felix dietrich | lcws 2014 | 07.10.2014| target stress analysis at desy felix dietrich (th-wildau),...

27
Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY elix Dietrich (TH-Wildau), James Howarth, abine Riemann (DESY), Friedrich Staufenbiel (DESY), Andry Ushakov (D

Upload: arron-hill

Post on 17-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014|

Target stress Analysis at DESY

Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel (DESY), Andry Ushakov (DESY)

Page 2: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 2

outline

> alternative source

> the models

> implementation in ANSYS

> temperature calculation

> time structure 1 – fine resolution

> time structure 2 – optimal resolution

> result comparison of both time structures

comparison of both models

short time – normal stress in x-direction

short time – normal stress in z-direction

long time – normal stress

SLC vs. Convetional Source

Preliminary results – surface movement

Velocity (preliminary)

Deformation (preliminary)

> conclusion

> outlook

Page 3: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 3

‘conventional’ ILC positron source

> suggestion of T. Omori et al. NIMA672 (2012) 52

> uses beam E=6 GeV

> Target: tungsten t=

> 300 Hz-scheme stretches ILC bunch train (~1ms) up to 63ms

less heat load

rotation is still needed v=5

> ILC time structure at extraction of from damping ring

> average energy deposition in target: 35 kW

> Benchmark for max. load: SLC Target

Page 4: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 4

the target models

> model 1– full target

Fe – ring (ra=135mm)

Ag – ring (ra=130mm)

W-26% – core (ra=120mm)

distance to center of the beam= 10,75 cm

> model 2– beam spot only W-26%

radius of the model r = 2,2cm

beam radius rb= 0,8 cm

> parameter for the models particle shower has been calculated in FLUKA

Page 5: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 5

implementation in ANSYS

> Mesh of the FEM is linked to time structure

is given = speed of sound = 5174

model 1 : 22124 elements

model 2 : 9419 elements

cubic elements

> time structure of the FEM linear rise of the temperature during one mini train less computing time

> calculation & results model 1 – full target : long time analysis, no sufficient resolution in the beam spot

model 2 – beam spot only : short time analysis, but detail simulation of the beam zone

Page 6: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 6

temperature distribution

> FLUKA output describes the energy deposition and is used to calculate the temperature distribution

> good mesh regular and correct temperature rise

Model 1 (full target) Model 2 (beam spot)

Page 7: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 7

time structure – optimal resolution

> temperature rises per Mini - Train by 61,6 K → Tmax=206 °C

> temperature rise for the first triplet (3 Mini-Trains) :

0,0 0,2 0,4 0,6 0,8 1,0 1,2

50

100

150

200

tem

pera

ture

[°C

]

time[µs]

max. Temperatur

Page 8: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 8

result – short time – comparison of the models

> von Mises stress for model 1 (full target) & model 2 (beam spot only)

> both graphs seem to agree well

> model 2 (beam spot only) can be used only for short time analysis; model 1 (full target) has to be used for long-term studies

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

Str

ess[

MP

a]

time[µs]

Stress max (von Mises)

Stress z=1,4cm Stress z=1,375cm Stress z=1,35cm Stress z=1,325cm Stress z=1,3cm Stress z=1,25cm Stress z=1,2cm Stress z=1,15cm Stress z=1,1cm Stress z=1,05cm Stress z=0,9cm

1. Mini-Train2. Mini-Train

3. Mini-Train

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

Str

ess[

MP

a]

time[µs]

Stress max (von Mises)

Stress z=1,4cm Stress z=1,375cm Stress z=1,35cm Stress z=1,325cm Stress z=1,3cm Stress z=1,25cm Stress z=1,2cm Stress z=1,15cm Stress z=1,1cm Stress z=1,05cm Stress z=0,9cm

1. Mini-Train2. Mini-Train

3. Mini-Train

> model 1 (full target) > model 2 (beam spot only)

Page 9: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 9

result – short time – normal stress in x-direction

> short time analysis for both models → equivalent results

> stress is given at the center of the beam at different z-positions

> maximum stress : 438 MPa at the end of the last Mini-Train

> maximum stress not at the surface, at z=1,2 cm

> load changes of 549 MPa

0,0 0,5 1,0 1,5 2,0 2,5 3,0-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

Str

ess[

MP

a]

time[µs]

Px z=1,4cm Px z=1,3cm Px z=1,2cm Px z=1,1cm Px z=1,0cm Px z=0,9cm Px z=0,8cm Px z=0,7cm Px z=0,6cm Px z=0,5cm Px z=0,4cm Px z=0,3cm Px z=0,2cm Px z=0,1cm Px z=0,0cm

1. Mini-Train2. Mini-Train

3. Mini-Train

0,0 0,5 1,0 1,5 2,0 2,5 3,0-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

Str

ess[

MP

a]

time[µs]

Px z=1,4cm Px z=1,3cm Px z=1,2cm Px z=1,1cm Px z=1,0cm Px z=0,9cm Px z=0,8cm Px z=0,7cm Px z=0,6cm Px z=0,5cm Px z=0,4cm Px z=0,3cm Px z=0,2cm Px z=0,1cm Px z=0,0cm

