featuring 2nd-generation high-k + metal-gate and 0.171um2

27
A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171um 2 SRAM Cell Size in a 291Mb Array S. Natarajan , M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He*, R. Heussner, R. James, I. Jin, C. Kenyon, S. Klopcic, S-H. Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae*, C. Parker, C. Pelto, L. Pipes, J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger, C. Weber**, M. Yang, A. Yeoh, K. Zhang Logic Technology Development, *QRE, ** TCAD Intel Corporation

Upload: others

Post on 16-Oct-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate

Transistors, Enhanced Channel Strain and 0.171um2 SRAM Cell Size in a 291Mb Array

S. Natarajan, M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani,

O. Golonzka, W. Han, J. He*, R. Heussner, R. James, I. Jin, C. Kenyon, S. Klopcic, S-H. Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg,

J. Neirynck, P. Packan, S. Pae*, C. Parker, C. Pelto, L. Pipes, J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger,

C. Weber**, M. Yang, A. Yeoh, K. Zhang

Logic Technology Development, *QRE, ** TCADIntel Corporation

Page 2: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

2

Outline

• Process Features• Transistors• Interconnects• Circuits• Conclusions

Page 3: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

3

Process Features

• 32nm Groundrules• 193nm Immersion Lithography• 2nd Generation High-K + Metal Gate • 4th Generation Strained Silicon• 9 Cu Interconnect Layers

– Low-k CDO / SiCN dielectric

• Cu bump with Lead-free Packaging

Page 4: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

4

32nm Design Rules

~0.7x linear scaling from 45nm

Layer Pitch (nm) Thick (nm) Aspect RatioIsolation 140.0 200 --Contacted Gate 112.5 35 --Metal 1 112.5 95 1.7Metal 2 112.5 95 1.7Metal 3 112.5 95 1.7Metal 4 168.8 151 1.8Metal 5 225.0 204 1.8Metal 6 337.6 303 1.8Metal 7 450.1 388 1.7Metal 8 566.5 504 1.8Metal 9 19.4um 8um 1.5

Page 5: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

5

100

1000

250nm 180nm 130nm 90nm 65nm 45nm 32nmTechnology Node

Cont

acte

d G

ate

Pitc

h (n

m)

Contacted Gate Pitch0.7x every 2 years

Contacted Gate Pitch• Transistor gate pitch of 112.5nm • Continues 0.7x per generation scaling

Tightest contacted gate pitch reported for 32nm generation

Pitch

Page 6: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

6

0.1

1

10

250nm 180nm 130nm 90nm 65nm 45nm 32nmTechnology Node

SRAM

Cel

l Are

a (u

m2 ) SRAM Cell Area0.5x every 2 years

SRAM Cells• 0.171 um2 SRAM cell

Transistor density doubles every two years

Page 7: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

7

0.1

1.0

10.0

90nm 65nm 45nm 32nm

SRA

M A

rray

Den

sity

(Mb/

mm

2 )

SRAM Array Density• SRAM array density achieves 4.2 Mb/mm2

– Includes row/column drivers and other circuitry

Array density scales at ~2X per generation

4.2 Mb/mm2

Page 8: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

8

Outline

• Process Features• Transistors• Interconnects• Circuits • Conclusions

Page 9: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

9

Key Transistor Features• 30nm gate length with 112.5nm contacted gate

pitch

• 2nd generation Hi-k + Metal Gate– 0.9nm EOT Hi-K with dual workfunction metal gate

electrodes– Continued use of Replacement Metal Gate approach

• Metal gate deposition after high temperature anneals• Integrated with strained silicon process

– Transistor mask count same as 45nm– Adds ~4% process cost over non hi-k/MG

• 4th generation of strained silicon

Page 10: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

10

Device Characteristics

Excellent Vt roll-off and DIBLWell controlled short channel effects Subthreshold slope ~100 mV/decade

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00Vgs (V)

Id (A

/um

)

SS ~ 98mV/decDIBL ~130mV/V

SS ~ 98mV/decDIBL ~160mV/V

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

25 30 35 40 45Lgate (nm)

Vt (V

)

Vt, Vds=0.05V

Vt, Vds=1.0V

NMOS

PMOS

Vt, Vds=-1.0V

Vt, Vds=-0.05V

NMOSPMOS

Page 11: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

11

Vdd=1.0V

1

10

100

1000

1 1.2 1.4 1.6 1.8 2Idsat (mA/um)

Ioff

(nA

/um

)NMOS IDSAT vs. IOFF

1.55 mA/!m at IOFF = 100 nA/!m14% better than 45nm

112.5 nm

45nm: Mistry, 2007 IEDM

45nm

Page 12: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

12

Vdd=1.0V

1

10

100

1000

0.8 1 1.2 1.4 1.6 1.8|Idsat| (mA/um)

Ioff

(nA

/um

)PMOS IDSAT vs. IOFF

1.31 mA/!m at IOFF = 100 nA/!m22% better than 45nm

32nm PMOS Idsat almost equal to 45nm NMOS Idsat!

