fig. 17-5

28
Fig. 17-5 Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon)

Upload: lucus

Post on 15-Jan-2016

33 views

Category:

Documents


0 download

DESCRIPTION

Fig. 17-5. Second mRNA base. First mRNA base (5  end of codon). Third mRNA base (3  end of codon). the mechanism of translation. Amino acids. Polypeptide. tRNA with amino acid attached. Ribosome. Trp. Phe. Gly. tRNA. Anticodon. Codons. 5 . 3 . mRNA. 3 . Amino acid - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fig. 17-5

Fig. 17-5Second mRNA base

Firs

t mRN

A ba

se (5

end

of c

odon

)

Third

mRN

A ba

se (3

end

of c

odon

)

Page 2: Fig. 17-5

Polypeptide

Ribosome

Aminoacids

tRNA withamino acidattached

tRNA

Anticodon

Trp

Phe Gly

Codons 35

mRNA

the mechanism of translation

Page 3: Fig. 17-5

Fig. 17-14

Amino acidattachment site

3

5

Hydrogenbonds

Anticodon

(a) Two-dimensional structure

Amino acidattachment site

5

3

Hydrogenbonds

3 5AnticodonAnticodon

(c) Symbol used in this book(b) Three-dimensional structure

Page 4: Fig. 17-5

Amino acid Aminoacyl-tRNAsynthetase (enzyme)

ATP

AdenosineP P P

AdenosineP

PP i

PPi

i

tRNA

tRNA

Aminoacyl-tRNAsynthetase

Computer modelAMPAdenosineP

Aminoacyl-tRNA(“charged tRNA”)

Attaching amino acids to tRNAs:Amino-acyl tRNA synthases

-20 different synthases-Require ATP-Each must be specific to the right amino acid and tRNA(s)

Page 5: Fig. 17-5

tRNAGLN

Aminoacyl-tRNA synthase(ATSGLN)

Adenylated Glutamine

Page 6: Fig. 17-5

Fig. 17-16b

P site (Peptidyl-tRNAbinding site) A site (Aminoacyl-

tRNA binding site)E site(Exit site)

mRNAbinding site

Largesubunit

Smallsubunit

(b) Schematic model showing binding sites

Next amino acidto be added topolypeptide chain

Amino end Growing polypeptide

mRNAtRNA

E P A

E

Codons

(c) Schematic model with mRNA and tRNA

5

3

Page 7: Fig. 17-5

The Ribosome

LSU

SSU

Page 8: Fig. 17-5

Fig. 17-18-1

Amino endof polypeptide

mRNA

5

3E

Psite

Asite

Page 9: Fig. 17-5

Fig. 17-18-2

Amino endof polypeptide

mRNA

5

3E

Psite

Asite

GTP

GDP

E

P A

Page 10: Fig. 17-5

Fig. 17-18-3

Amino endof polypeptide

mRNA

5

3E

Psite

Asite

GTP

GDP

E

P A

E

P A

Page 11: Fig. 17-5

Peptide bond formation- Transfer of growing chain from tRNA in P site to tRNA in A site

Page 12: Fig. 17-5

Fig. 17-18-3

Amino endof polypeptide

mRNA

5

3E

Psite

Asite

GTP

GDP

E

P A

E

P A

Page 13: Fig. 17-5

Fig. 17-18-4

Amino endof polypeptide

mRNA

5

3E

Psite

Asite

GTP

GDP

E

P A

E

P A

GDPGTP

Ribosome ready fornext aminoacyl tRNA

E

P A

Page 14: Fig. 17-5

Fig. 17-17

3355U

UA

ACGMet

GTP GDPInitiator

tRNA

mRNA5 3

Start codon

mRNA binding siteSmallribosomalsubunit

5

P site

Translation initiation complex

3

E A

Met

Largeribosomalsubunit

Initiating translation

Page 15: Fig. 17-5

Fig. 17-19-1

Releasefactor

3

5Stop codon(UAG, UAA, or UGA)

