fig. 6.1(a) fig. 6.1(b) - purdue university

18
ME 323: Mechanics of Materials Homework Set 6 Fall 2019 Due: Wednesday, October 9 Problem 6.1 (10 points): A design decision is to be taken based on whether a beam can support higher flexural stresses in an I-configuration (Fig 6.1(a)), or an H-configuration (Fig 6.1(b)), considering plane of bending is the plane. Assuming that both cross sections are symmetric about the origins placed at the respective centroids: a) Determine the second area moment of inertia of the two cross sections, $$ % and $$ & . b) Determine which cross section would experience a lower magnitude of maximum flexural stress for the same loading conditions. Fig. 6.1(a) Fig. 6.1(b)

Upload: others

Post on 24-Feb-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

ME 323: Mechanics of Materials Homework Set 6

Fall 2019 Due: Wednesday, October 9

Problem 6.1 (10 points): A design decision is to be taken based on whether a beam can support higher flexural stresses in an I-configuration (Fig 6.1(a)), or an H-configuration (Fig 6.1(b)), considering plane of bending is the ๐‘ฅ๐‘ฆ plane. Assuming that both cross sections are symmetric about the origins placed at the respective centroids:

a) Determine the second area moment of inertia of the two cross sections, ๐ผ$$% and ๐ผ$$& . b) Determine which cross section would experience a lower magnitude of maximum flexural

stress for the same loading conditions.

Fig. 6.1(a) Fig. 6.1(b)

Solution Part a) Cross section (1): The net area moment of inertia for cross section may be determined by subtracting the area moment of inertias of the two rectangular holes (of size ๐‘ ร— 0.4๐‘) from the area moment of inertia of the larger rectangle (of size 1.4๐‘ ร— ๐‘) about the ๐‘ง axis. Note that the holes also have their centroids at the ๐‘ง axis.

๐ผ$$% =112 ๐‘

(1.2๐‘)2 โˆ’ 2๐ผ4567 = 0.144๐‘8 โˆ’ 2 9112 ร— 0.45๐‘ ร— ๐‘

2;

=> ๐ผ$$% = 0.144๐‘8 โˆ’ 0.075๐‘8 = 0.069๐‘8

[1.1]

Cross section (2): The net area moment of inertia for cross section may be determined by adding the area moment of inertias of the web, and the two flange sections that have their centroids at the ๐‘ง axis.

โˆด ๐ผ$$& = ๐ผB7C + 2๐ผE6FGH7 =112(๐‘)(0.1๐‘)2 +

212(0.1๐‘)(๐‘)2 = 0.0168๐‘8 [1.2]

Part b) Since both cross sections are symmetric about the z axis, the distance from the centroid to the top, and bottom is same in each case, i.e.

๐‘ฆJFK,(%) = 0.6๐‘; ๐‘ฆJFK,(&) = 0.5๐‘ [1.3]

The loading conditions being same for both the configurations, ๐‘€OPQ can be considered as the maximum bending moment

๐œŽOPQ% =๐‘€JFK๐‘ฆJFK,(%)

๐ผ$$%= 8.695๐‘S2๐‘€JFK

[1.4]

๐œŽJFK& =๐‘€JFK๐‘ฆJFK,(&)

๐ผ$$&= 29.76๐‘S2๐‘€JFK

[1.5]

Since, cross section (1) experiences a lower magnitude of flexural stress, it can support larger loads before elastic failure.

Problem 6.2 (10 points): A cantilevered beam AE of length ๐ฟ is subjected to a uniformly distributed downward load ๐‘V(Force/length) between A and B, a concentrated moment ๐‘€W at C and a point force ๐‘ƒacting upwards at D. The bending moment diagram corresponding to the applied load is shown in Fig 6.1(a). The cross section of the beam is shown in Fig 6.1(b).

Assuming ๐‘žV =Z[\]^_

,๐‘€W = ๐‘˜&๐‘€V, ๐‘ƒ =Za\]^

a) Determine the numerical values of ๐‘˜%, ๐‘˜&, and ๐‘˜2. b) Determine the second area moment of inertia of the cross section about its centroid ๐ผb in

terms of ๐‘8. c) Determine the location (๐‘ฅ) where the cross-section experiences zero flexural stress. d) Determine the (๐‘ฅ, ๐‘ฆ) coordinates where maximum tensile stress is experienced, and the

(๐‘ฅ, ๐‘ฆ) coordinates where maximum compressive stress is experienced. Also calculate the magnitude of the corresponding stresses.

