filter optimization-challenges and opportunities operations/filter... · 2016-11-22 · media...

31

Upload: duongdieu

Post on 29-Jun-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Overview

Increased federal emphasis on filter performanceVirginia’s emphasis on filter performanceMedia filter optimizationChallenges to good filtrationFinding solutions

Increased federal emphasis on filter performanceVirginia’s emphasis on filter performanceMedia filter optimizationChallenges to good filtrationFinding solutions

Federal Emphasis on Filter Performance: LT2 Summary

Increased filter performance is equated to increased pathogen reductionSource water monitoring for Cryptosporidium determines Bin classification Current classification my change in 2015‐

2016 (periodic testing is required)Bin classification determines additional Cryptosporidium removal requirements

Increased filter performance is equated to increased pathogen reductionSource water monitoring for Cryptosporidium determines Bin classification Current classification my change in 2015‐

2016 (periodic testing is required)Bin classification determines additional Cryptosporidium removal requirements

LT2 Bin Classification

Bin Classification for Filtered Systems

CryptosporidiumConcentration(oocysts/L)

BinClassification

Additional Cryptosporidium Treatment RequiredAlternativeFiltrationConventional

FiltrationDirect

Filtration

Slow Sand orDiatomaceousEarth Filtration

<0.075 Bin 1No Additional

Treatment Required

No Additional Treatment Required

No Additional Treatment Required

No Additional Treatment Required

0.075 to <1.0 Bin 2 1 log 1.5 log 1 log (1)

1.0 to <3.0 Bin 3 2 log 2.5 log 2 log (2)

≥3.0 Bin 4 2.5 log 3 log 2.5 log (3)

(1) As determined by the state (or other primacy agency) such that the total removal/inactivation > 4.0-log.

(2) As determined by the state (or other primacy agency) such that the total removal/inactivation > 5.0-log.

(3) As determined by the state (or other primacy agency) such that the total removal/inactivation > 5.5-log.

Federal Emphasis on Filter Performance: LT2 Microbial Toolbox

Pathogen removal credits granted for: Source Protection and Management Pre‐filtration, pre‐sedimentation, bank 

filtration Filter performance Additional Filtration (bags, membranes, 

DE, etc.) Inactivation (UV, Ozone, etc.)Optimization of filter performance can frequently provide additional pathogen removal credit with limited capital cost

Pathogen removal credits granted for: Source Protection and Management Pre‐filtration, pre‐sedimentation, bank 

filtration Filter performance Additional Filtration (bags, membranes, 

DE, etc.) Inactivation (UV, Ozone, etc.)Optimization of filter performance can frequently provide additional pathogen removal credit with limited capital cost

Increased Federal Emphasis on Filter Performance: LT2 Filter Performance Credit

Combined filter performance (0.5 log Crypto removal credit)

• ≤0.15 NTU in 95% of filtered water measurementsIndividual filter performance (0.5 log Crypto removal credit)

• ≤0.15 NTU in 95% of filtered water measurements• Never exceed 0.3 NTU in any two consecutive 15‐minute measurements

Optimized Filter performance can yield a 1.0 log Crypto removal credit; Bin 2 systems with optimized filtration can avoid capital expenses for UV, Ozone, etc.

Combined filter performance (0.5 log Crypto removal credit)

• ≤0.15 NTU in 95% of filtered water measurementsIndividual filter performance (0.5 log Crypto removal credit)

• ≤0.15 NTU in 95% of filtered water measurements• Never exceed 0.3 NTU in any two consecutive 15‐minute measurements

Optimized Filter performance can yield a 1.0 log Crypto removal credit; Bin 2 systems with optimized filtration can avoid capital expenses for UV, Ozone, etc.

Example Individual Filter Data

MonthsExamined

Filter 1 Filter 2 Filter 3 Filter 4#

≥0.15 NTU

% ≤0.15 NTU

# ≥0.15 NTU

% ≤0.15 NTU

# ≥0.15 NTU

% ≤0.15 NTU

# ≥0.15 NTU

% ≤0.15 NTU

February 2009

2 98.8% 0 100.0% 0 100.0% 2 98.8%

July 2009 3 98.4% 2 98.9% 1 99.5% 4 97.8%

December 2009

1 99.5% 0 100.0% 3 98.4% 1 99.5%

January 2010

0 100.0% 0 100.0% 1 99.5% 1 99.5%

July 2010 12 93.5% 11 94.1% 9 95.2% 10 94.6%

July 2011 0 100.0% 0 100.0% 0 100.0% 0 100.0%

Example Individual Filter Data

Applied filter turbidities averaged 0.42 NTUFiltered water turbidities averaged 0.032 NTUIn three years, there was one month that would have failed the LT2 individual filter requirements to help meet Bin 2 based on 4‐hour dataThere is some forgiveness if failure is very rare, but reliance on this is riskyConsistent performance is essential!!!