2. Mini- Train1. Mini- Train 3rd Mini- Train

> model 1 (full target) > model 2 (beam spot only)

Page 10: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 10

result – short time – normal stress in z-direction

> short time analysis for both models → equivalent results

> stress is given at the center of the beam at different z-positions

> maximum stress 408 MPa during the last Mini-Train

> maximum stress not at the surface, at z=0,9 cm

> maximum load change : 644 MPa

0,0 0,5 1,0 1,5 2,0 2,5 3,0-450-400-350-300-250-200-150-100-50

050

100150200250300350400

Str

ess[

MP

a]

Zeit[µs]

Pz z=1,4cm Pz z=1,3cm Pz z=1,2cm Pz z=1,1cm Pz z=1,0cm Pz z=0,9cm Pz z=0,8cm Pz z=0,7cm Pz z=0,6cm Pz z=0,5cm Pz z=0,4cm Pz z=0,3cm Pz z=0,2cm Pz z=0,1cm Pz z=0,0cm

1. Mini-Train2. Mini-Train

3. Mini-Train

0,0 0,5 1,0 1,5 2,0 2,5 3,0-450-400-350-300-250-200-150-100-50

050

100150200250300350

2. Mini-Train1. Mini-Train

Str

ess[

MP

a]

Zeit[µs]

Pz z=1,4cm Pz z=1,3cm Pz z=1,2cm Pz z=1,1cm Pz z=1,0cm Pz z=0,9cm Pz z=0,8cm Pz z=0,7cm Pz z=0,6cm Pz z=0,5cm Pz z=0,4cm Pz z=0,3cm Pz z=0,2cm Pz z=0,1cm Pz z=0,0cm

3. Mini-Train

> model 1 (full target) > model 2 (beam spot only)

Page 11: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 11

result – long time – normal stress at z-axis

> x-direction > z-direction

> only model 1 (full target) is suitable

> small amplitude in x-direction→ but high static stress

> Stress amplitudes in z-direction depend strongly on z-positions

> Basic frequency in z-direction: 4,5 µs (corresponds to doubled target thickness

22 24 26 28 30-200

-150

-100

-50

0

50

Str

ess[

MP

a]

time[µs]

Pz z=1,4cm Pz z=1,3cm Pz z=1,2cm Pz z=1,1cm Pz z=1,0cm Pz z=0,9cm Pz z=0,8cm Pz z=0,7cm Pz z=0,6cm Pz z=0,5cm Pz z=0,4cm Pz z=0,3cm Pz z=0,2cm Pz z=0,1cm Pz z=0,0cm

22 24 26 28 30-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

100

150

200

Str

ess[

MP

a]

time[µs]

Px z=1,4cm Px z=1,3cm Px z=1,2cm Px z=1,1cm Px z=1,0cm Px z=0,9cm Px z=0,8cm Px z=0,7cm Px z=0,6cm Px z=0,5cm Px z=0,4cm Px z=0,3cm Px z=0,2cm Px z=0,1cm Px z=0,0cm ~4,5µs

Page 12: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 12

y

Preliminary results – surface movement

> evaluate displacement and velocity at the exit side

> data is collected at a line through the center of the beam spot up to +/-16 mm away from the beam spot center

y

t=0 t>0

Page 13: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 13

Result – velocity (preliminary)

> shows velocity at the exit side at the center and +/-16 mm from the center with a stepping of 1mm

> max. elongation while heating

> highest speed obtained in z – direction in the center

> lowest speed obtained in x – direction in the center

x-direction z-direction

Page 14: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 14

Result – Deformation (preliminary)

x-direction z-direction

> shows deformation at the exit side at the center and +/-16 mm from the center with a stepping of 1mm

> max. elongation while heating

> highest deformation obtained in z – direction in the center; ~6.5 mm

> highest deformation obtained in x – direction at 8mm; ~3 mm

> Deformation amplitudes ~few mm

Page 15: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 15

Stress at the SLC target

> SLC-Target stress analysis re-done by J. Howarth Oscillations probably due to non-optimal time steps; will be reconsidered

> At t ≈ 0: Max normal stress ≈1GPa, but von Mises stress is zero

J. Howarth

Page 16: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 16

Stress at the SLC target

> Normal stress load cycle values of ~1000MPa (Howarth et al.) compared to von Mises stress load cycles of 550MPa (W. Stein)

> J. Howarth could reproduce the result of W. Stein et al. using larger time steps and mesh size

> Dynamic peak stress values in SLC target probably higher than in 300Hz target

J. HowarthSLC-PUB-9437, Stein et al.; Dsmax,vM ≈ 550MPa

Page 17: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 17

SLC vs. 300Hz conventional Source

> SLC-Target stress analysis done by J. Howard Oscillations probably due to non-optimal time steps; will be reconsidered

> SLC: one bunch/train, DT ~ 200K within few tens ps 300Hz scheme: energy deposition per mini-train DT ~ 200K within 1ms

> SLC target stress shows probably substantially higher peak values than stress in the 300Hz target