Hint: Check both the positive, and negative extremes of bending moment.

Fig. 6.2 (a)

Fig. 6.2 (b)

Solution

FBD:

Equilibrium equations:

ฮฃ๐นe :๐‘žV๐ฟ2 + ๐‘ƒ โˆ’ ๐ธe = 0

=>๐ธe = ๐‘ƒ โˆ’๐‘žV๐ฟ2 =

๐‘€V

๐ฟ 9โˆ’๐‘˜%2 + ๐‘˜2;

[2.1]

ฮฃ๐‘€h :๐‘žV๐ฟ2 9

3๐ฟ4 ; โˆ’๐‘€W โˆ’ ๐‘ƒ 9

๐ฟ8; + ๐‘€h = 0

=> ๐‘€h = ๐‘˜&๐‘€V +๐‘˜2๐‘€V

8 โˆ’38๐‘˜%๐‘€V = ๐‘€V 9โˆ’

38๐‘˜% + ๐‘˜& +

๐‘˜28 ;

[2.2]

Part a)

The shear force and bending moment equations for each section can be written using the following two formulae:

๐‘‰(๐‘ฅ&) = ๐‘‰(๐‘ฅ%) + k ๐‘(๐œ)๐‘‘๐œ

K_

K[

[2.3]

Fig. 6.2 (c)

๐‘€(๐‘ฅ&) = ๐‘€(๐‘ฅ%) + k ๐‘‰(๐œ)๐‘‘๐œ

K_

K[

[2.4]

Section AB:

๐‘‰(๐‘ฅ) = ๐‘‰(0) + kโˆ’๐‘žV๐‘‘๐‘ฅK

V

= 0 โˆ’ ๐‘žV๐‘ฅ; ๐‘‰ 9๐ฟ2; = โˆ’

๐‘˜%๐‘€V

2๐ฟ [2.5]

๐‘€(๐‘ฅ) = ๐‘€(0) + kโˆ’๐‘žV๐‘ฅ๐‘‘๐‘ฅK

V

= โˆ’๐‘žV๐‘ฅ&

2 ;๐‘€ 9๐ฟ2; = โˆ’

๐‘˜%๐‘€V

8 [2.6]

Section BC:

๐‘‰(๐‘ฅ) = ๐‘‰ 9๐ฟ2; +

k0๐‘‘๐‘ฅK

^&

= โˆ’๐‘˜%๐‘€V

2๐ฟ ; ๐‘‰ 93๐ฟ4 ; = โˆ’

๐‘˜%๐‘€V

2๐ฟ [2.7]

๐‘€(๐‘ฅ) = ๐‘€ 9๐ฟ2; +

k๐‘‰(๐‘ฅ)๐‘‘๐‘ฅK

^&

= โˆ’๐‘˜%๐‘€V

8 โˆ’๐‘˜%๐‘€V

2๐ฟ 9๐‘ฅ โˆ’๐ฟ2; =

๐‘˜%๐‘€V

8 โˆ’๐‘˜%๐‘€V๐‘ฅ2๐ฟ ;

๐‘€93๐ฟ4 ; = โˆ’

๐‘˜%๐‘€V

4

[2.8]

๐‘‰ 93๐ฟ4 ;

n

= ๐‘‰ 93๐ฟ4 ;

S

= โˆ’๐‘˜%๐‘€V

2๐ฟ ; ๐‘€ 93๐ฟ4 ;

n

= ๐‘€ 93๐ฟ4 ;

S

+๐‘€W = ๐‘€V 9โˆ’๐‘˜%4 + ๐‘˜&;

[2.9]

Section CD:

๐‘‰(๐‘ฅ) = ๐‘‰ 93๐ฟ4 ;

n

+ k0๐‘‘๐‘ฅK

2^8

= โˆ’๐‘˜%๐‘€V

2๐ฟ ; ๐‘‰ 97๐ฟ8 ; = โˆ’

๐‘˜%๐‘€V

2๐ฟ [2.10]

๐‘€(๐‘ฅ) = ๐‘€ 93๐ฟ4 ;

n

+ k๐‘‰(๐‘ฅ)๐‘‘๐‘ฅK

2^8

= ๐‘€V 9โˆ’๐‘˜%4 + ๐‘˜&; โˆ’

๐‘˜%๐‘€V

2๐ฟ 9๐‘ฅ โˆ’3๐ฟ4 ;

= ๐‘€V 9๐‘˜%8 + ๐‘˜&; โˆ’

๐‘˜%๐‘€V๐‘ฅ2๐ฟ ;