Applied filter turbidities averaged 0.42 NTUFiltered water turbidities averaged 0.032 NTUIn three years, there was one month that would have failed the LT2 individual filter requirements to help meet Bin 2 based on 4‐hour dataThere is some forgiveness if failure is very rare, but reliance on this is riskyConsistent performance is essential!!!

Virginia Optimization Program (VOP)

Meeting the EPA standards is not the ultimate goal… the goal is to provide pathogen free drinking waterThe VOP program establishes achievement goals to inspire operators to optimize their plants

Meeting the EPA standards is not the ultimate goal… the goal is to provide pathogen free drinking waterThe VOP program establishes achievement goals to inspire operators to optimize their plants

From 2012 VOP Document:The purpose of VOP is to reduce the risks to public health associated with drinking water beyond the risk reduction inherent by adherence to regulatory standards. VOP is currently focused on enhanced particulate removal at surface water treatment plants with gravity flow, granular media filters.

Performance Goals for Optimization

Clarification• Effluent turbidity < 1.0 NTU 95 % of time when average raw water turbidity for month < 10.0 NTU• Effluent turbidity < 2.0 NTU 95 % of time when average raw water turbidity for month > 10.0 NTU

Filtration

• Filtered water turbidity < 0.10 NTU 95 % of time  (excluding 15 minutes after backwash)• Filtered water turbidity < 0.3 NTU 100% of time 

Filter Backwash

• Backwash recovery period < 15 min. (return to < 0.10 NTU) in 95% of backwashes • Peak turbidity < 0.3 NTU during backwash recovery period2 in 95 % of backwashes • Filtered water turbidity < 0.10 NTU 95% of time a filter is placed into service following a backwash (for 15 min)

Minimum Data Monitoring Requirements 

• Raw water turbidity @ 2 hr. intervals (15 minute intervals if continuous monitoring is provided) • Clarified water turbidity @ 2 hr. intervals (15 minute intervals if continuous monitoring is provided) • Filtered water turbidity @ 15 minute intervals, each filter (in conformance with SWTR)• Filtered water turbidity when filter is returned to service following a backwash • Peak turbidity during backwash recovery, and period of recovery, each filter, every backwash 

MEDIA FILTER OPTIMIZATION

Measuring Filter Performance

Although the design of media filters is highly standardized their performance varies widely.  Why?

Although the design of media filters is highly standardized their performance varies widely.  Why?

Source: Hancock et al, Journal AWWA, 1996

Media Filter Optimization

CoagulationBackwashing ProceduresCoagulationBackwashing Procedures

Coagulation

Straining is not the most important particle removal mechanism in media filtration

Adhesion due to particle‐media collision is key

Optimized chemical pretreatment (coagulation) has a greater impact on Cryptosporidium removal than filtration rates, filter media design, and filtration aids (polymer)Optimizing filtration for turbidity removal can provide Cryptosporidium removal in excess of 5 log  (treatment technique)Under LT2, 4‐log credit can be achieved for conventional treatment with optimized filtration

Straining is not the most important particle removal mechanism in media filtration

Adhesion due to particle‐media collision is key

Optimized chemical pretreatment (coagulation) has a greater impact on Cryptosporidium removal than filtration rates, filter media design, and filtration aids (polymer)Optimizing filtration for turbidity removal can provide Cryptosporidium removal in excess of 5 log  (treatment technique)Under LT2, 4‐log credit can be achieved for conventional treatment with optimized filtration

Coagulation

Coagulant Selection & DosepHAlkalinityTemperaturePhysical Factors Addition Location Mixing Flocculation TransportCoagulation Aids

Coagulant Selection & DosepHAlkalinityTemperaturePhysical Factors Addition Location Mixing Flocculation TransportCoagulation Aids

Coagulation

Is your current coagulant the best for your water?Is your water chemistry optimized for your coagulant and your water?Is your coagulant addition point and mixing intensity optimized for your coagulant? 

Is your current coagulant the best for your water?Is your water chemistry optimized for your coagulant and your water?Is your coagulant addition point and mixing intensity optimized for your coagulant? 