> Further studies needed

0,00 0,05 0,10 0,15 0,20 0,25 0,30

-1000

-750

-500

-250

0

250

500

750

1000

W25Re SLAC Target1 Bunch, T=240K

von-Mises Stress Original Normal Z Original Normal X Original von-Mises Stress Fine Normal Z Fine Normal X Fine

Beam

spot E

xit S

urface

Stress

[MP

a]

time [µs]

0,0 0,5 1,0 1,5 2,0 2,5 3,0-450-400-350-300-250-200-150-100-50

050

100150200250300350400

Str

ess[

MP

a]

Zeit[µs]

Pz z=1,4cm Pz z=1,3cm Pz z=1,2cm Pz z=1,1cm Pz z=1,0cm Pz z=0,9cm Pz z=0,8cm Pz z=0,7cm Pz z=0,6cm Pz z=0,5cm Pz z=0,4cm Pz z=0,3cm Pz z=0,2cm Pz z=0,1cm Pz z=0,0cm

1. Mini-Train2. Mini-Train

3. Mini-Train

-- normal stress x,y-- normal stress z

Page 18: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 18

conclusions

> 300Hz target: maximum Mises stress : 392 MPa Von Mises stress is always positive not suitable for load change evaluation

> 300Hz target: maximum normal stress in z direction 437MPa, maximum is about 3mm - 4mm beneath the surface

> max load change in z direction is 643MPa; higher than the limit of 589 MPa → early material dysfunction possible

> 300Hz target: deformation and speed of deformation (preliminary): z-direction = highest speed/deformation in the center

x-direction = highest speed/deformation at 8 mm from the center

max displacement values are below 10mm

> Dynamic stress in SLC target probably higher than in 300Hz target due to the energy deposition in much shorter time (studies will be continued)

> Considering the target stress, the 300 Hz-scheme should work

Page 19: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 19

outlook

> simulation for a longer period: more triplets

with target rotation

Detailed comparison with stress in SLC target

> degradation of the target material new stress simulation with modified material parameters

Update/confirmation of target parameters

Page 20: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 20

thank you for your attention

Page 21: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 21

Back up

> Zeitliche Grenzen des model 2

> r → Radius

cs → Schallgeschwindigkeit

Page 22: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 22

time structure 1 – fine resolution

> temperature rise per bunch by 1,4 K → Tmax=206 °C

> temperature rise for the first Triplet:

0,0 0,2 0,4 0,6 0,8 1,0 1,2

50

100

150

200

tem

pera

ture

[°C

]

time[µs]

max. Temperatur

Slide weglassen – ggf ins backup

Page 23: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 23

results – short time– comparison of the time structures

> Von Mises stress of model 2 (beam spot only) with time structure1 (fine resolution) & time structure 2 (optimal resolution)

> both graphs are equally sufficient → time structure 2 (optimal resolution) can be used instead of time structure 1 (fine resolution) → less computing time

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

Str

ess[

MP

a]

time[µs]

Stress max (von Mises)

Stress z=1,4cm Stress z=1,375cm Stress z=1,35cm Stress z=1,325cm Stress z=1,3cm Stress z=1,25cm Stress z=1,2cm Stress z=1,15cm Stress z=1,1cm Stress z=1,05cm Stress z=0,9cm

1. Mini-Train2. Mini-Train

3. Mini-Train

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

Str

ess[

MP

a]

time[µs]

Stress max (von Mises)

Stress z=1,4cm Stress z=1,375cm Stress z=1,35cm Stress z=1,325cm Stress z=1,3cm Stress z=1,25cm Stress z=1,2cm Stress z=1,15cm Stress z=1,1cm Stress z=1,05cm Stress z=0,9cm

1. Mini-Train2. Mini-Train

3. Mini-Train

> time structure 1 (fine resolution) > time structure 2 (optimal resolution)

Page 24: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 24

Addition

0,0 0,2 0,4 0,6 0,8 1,00

100

200

300

400 stress(z=0,014m) stress(z=0,0135m) stress(z=0,013m) stress(z=0,0125m) stress(z=0,012m) stress(z=0,0115m) stress(z=0,011m)

stre

ss [M

Pa]

time [µs]

Page 25: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 25

Addition

> 0,3

Page 26: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 26

Addition

0,0 0,5 1,0 1,5 2,0 2,5 3,00

50

100

150

200

250

300

350

400

450

stre

ss[M

Pa]

time[µs]

stress_max longtime stress_max shorttime

Page 27: Felix Dietrich | LCWS 2014 | 07.10.2014| Target stress Analysis at DESY Felix Dietrich (TH-Wildau), James Howarth, Sabine Riemann (DESY), Friedrich Staufenbiel

Felix Dietrich | LCWS 2014 | 07.10.2014 | page 27

time structure 1 – fine resolution

> temperature rise per bunch by 1,4 K → Tmax=206 °C

> temperature rise for the first Triplet:

0,0 0,2 0,4 0,6 0,8 1,0 1,2

50

100

150

200

tem

pera

ture

[°C

]

time[µs]

max. Temperatur

Slide weglassen – ggf ins backup