๐‘€97๐ฟ8 ; = ๐‘€V 9

โˆ’5๐‘˜%16 + ๐‘˜&;

[2.11]

๐‘‰ 97๐ฟ8 ;

n

= ๐‘‰ 97๐ฟ8 ;

S

+ ๐‘ƒ =๐‘€V

๐ฟ 9โˆ’๐‘˜%2 + ๐‘˜2; ;

๐‘€ 97๐ฟ8 ;

n

= ๐‘€ 97๐ฟ8 ;

S

= ๐‘€V 9โˆ’5๐‘˜%16 + ๐‘˜&;

[2.12]

Section DE:

๐‘‰(๐‘ฅ) = ๐‘‰ 97๐ฟ8 ;

n

+ k0๐‘‘๐‘ฅK

o^p

=๐‘€V

๐ฟ 9โˆ’๐‘˜%2 + ๐‘˜2;; ๐‘‰(๐ฟ) = ๐ธe =

๐‘€V

๐ฟ 9โˆ’๐‘˜%2 + ๐‘˜2;

[2.13]

๐‘€(๐‘ฅ) = ๐‘€ 97๐ฟ8 ;

n

+ k๐‘‰(๐‘ฅ)๐‘‘๐‘ฅK

o^p

= ๐‘€V 9โˆ’5๐‘˜%16 + ๐‘˜&; +

๐‘€V

๐ฟ 9โˆ’๐‘˜%2 + ๐‘˜2; q๐‘ฅ โˆ’

7๐ฟ8r

= ๐‘€V 9๐‘˜%8 + ๐‘˜& โˆ’

7๐‘˜28 ; +

๐‘€V๐‘ฅ๐ฟ 9โˆ’

๐‘˜%2 + ๐‘˜2; ;

๐‘€(๐ฟ) = ๐‘€h = ๐‘€V 9โˆ’3๐‘˜%8 + ๐‘˜& +

๐‘˜28 ;

[2.14]

Using the moment values at certain lengths from the equations above,

๐‘€s^&t = โˆ’Z[\]

p= โˆ’0.3๐‘€V (from Fig. 6.2 (a))

โŸน ๐‘˜% = 2.4

[2.15]

๐‘€so^ptn= ๐‘€V sโˆ’

vZ[%w+ ๐‘˜&t = โˆ’0.7๐‘€V (from Fig. 6.2 (a))

โŸน ๐‘˜& = 0.05

[2.16]

๐‘€(๐ฟ) = ๐‘€V sโˆ’2Z[p+ ๐‘˜& +

Zapt = 0.2๐‘€V (from Fig. 6.2 (a)) [2.17]

โŸน ๐‘˜2 = 8.4

Part b)

To find the centroid of the area, by considering the top surface to be ๐‘ฆ = 0 just for this purpose,

๐ด% = 0.3๐‘&;๐ด& = 0.35๐‘& [2.18]

๐‘ฆ% = โˆ’0.15๐‘;๐‘ฆ& = โˆ’0.53๐‘; [2.19]

The y-coordinate of the centroid, ๐‘ฆy can be found out by using,

๐‘ฆy =๐ด%๐‘ฆ% + ๐ด&๐‘ฆ&๐ด% + ๐ด&

= โˆ’0.355๐‘ [2.20]

From the fig below, second area moment of inertia ๐ผ$

๐ผ% =๐‘โ„Ž2

12 + ๐ด%(๐‘ฆy โˆ’ ๐‘ฆ%)& =112๐‘

(0.3๐‘)2 + 0.3๐‘&(0.082๐‘)& = 0.015๐‘8 [2.21]

๐ผ& =๐‘โ„Ž2

36 + ๐ด&(๐‘ฆy โˆ’ ๐‘ฆ&)& =136๐‘

(0.7๐‘)2 + 0.35๐‘&(0.301๐‘)& = 0.0202๐‘8

๐ผb = ๐ผ% + ๐ผ& = 0.0355๐‘8

[2.22]

Part c)

The flexural stress can be denoted as ๐œŽK = โˆ’\e{

, hence the flexural stress is zero across the whole

cross-section when ๐‘€ is 0. Here, ๐‘€ = 0 at ๐‘ฅ = 0 and o^p< ๐‘ฅ < ๐ฟ. To find another ๐‘ฅ, the moment

in section DE is:

Fig. 6.2 (d)

๐‘€(๐‘ฅ) = ๐‘€V 9๐‘˜%8 + ๐‘˜& โˆ’

7๐‘˜28 ; +

๐‘€V๐‘ฅ๐ฟ 9โˆ’

๐‘˜%2 + ๐‘˜2; = 0

โŸน ๐‘ฅ = 0.972๐ฟ

[2.23]

Hence, ๐œŽK = 0 at ๐‘ฅ = 0 and ๐‘ฅ = 0.927๐ฟ.