Filter Backwashing

Reduced filter performance during filter ripening can reduce Cryptosporidium removal by up to 1 logTurbidity removal is indicative of Cryptosporidium removal… a           reason to filter             the waste

Reduced filter performance during filter ripening can reduce Cryptosporidium removal by up to 1 logTurbidity removal is indicative of Cryptosporidium removal… a           reason to filter             the waste

Filter Backwashing:Sub-fluidization Wash

More important with evolving clarification processes that produce lower applied filter turbidities.

More important with evolving clarification processes that produce lower applied filter turbidities.

Source: Amburgey et al, Journal AWWA, 2003

Filter Backwashing:Backwash Water Chemistry

Backwashing with filtered vs. finished waterCorrosion Inhibitor, Chlorine, pH control

Backwashing with filtered vs. finished waterCorrosion Inhibitor, Chlorine, pH control

Source: Amburgey et al, Journal AWWA, 2004

Filtration Challenges

Chemical pretreatment: Coagulant type pH and other water chemistry parameters Coagulant addition point and mixingBackwash Procedures: Adequate backwashing  Long ripening periodNew MediaAlgaeTurbidity Measurement

Chemical pretreatment: Coagulant type pH and other water chemistry parameters Coagulant addition point and mixingBackwash Procedures: Adequate backwashing  Long ripening periodNew MediaAlgaeTurbidity Measurement

Filtration Challenges: New Media

Design media size and depth properly 

Creates “tortuous path” Potential for higher filtration rates

Require onsite sieve analysis

Design media size and depth properly 

Creates “tortuous path” Potential for higher filtration rates

Require onsite sieve analysis

Filtration Challenges: Algae

Type of Algae can change over time

Algal growth can lead to shorter filter runs

Chemical pretreatment can reduce algal growth but different chemicals may not provide the same results Chlorine and chlorine dioxide 

may cause the algal cell to lyse  Sodium permanganate kills the 

algal cells without destroying them

Type of Algae can change over time

Algal growth can lead to shorter filter runs

Chemical pretreatment can reduce algal growth but different chemicals may not provide the same results Chlorine and chlorine dioxide 

may cause the algal cell to lyse  Sodium permanganate kills the 

algal cells without destroying them

Filtration Challenges: Turbidity Measurement

Are the turbidimeters reporting numbers representative of actual turbidities?Equipment maintenance and calibration is a must

Are the turbidimeters reporting numbers representative of actual turbidities?Equipment maintenance and calibration is a must

Filtration Challenges: Turbidity Measurement

Don’t shear the particlesDon’t shear the particles

Source: Brumberger et al, Hach Turbidity Science

Filtration Challenges: Turbidity Measurement

Gas bubblesGas bubbles

Solutions

Cost‐effective solutions come down to good operators who know their plant and are devoted to producing the best water possible Vigilance Education and Experience Willingness to Change Improvement Implementation Plans

Cost‐effective solutions come down to good operators who know their plant and are devoted to producing the best water possible Vigilance Education and Experience Willingness to Change Improvement Implementation Plans

Solutions: Vigilance

Be proactiveDetermine/Understand what is going onConsider ways to make improvementsAsk questions

Be proactiveDetermine/Understand what is going onConsider ways to make improvementsAsk questions

Solutions: Education & Experience

Understand the issue and know your water and your plantUnderstand the issue and know your water and your plant

Solutions: Willingness to Change

Alternate pre‐oxidantsAlternate coagulantsAdjust mixing intensity/addition point

Alternate pre‐oxidantsAlternate coagulantsAdjust mixing intensity/addition point

Polymer/PAClbefore filtersPolymer/PAClbefore filters

Solutions: Incremental Changes

Make process changes one at a time and allow time to observe the effects Consider new coagulants and/or adjusting water 

chemistry Adjusting mixers to the best speeds Consider adding coagulant in a pipe instead of 

rapid mixer Consider adding polymer in the flocculators Consider permanganate addition for algal issues Consider adding polymer just prior to filters Consider changing backwash to include more or 

less wash and perhaps sub‐fluidization flows Make sure your instruments are accurate with 

calibration and that you understand their reporting protocol (averaging, instantaneous)

Make process changes one at a time and allow time to observe the effects Consider new coagulants and/or adjusting water 

chemistry Adjusting mixers to the best speeds Consider adding coagulant in a pipe instead of 

rapid mixer Consider adding polymer in the flocculators Consider permanganate addition for algal issues Consider adding polymer just prior to filters Consider changing backwash to include more or 

less wash and perhaps sub‐fluidization flows Make sure your instruments are accurate with 

calibration and that you understand their reporting protocol (averaging, instantaneous)