112.5 nm

45nm: Mistry, 2007 IEDM

45nm

Page 13: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

13

1

10

100

1000

0.17 0.19 0.21 0.23 0.25 0.27Idlin (mA/um)

Ioff

(nA

/um

)

Vdd = 1.0VVds = 0.05V

NMOS IDLIN vs. IOFF

0.228 mA/!m at IOFF = 100 nA/!m19% better than 45nm

112.5 nm

45nm: Mistry, 2007 IEDM

45nm

Page 14: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

14

Vdd = 1.0VVds = 0.05V

1

10

100

1000

0.14 0.16 0.18 0.2 0.22 0.24 0.26|Idlin| (mA/um)

Ioff

(nA

/um

)PMOS IDLIN vs. IOFF

0.228 mA/!m at IOFF = 100 nA/!m28% better than 45nm

Average 20% NMOS/PMOS Sat/Lin drive current gain over 45nm

45nm: Mistry, 2007 IEDM

45nm

112.5 nm

Page 15: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

15

Transistor Performance vs. Gate Pitch

Highest reported drive current at tightest reported gate pitchSimultaneous performance and density improvement

90nm: Mistry, 2004 VLSI65nm: Tyagi, 2005 IEDM45nm: Mistry, 2007 IEDM

1001000 Contacted Gate Pitch (nm)

IDSA

T (m

A/u

m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PMOS

NMOS

160nm (45nm)

220nm (65nm)

320nm (90nm)

1.0V, 100 nA/!m

Gate Pitch (Generation)

112.5nm (32nm)

1001000 Contacted Gate Pitch (nm)

IDSA

T (m

A/u

m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PMOS

NMOS

160nm (45nm)

220nm (65nm)

320nm (90nm)

1.0V, 100 nA/!m

Gate Pitch (Generation)

112.5nm (32nm)

Page 16: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

16

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

4 6 8 10 12 14 16

Field (MV/cm)

TDD

B (s

ec)

45nmHK+MG

32nmHK+MG

Transistor Reliability - TDDB

32nm supports 10-15% higher E-fieldEnables same voltage with lower EOT

45nm: Mistry, 2007 IEDM

Page 17: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

17

Outline

• Process Features• Transistors• Interconnects• Circuits• Conclusions

Page 18: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

18

Interconnects

• Metal 1-3 pitches match transistor pitch• Graduated upper level pitches optimize density &

performance• Extensive use of low-k ILD and SiCN

Page 19: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

19

Outline

• Process Features• Transistors• Interconnects• Circuits• Conclusions

Page 20: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

20

32nm shuttle with SRAM and key Logic circuitsAllows early co-optimization of process and design

291 Mbit SRAM arrayPROM arrayHigh speed register fileHigh speed I/O circuitsHigh frequency PLL/Clock

Discrete test structures

32nm Shuttle

Page 21: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

21

SRAM Test Vehicle• 291 Mb, 0.171um2 SRAM Cell

– >1.9B transistors– First reported functional operation in Sep ‘07

• Process learning vehicle demonstrates– High yield– High performance– Stable low voltage operation

1.300V +**********************************************.....

1.250V |******************************************** .

1.200V |******************************************* .

1.150V |***************************************** .

1.100V |*************************************** . .

1.050V +***********************************...............

1.000V |******************************** . .

0.950V |**************************** . . .

0.925V +*********.****.*.****..............................

+---------+---------+---------+---------+---------+

2GHz 2.29GHz 2.66GHz 3.2GHz 4GHz 5.33GHz

3.8GHz

1.300V +**********************************************.....

1.250V |******************************************** .

1.200V |******************************************* .

1.150V |***************************************** .

1.100V |*************************************** . .

1.050V +***********************************...............

1.000V |******************************** . .

0.950V |**************************** . . .

0.925V +*********.****.*.****..............................

+---------+---------+---------+---------+---------+

2GHz 2.29GHz 2.66GHz 3.2GHz 4GHz 5.33GHz

3.8GHz

Page 22: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

22

SRAM Vmin

Vmin distribution for 3.25Mb sub-arraysHealthy 770mV median Vmin

Page 23: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

23

Def

ect D

ensi

ty (l

og s

cale

)

SRAM Yield

32nm SRAM yield maintains 2-year cadence

2 Years

Page 24: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

24

Outline

• Process Features• Transistors• Interconnects• Circuits• Conclusions

Page 25: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

25

Conclusions• An industry leading 32nm logic technology is presented• Continues Moore’s law relative to 45nm:

– 0.7x contacted gate pitch scaling– 0.5x SRAM cell size scaling– 2.2x array density scaling

• Record linear and saturated transistor drive currents achieved – Average of 20% improvement in drive current over 45nm

• Healthy yield achieved on 291Mb SRAM with 0.171 um2

SRAM cell size and excellent low voltage operation• Completed development phase on 32nm CMOS

– On track for production readiness in H2’09

Page 26: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

26

Acknowledgements

• The authors gratefully acknowledge the many people in the following organizations at Intel who contributed to this work:– Logic Technology Development – Quality and Reliability Engineering– Technology CAD– Assembly & Test Technology Development

Page 27: Featuring 2nd-Generation High-k + Metal-Gate and 0.171um2

27

For further information on Intel's silicon technology, please visit our Technology & Research page at

www.intel.com/technology