Part d)

Maximum bending moment from the Fig. 6.2 (a) is ๐‘€JFK = โˆ’0.7๐‘€V

๐œŽ}7G~๏ฟฝ67 =โˆ’๐‘€๐‘ฆ๐‘ก๐‘œ๐‘

๐ผ=0.7๐‘€V(0.355๐‘)0.0355๐‘8 = 7๐‘€V๐‘S2

๐œŽ๏ฟฝ5J๏ฟฝ๏ฟฝ7~~๏ฟฝ๏ฟฝ7 =โˆ’๐‘€๐‘ฆ๐‘๐‘œ๐‘ก๐‘ก๐‘œ๐‘š

๐ผ=โˆ’0.7๐‘€V(๐‘ โˆ’ 0.355๐‘)

0.0355๐‘8 = โˆ’12.72๐‘€V๐‘S2

[4.11]

Problem 6.3 (10 points): A beam AF is loaded as shown in Fig. 6.3 (a) and its cross-section is shown in Fig. 6.3 (b). Find:

a) Draw the shear force diagram. b) Draw the bending moment diagram. c) Determine the maximum normal stress in the beam. d) Determine the maximum shear stress in the beam.

Take the dimension a = 2 cm in Fig. 6.3 (b)

Fig. 6.3 (a)

Fig. 6.3 (b)

Solution

FBD:

Equilibrium equations:

ฮฃ๐นe:๐ดe โˆ’ 1200 โˆ’ 1600 + ๐ธe โˆ’ 600 = 0

=> ๐ดe + ๐ธe = 3400๐‘

[2.1]

ฮฃ๐‘€๏ฟฝ :โˆ’ 1200(1.5) โˆ’ 1200 โˆ’ 160097 +43; + ๐ธe

(8) โˆ’ 600(11) = 0

=>๐ธe = 2867๐‘

โŸน ๐ดe = 533๐‘

[2.1]

Fig. 6.3 (c)

Parts a), b)

Part c)

The maximum magnitude of bending moment from the fig. above is at E, ๐‘€JFK = 2703๐‘๐‘š. The maximum flexural stress would occur at the bottom and top fibers of the cross-section. Hence, the distance of these fibers from the centroid (๐‘ฆy) of the cross-section must be obtained.

Fig. 6.3 (d)

๐‘ฆy =๐ด%๐‘ฆ% โˆ’ ๐ด&๐‘ฆ&๐ด% โˆ’ ๐ด&

=15.75๐‘Ž&(โˆ’1.75๐‘Ž) โˆ’ 6.25๐‘Ž&(โˆ’2.25๐‘Ž)

9.5๐‘Ž& = โˆ’1.421๐‘Ž [3.1]

Therefore, the centroid is at 1.421๐‘Žfrom the top surface of the cross-section. Similarly, to find the second area moments of inertia,

๐ผ% =๐‘โ„Ž2

12 + ๐ด%(๐‘ฆy โˆ’ ๐‘ฆ%)& =1124.5๐‘Ž

(3.5๐‘Ž)2 + 15.75๐‘Ž&(0.329๐‘Ž)& = 17.785๐‘Ž8 [3.2]

๐ผ& =๐‘โ„Ž2

12 + ๐ด&(๐‘ฆy โˆ’ ๐‘ฆ&)& =112(2.5๐‘Ž)8 + 6.25๐‘Ž&(0.829๐‘Ž)& = 7.55๐‘Ž^4

๐ผb = ๐ผ% โˆ’ ๐ผ& = 1.64๐‘‹10Sw๐‘š8

[3.3]

๐‘ฆ}5๏ฟฝ = 1.421๐‘Ž; ๐‘ฆC5}}5J = 2.079๐‘Ž

๐œŽ}7G~๏ฟฝ67 = 46.84๐‘€๐‘ƒ๐‘Ž; ๐œŽ๏ฟฝ5J๏ฟฝ๏ฟฝ7~~๏ฟฝ๏ฟฝ7 = 68.53๐‘€๐‘ƒ๐‘Ž

[3.4]

Part d)