Terminating translation

Page 16: Fig. 17-5

Fig. 17-19-2

Releasefactor

3

5Stop codon(UAG, UAA, or UGA)

5

32

Freepolypeptide

2 GDP

GTP

Terminating translation

Page 17: Fig. 17-5

Fig. 17-19-3

Releasefactor

3

5Stop codon(UAG, UAA, or UGA)

5

32

Freepolypeptide

2 GDP

GTP

5

3

Terminating translation

Page 18: Fig. 17-5

Fig. 17-20

Growingpolypeptides

Completedpolypeptide

Incomingribosomalsubunits

Start ofmRNA(5 end)

PolyribosomeEnd ofmRNA(3 end)

(a)

Ribosomes

mRNA

(b) 0.1 µm

Page 19: Fig. 17-5

Second mRNA base

Firs

t mRN

A ba

se (5

end

of c

odon

)

Third

mRN

A ba

se (3

end

of c

odon

)

The genetic code:-read in triplet codons

-once a start codon is specified, codons are read in order (5’ to 3) until a “stop” codon is read

-redundant

-unambiguous

-universal*

Page 20: Fig. 17-5

DNA sequence

RNA sequence

Amino acid sequence

Protein structure and function

tRNAGLN

Aminoacyl-tRNA synthase(ATSGLN)

Adenylated Glutamine

Page 21: Fig. 17-5

tRNAGLN

Aminoacyl-tRNA synthase(ATSGLN)

Adenylated Glutamine

Altered DNA sequence

Altered RNA sequence

Altered (?) Amino acid sequence

Altered (?) Protein structure and function

Page 22: Fig. 17-5

Fig. 5-17Nonpolar

Glycine(Gly or G)

Alanine(Ala or A)

Valine(Val or V)

Leucine(Leu or L)

Isoleucine(Ile or I)

Methionine(Met or M)

Phenylalanine(Phe or F)

Trypotphan(Trp or W)

Proline(Pro or P)

Polar

Serine(Ser or S)

Threonine(Thr or T)

Cysteine(Cys or C)

Tyrosine(Tyr or Y)

Asparagine(Asn or N)

Glutamine(Gln or Q)

Electricallycharged

Acidic Basic

Aspartic acid(Asp or D)

Glutamic acid(Glu or E)

Lysine(Lys or K)

Arginine(Arg or R)

Histidine(His or H)

The 20 amino acids

Page 23: Fig. 17-5

Fig. 17-23a

Wild type

3DNA templatestrand

3

355

5mRNA

Protein

Amino endStop

Carboxyl end

A instead of G

33

3

U instead of C

55

5

Stop

Silent (no effect on amino acid sequence)

Page 24: Fig. 17-5

Fig. 17-23a

Wild type

3DNA templatestrand

3

355

5mRNA

Protein

Amino endStop

Carboxyl end

A instead of G

33

3

U instead of C

55

5

Stop

Silent (no effect on amino acid sequence)

Page 25: Fig. 17-5

Fig. 17-23b

Wild type

DNA templatestrand

35

mRNA

Protein

5

Amino endStop

Carboxyl end

53

3

T instead of C

A instead of G

33

3

5

5

5

Stop

Missense

Page 26: Fig. 17-5

Fig. 17-22

Wild-type hemoglobin DNA

mRNA

Mutant hemoglobin DNA

mRNA

33

3

3

3

3

55

5

55

5

C CT T TTG GA A AA

A A AGG U

Normal hemoglobin Sickle-cell hemoglobin

Glu Val

Page 27: Fig. 17-5

Fig. 17-23cWild type

DNA templatestrand

35

mRNA

Protein

5

Amino endStop

Carboxyl end

53

3

A instead of T

U instead of A

33

3

5

5

5

Stop

Nonsense

Page 28: Fig. 17-5

Fig. 17-23e

Wild type

DNA templatestrand

35

mRNA

Protein

5

Amino end

Stop

Carboxyl end

53

3

missing

missing

33

3

5

5

5

Frameshift causing extensive missense (1 base-pair deletion)