAlternativeTransportationFuels:OECD/IEA2013 InfluenceofCrudeOilPriceandTechnologyMaturity

    Page|31

    Coal

    Inevitably,whenweassumealinkagebetweenthepriceofoilandthepriceofcoalwesimplifytheactualdynamicsofeachmarketconsidered.Adirectsubstitutebetweencoalandpetroleumcanonlybeachieved inthe longrun (i.e.enginesandboilerscannotgenerallyswitchbetween

    coaland

    oil

    without

    major

    machinery

    changes).

    One

    study

    (Ellerman,

    1995)

    suggests

    that

    coal

    is

    now a globally traded commoditywhose longtermprice fluctuations are primarily causedbychangesinproductivityofenergy,labour,capitalandmaterials.

    Historically,coalprices increasedby74%whenoilpricesdoubled.ThisfigurewasderivedfromthevariationofmonthlyoilspotpricesaveragedacrosstheyearandthecorrespondingAustraliancoalexportpricesfrom2000to2010(IMF,2013).

    Naturalgas

    Natural gas and oil prices used to be strongly linked, although the situation is changing fast,becauseoftheexploitationofshalegasinsomeregions.Regionaldifferencescanbeimportantin

    thecase

    of

    the

    gas

    markets.

    Asia,

    for

    example,

    actually

    pegs

    natural

    gas

    prices

    to

    the

    oil

    market

    whereasotherregionsestablishregionspecificmarkets.

    Agriculturalcommodities

    Wheat,corn,andvegetableoils

    Someof the representativepricesofwheat,cornandvegetableoilhave changedwith theoilprice(Figures4and10).

    Figure10Monthlypricesofvegetableoilsasafunctionoftheoilprice,January2000toOctober2012

    Note:FFA=forwardfreightagreement.

    Sources:IMF,2013;BLS,2012.

    Pricetrendsfrom2000to2012showthatrecentoilpriceincreaseshavebeenassociatedwitha

    generalincrease

    in

    the

    price

    of

    commodities

    like

    wheat,

    corn,

    palm

    oil,

    soybean

    oil

    and

    sunflower

    oil.

    0

    500

    1000

    1500

    2000

    2500

    3000

    Commodityprice(USD2010/t)

    Oilprice(USD/bbl)

    Palmoil,Malaysiapalmoil

    futures(firstcontractforward)

    4%to5%FFA

    Rapeseedoil,crude,FOB

    Rotterdam

    Soybeanoil,Chicagosoybean