The maximum shear stress can be calculated using the following formula,

๐œJFK =|๐‘‰|JFK๐‘„

๐ผ๐‘ก=|๐‘‰|JFK๐ดโˆ—๐‘ฆโˆ—

๐ผb๐‘ก=1500 โˆ— {4.5๐‘Ž(1.421๐‘Ž) โˆ’ 2.5๐‘Ž(0.421๐‘Ž)} โˆ— {0.809๐‘Ž}

10.235๐‘Ž8 โˆ— 2๐‘Ž

โˆด ๐œJFK = 791.21๐‘˜๐‘ƒ๐‘Ž

[3.5]

Fig. 6.3 (e)

Fig. 6.3 (f)

Problem 6.4 (10 points): A wood beam is supported and loaded as shown in Fig. 6.4 (a). The weight ๐‘ค of the beam is to be considered, using ๐›พ = 50๐‘™๐‘ ๐‘“๐‘ก2โ„ for the specific weight of the wood. The maximum shear stress in any cross-section (along the y-direction) must not exceed ๐œF665B =90๐‘๐‘ ๐‘–.

a) Calculate the maximum allowable value of the loading ๐‘ƒ for the solid rectangular cross-section (A), with dimensions ๐‘ = 2.5๐‘–๐‘› and โ„Ž = 6๐‘–๐‘›.

b) Calculate the maximum allowable value of the loading ๐‘ƒ for the solid circular cross-section (B), with diameter ๐‘‘ = 6๐‘–๐‘›.

c) Calculate the maximum allowable value of the loading ๐‘ƒ for the hollow circular cross-section (C), with outer diameter diameter ๐‘‘5 = 6๐‘–๐‘› and inner diameter ๐‘‘๏ฟฝ = 3๐‘–๐‘›

d) Show the state of stress at three places (M, N, P) on the cross-section (A) as shown in Fig. 6.4 (b). The co-ordinates for these points are:

Points Co-ordinates

(x,y,z)

M ( 6ft , 0in , 0in )

N ( 6ft , 1.5in , 0in )

P ( 6ft , 3in , 0in )

Fig. 6.4 (a)

Solution

FBD:

Calculating unit loading ๐‘ค for each of the cross-sections A, B & C:

For (A): ๐‘ค = ๏ฟฝs&.v%&๐‘–๐‘›t s w

%&๐‘–๐‘›t๏ฟฝs50 6CE

E}at โ‰ˆ 5.21 6CE

E} [4.1]

For (B): ๐‘ค = ๏ฟฝ(๐œ‹)s w๏ฟฝG&โˆ—%&

t&๏ฟฝ s50 6CE

E}at โ‰ˆ 9.82 6CE

E} [4.2]

Fig. 6.4 (b)

Fig. 6.4 (c)

For (C): ๐‘ค =  (๐œ‹)s w๏ฟฝG&โˆ—%&

t&โˆ’ (๐œ‹)s 2๏ฟฝG

&โˆ—%&t&ยกs50 6CE

E}at โ‰ˆ 7.36 6CE

E}

[4.3]

Equilibrium Equations:

ฮฃ๐นe:๐ดe โˆ’ (8๐‘“๐‘ก)๐‘ค โˆ’ ๐‘ƒ โˆ’ 2๐‘ƒ + ๐ทe = 0

=> ๐ดe + ๐ทe = 3๐‘ƒ + (8๐‘“๐‘ก)๐‘ค

[4.4]

ฮฃ๐‘€๏ฟฝ :โˆ’ (8๐‘“๐‘ก)๐‘ค(4๐‘“๐‘ก) โˆ’ ๐‘ƒ(4๐‘“๐‘ก) โˆ’ 2๐‘ƒ(7๐‘“๐‘ก) + ๐ทe(8๐‘“๐‘ก) = 0

=>๐ทe = 2.25๐‘ƒ + (4๐‘“๐‘ก)๐‘ค

๐ดe = 0.75๐‘ƒ + (4๐‘“๐‘ก)๐‘ค

[4.5]

Shear Force Diagram:

The maximum magnitude of shear stress is seen to |๐‘‰|JFK = ๐ทe = 2.25๐‘ƒ + (4๐‘“๐‘ก)๐‘ค and occurs at ๐‘ฅ = 8๐‘“๐‘ก.

Part a)

Fig. 6.4 (d)

The maximum shear stress of a rectangular cross-section can by calculated using the reduced formula,

๐œJFK =|๐‘‰|JFK๐‘„

๐ผ๐‘ก =32|๐‘‰|JFK๐ด = 90๐‘๐‘ ๐‘–

โŸน3

2

2.25๐‘ƒ๐‘Ž๐‘™๐‘™๐‘œ๐‘ค + (4๐‘“๐‘ก) s5.21๐‘™๐‘๐‘“๐‘“๐‘ก t

(2.5๐‘–๐‘›)(6๐‘–๐‘›)= 90๐‘๐‘ ๐‘–

โˆด ๐‘ƒF665B โ‰ˆ 390.74๐‘™๐‘๐‘“

[4.6]

Part b)

๐œJFK =|๐‘‰|JFK๐‘„

๐ผ๐‘ก =34|๐‘‰|JFK๐ด = 90๐‘๐‘ ๐‘–

โŸน43

2.25๐‘ƒF665B + (4๐‘“๐‘ก) 99.82๐‘™๐‘๐‘“๐‘“๐‘ก ;

(๐œ‹) s6๐‘–๐‘›2 t& = 90๐‘๐‘ ๐‘–

โˆด ๐‘ƒF665B โ‰ˆ 830.77๐‘™๐‘๐‘“

[4.7]

Part c)

Calculating the ๐œJFK at the neutral axis for this cross-section,

For (C): ๐œJFK is expected to occur at the neutral axis. Calculating the maximum shear stress:

๐œJFK =|๐‘‰|JFK๐‘„

๐ผ๐‘ก = 90๐‘๐‘ ๐‘–

๐‘„ = ๐ดโˆ—๐‘ฆโˆ— = [๐ด% โˆ’ ๐ด&] ๏ฟฝ๐ด%๐‘ฆ% โˆ’ ๐ด&๐‘ฆ&๐ด% โˆ’ ๐ด&

๏ฟฝ = ๐ด%๐‘ฆ% โˆ’ ๐ด&๐‘ฆ&

โˆด ๐‘„ = ยฅ๐œ‹296๐‘–๐‘›2;&ยฆ q9

43๐œ‹;96๐‘–๐‘›2;r โˆ’ ยฅ

๐œ‹293๐‘–๐‘›2;&ยฆ q9

43๐œ‹;93๐‘–๐‘›2;r = 15.75๐‘–๐‘›2

[4.8]

๐ผ =๐œ‹4  9

6๐‘–๐‘›2 ;

8

โˆ’ 93๐‘–๐‘›2 ;

8

ยก = 59.64๐‘–๐‘›8; ๐‘ก = ๐‘‘5 โˆ’ ๐‘‘๏ฟฝ = 3๐‘–๐‘›

โˆด ๐‘ƒF665B โ‰ˆ 439.94๐‘™๐‘๐‘“

Part d)

The shear force ๐‘‰ and the bending moment ๐‘€ at ๐‘ฅ = 6๐‘“๐‘ก for cross section (A) are as follows:

V(x = 6ft) = โˆ’0.25๐‘ƒ โˆ’ (2๐‘“๐‘ก)๐‘ค = โˆ’108.11๐‘™๐‘๐‘“

๐‘€(๐‘ฅ = 6๐‘“๐‘ก) = 2.5๐‘ƒ + (6๐‘“๐‘ก)๐‘ค = 1008.11๐‘™๐‘๐‘“๐‘ก

[4.9]

Shear stress values:

๐œJFK = ๐œ\ =32๐‘‰๐ด = โˆ’10.811๐‘๐‘ ๐‘–

๐œยซ =๐‘‰๐‘„๐ผ๐‘ก=

6๐ดโ„Ž&  

โ„Ž&

4 โˆ’ ๐‘ฆ&ยก๐‘‰ =6

(2.5 โˆ— 6)(6)&  6&

4 โˆ’ 1.5&ยก (โˆ’108.11) = โˆ’8.108๐‘๐‘ ๐‘–

๐œJ๏ฟฝG = ๐œยฌ = 0

[4.10]

Flexural stress values:

๐œŽJ๏ฟฝG = ๐œŽ\ = 0๐‘๐‘ ๐‘–

๐œŽยซ =โˆ’๐‘€๐‘ฆ๐ผ

=ยญ(โˆ’1008.11 โˆ— 12๐‘™๐‘๐‘–๐‘›)(1.5๐‘–๐‘›)ยฎ

45๐‘–๐‘›8 = โˆ’403.24๐‘๐‘ ๐‘–

๐œŽJFK = ๐œŽยฌ = โˆ’806.49๐‘๐‘ ๐‘–

[4.11]

The state of stress at three different points can be given as,

Fig. 6.4 (e)